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Combining discovery and targeted proteomics
reveals a prognostic signature in oral cancer
Carolina Moretto Carnielli 1, Carolina Carneiro Soares Macedo1,2, Tatiane De Rossi1, Daniela Campos Granato1,

César Rivera 1,2, Romênia Ramos Domingues1, Bianca Alves Pauletti1, Sami Yokoo1, Henry Heberle 3,

Ariane Fidelis Busso-Lopes1, Nilva Karla Cervigne2,4, Iris Sawazaki-Calone5, Gabriela Vaz Meirelles1,

Fábio Albuquerque Marchi6, Guilherme Pimentel Telles7, Rosane Minghim3, Ana Carolina Prado Ribeiro8,9,

Thaís Bianca Brandão8, Gilberto de Castro Jr10, Wilfredo Alejandro González-Arriagada11, Alexandre Gomes12,

Fabio Penteado12, Alan Roger Santos-Silva2, Márcio Ajudarte Lopes2, Priscila Campioni Rodrigues13,14,

Elias Sundquist13,14, Tuula Salo13,14,15, Sabrina Daniela da Silva16,17, Moulay A. Alaoui-Jamali17, Edgard Graner2,

Jay W. Fox18, Ricardo Della Coletta2 & Adriana Franco Paes Leme 1

Different regions of oral squamous cell carcinoma (OSCC) have particular histopathological and

molecular characteristics limiting the standard tumor−node−metastasis prognosis classification.

Therefore, defining biological signatures that allow assessing the prognostic outcomes for OSCC

patients would be of great clinical significance. Using histopathology-guided discovery pro-

teomics, we analyze neoplastic islands and stroma from the invasive tumor front (ITF) and inner

tumor to identify differentially expressed proteins. Potential signature proteins are prioritized and

further investigated by immunohistochemistry (IHC) and targeted proteomics. IHC indicates low

expression of cystatin-B in neoplastic islands from the ITF as an independent marker for local

recurrence. Targeted proteomics analysis of the prioritized proteins in saliva, combined with

machine-learning methods, highlights a peptide-based signature as the most powerful predictor

to distinguish patients with and without lymph node metastasis. In summary, we identify a robust

signature, which may enhance prognostic decisions in OSCC and better guide treatment to

reduce tumor recurrence or lymph node metastasis.
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Oral squamous cell carcinoma (OSCC) is the most com-
mon type of head and neck malignant tumor and is
ranked the eighth leading cause of cancer worldwide.

OSCC exhibits high prevalence and morbidity, with 300,000 new
cases and 145,000 deaths per year worldwide1. Standard multi-
modal management of OSCC is based on the tumor−node
−metastasis (TNM) classification2, in which the tumor size and
location and the presence of metastasis are used to define OSCC
prognosis and treatment in the clinical setting3. However, this
system has several flaws, such as patients with the same TNM
stage exhibit different clinical behaviors, different treatment
responses, and substantial variability in clinical outcomes4,5.
Despite efforts to improve imaging and therapeutic modalities,
OSCC prognosis, including survival rates, remains poor and may
widely vary, even in the early stages of the disease, e.g., 20−40%
of occult metastases are detected at the initial diagnosis5–8. Fur-
thermore, OSCC recurrence rates range from 18 to 76% in
patients undergoing standard treatment, and local relapse
represents a clinical challenge for therapeutic management5.
Thus, the identification of complementary biological signatures
that assist in the prognostic prediction of patients with OSCC
is needed.

Histopathological parameters have previously been employed
in numerous studies that aimed to improve the OSCC prognostic
prediction and overcome the shortcomings of the TNM staging
system4,9–11. Histopathological-based models may be used to
stratify patients into low- and high-risk classes9 and further
identify patients at risk of aggressive early-stage OSCC, thus
contributing to disease predictability in terms of clinical pro-
gression and treatment outcomes. Moreover, histopathology
contributes to the molecular characterization of specific tumor
regions, such as the invasive tumor front (ITF) and the inner
tumor, which exhibit different morphologic and molecular
features12,13. For example, the epithelial−mesenchymal transition
phenotype presents more cells with a lower degree of differ-
entiation and greater cell dissociation in the ITF than in other
tumor areas14,15.

Grading systems based on the ITF4,16 have demonstrated
reliable predictive value for OSCC prognosis, thus highlighting
the importance of this area for molecular profiling and for the
identification of potential biomarkers, as it is considered a key
region in the dynamic progression of malignant tumors12,13,17.
The presence of neoplastic islands, classified as large or small
according to the number of cells in the ITF, has been described as
the most aggressive pattern compared to tumors with a more
uniform growth pattern, as tumor invasion occurs in a more
widespread manner as cellular islands or single cells4. Further-
more, there is evidence that components of the tumor stroma
critically influence carcinogenesis and the malignant phenotype
in multiple stages of tumor development and progression18,19.
The complex interactions among tumor cells and the various
types of cells and matrix components within the microenviron-
ment play important roles in cancer onset, progression, invasion,
and metastasis20,21.

In addition to the routine use of tissue histopathology, saliva
testing may represent a promising noninvasive tool to validate
prognostic biomarkers, such as proteins, lipids, mRNA, miRNA,
and exosomes, and better classify patients into low- and high-risk
groups22–25.

In this study, we combine discovery and targeted proteomics
approaches to identify prognostic signatures for OSCC patients. In
the initial discovery phase, we integrate knowledge of the histo-
pathology, discovery proteomics analysis of formalin-fixed paraf-
fin-embedded (FFPE) OSCC tissues, and clinical features of
patients. Assessing the protein profiles of large and small neo-
plastic islands and their surrounding stroma by combining laser

microdissection (LMD) and proteomics reveals several proteins—
including CSTB, NDRG1, LTA4H, PGK1, COL6A1, ITGAV,
and MB—with distinct expression patterns between ITF and inner
tumor, suggesting a potential prognostic value by clin-
icopathological association analysis. In the subsequent targeted
phase, we use two follow-up approaches to verify these signatures
in two independent patient cohorts. First, analysis of clinical sig-
nificance and immunohistochemical staining are performed in a
125-OSCC patient cohort, indicating CSTB, at low expression
levels in the ITF, as an independent marker for local recurrence.
Second, selected reaction monitoring mass spectrometry (SRM-
MS) is applied to study the abundance of the above-mentioned
seven proteins in saliva samples from an independent 40-OSCC
patient cohort. Analyzing the SRM-MS results with machine-
learning approaches demonstrates that a combination of LTA4H-,
COL6A1-, and CSTB-specific peptides in saliva are able to dis-
tinguish patients with and without lymph node metastasis
with good estimated prediction performance, outperforming pre-
dictors based on individual or grouped proteins.

Taken together, our results identify a prognostic signature that
may assist in the clinical decision-making process leading to
appropriate treatment, thus improving the prognosis and survival
of patients with OSCC.

Results
Spatial characterization of OSCC by discovery proteomics. We
aimed to identify proteins that were spatially organized in distinct
histological areas of tongue squamous cell carcinoma. For this
purpose, we mapped the proteome of neoplastic islands and
their surrounding tumor stroma from the ITF and inner tumor
FFPE tissue samples from 20 patients (Fig. 1a, b; Supplementary
Fig. 1; Supplementary Data 1). Using histology-guided LMD,
we isolated six different areas of the tumor: (1) small neoplastic
islands from the ITF; (2) large neoplastic islands from the ITF;
(3) small neoplastic islands from the inner tumor; (4) large
neoplastic islands from the inner tumor; (5) stroma from the ITF;
and (6) stroma from the inner tumor.

The six proteomes were analyzed using quantitative mass
spectrometry (Supplementary Data 2) and label-free protein
quantitation (LFQ intensity) to compare the relative abundance
of the proteins (Fig. 1c–e). The reproducibility and correlation
coefficient among the LFQ intensities of discovery proteomics
data are illustrated in Fig. 2e, f and in Supplementary Data 3, 4.

Combining the data for small and large neoplastic cells resulted
in the quantitation of 2049 proteins from the ITF and inner
tumor. After excluding reverse sequences and those identified
“only by site” entries, and considering proteins with at least
ten valid LFQ intensity values in at least one group (20 samples),
799 proteins were confidently identified (ITF and inner tumor)
(Supplementary Data 5−9). For the tumor stroma dataset
(ITF and inner tumor), 1733 proteins were quantified. After
excluding reverse sequences and those identified “only by site”
entries, and considering proteins with at least eight valid values in
at least one group (17 samples), 704 proteins were quantified
(Supplementary Data 10−14).

The proteomic data analysis identified common and exclusive
proteins from neoplastic islands (Fig. 2a) and tumor stroma
(Fig. 2b, Supplementary Fig. 2). The filtered dataset of the
neoplastic islands from the ITF and inner tumor was subjected
to statistical analysis using Student’s t test (P value < 0.05),
which resulted in 32 proteins with differential abundances
(Supplementary Data 8). Similarly, paired Student’s t test
(P value < 0.05) indicated 101 proteins that were differentially
expressed between the tumor stroma from the ITF and the
inner tumor (Supplementary Data 13).
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Unsupervised hierarchical clustering analysis of the identified
proteins showed not only the proteomic diversity between
samples from the ITF and the inner tumor, but also the variation
within the ITF samples and the inner tumor samples for both
neoplastic island (Fig. 2c; Supplementary Fig. 3a) and tumor
stroma proteomes (Fig. 2d; Supplementary Fig. 3b). The lower
clustering identified in neoplastic islands compared with tumor
stroma may be associated with different abilities to extract
proteins from FFPE tissues and may also reflect the intrinsic
tumor heterogeneity7,12, as OSCCs are known for their biological
variability, which leads to specific clinical behaviors, i.e., it has
been observed that tumors at the same stage may present
different clinical outcomes4,5,26.

To investigate whether the biological processes could spatially
separate neoplastic islands from tumor stroma, we searched for
biological processes in the Gene Ontology (GO) database that
were enriched for proteins uniquely identified in each proteome.
Cellular metabolic processes primarily represented the neoplastic
island proteins, whereas cellular adhesion processes and protein
cleavage processes overrepresented the tumor stroma proteins
(Fig. 2g; Supplementary Data 15, 16), which indicate that
proteome annotation discriminates neoplastic islands from
adjacent stroma. Moreover, the analysis of the 601 significant
proteins, which were significantly different between the neoplastic
islands and the tumor stroma (Student’s t test, P value < 0.05),
also indicates metabolic processes overrepresented, among other

annotations, for upregulated proteins of neoplastic islands
(Fig. 2g; Supplementary Data 17).

We used linear regression to analyze the proteome LFQ dataset
and clinicopathological data to identify the proteins associated
with patient features (Table 1; Supplementary Fig. 4). The
majority of proteins (ACTR2, CSTB, LTA4H, PGK1, NDRG1,
FSCN1, ITGAV, THBS2) significantly associated with clinical
parameters showed lower expression in the ITF of the tumor
stroma or neoplastic islands, with the exception of COL6A1,
COL1A2, S100A8, S110A9, and MB.

Prioritization of proteins for IHC and SRM-MS analysis. The
targeted proteins evaluated in the subsequent steps of verification
using immunohistochemistry (IHC) in a 125-patient cohort and
SRM in an independent 40-patient cohort were selected if
they filled the following criteria: (1) only proteins with different
protein abundances between the ITF and the inner tumor in
the discovery phase (Student’s t test, P value < 0.05); (2) only
proteins that present a significant association with clinical char-
acteristics of patients (Linear regression, P value < 0.05, R <−0.7
or 0.7 < R and R2 > 0.4) (Table 1); (3) only proteins with positive
staining of squamous cell carcinoma in HNSCC in The Human
Protein Atlas (https://www.proteinatlas.org/); and (4) only pro-
teins not cited or cited only in limited studies related to oral
cancer (Supplementary Data 18).
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Cystatin-B (CSTB), leukotriene A-4 hydrolase (LTA4H),
protein NDRG1 (NDRG1), and phosphoglycerate kinase 1
(PGK1) from the neoplastic island dataset and collagen alpha-1
(VI) chain (COL6A1), integrin alpha-V (ITGAV) and myoglobin
(MB) from the tumor stromal dataset were prioritized (Fig. 3;
Supplementary Fig. 5). All these proteins, according to the
literature and to the domain predictions performed here, are
nonclassically secreted (Supplementary Data 18).

IHC analysis of prioritized proteins. IHC analysis was per-
formed using 125 FFPE OSCC cases for neoplastic island
proteins and 96 FFPE OSCC cases for tumor stroma proteins
(Supplementary Data 19). For the IHC analysis, the adopted
score system described in Supplementary Data 2027 was used
to differentiate the staining among the two regions, the ITF
and the inner tumor, in a blinded and independent manner by
three pathologists (kappa= 0.706). Protein abundance varied
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according to the score created on a scale of 0 to 6, which
generated a staining scale for all cases (Fig. 4; Supplementary
Fig. 6; Supplementary Data 20−22).

The IHC of the cases (approximately 14 cases for each selected
protein) used in the discovery phase showed similar differential
protein abundances and locations between the ITF and the inner
tumor (Supplementary Data 21—Panel 1 and Table 1) for both
the neoplastic islands and tumor stroma, despite the distinct
dynamic range of the techniques. Further, the number of IHC
cases was increased to 125 cases of neoplastic islands and 96 cases
of tumor stroma, and most of the IHC results are similar to those
for the original 14 IHC cases. However, with this significant
increase in the size cohort, LTA4H, PGK1, and ITGAV staining
were identified with a slight variation within the lower and higher
scores in each region, either ITF or inner tumor (Supplementary

Data 21—Panels 1 and 2). In addition, in the IHC analysis of
neoplastic island proteins (Fig. 4a, Supplementary Fig. 6a),
LTA4H and PGK1 showed peripheral staining in neoplastic cells
and were also detected in cells in the tumor stroma, such as
inflammatory cells. Increased CSTB and NDRG1 expression was
identified in the inner tumor, according to the MS discovery
results, with staining only inside neoplastic cells of the OSCC,
but in some cases, CSTB and NDRG1 were also detected in
the adjacent normal epithelium. In turn, for tumor stroma
proteins (Fig. 4b, Supplementary Fig. 6b), higher COL6A1 and
MB expression was identified in the ITF according to the
MS discovery analysis. Staining for COL6A1, ITGAV, and MB
proteins indicated a preferential localization in the tumor stroma,
with staining also identified in neoplastic cells. Positive staining in
muscle was detected for MB. Taken together, nuclear and

Fig. 2 Quantitative proteome analysis indicates spatially distinct protein signatures. a, b Venn diagram of common and “exclusive” proteins identified for
a neoplastic islands or b tumor stroma from the ITF and the inner tumor. c, d Clustering analysis of proteins identified in the ITF and the inner tumor of
c neoplastic islands (n= 20 samples) and d tumor stroma (n= 17 samples). Values for each protein (rows) and for each microdissected sample (columns)
are colored based on the protein abundance, in which high (red) and low (blue) values (Z-scored log2 LFQ intensity values) are indicated based in the color
scale bar shown in the top left of the figure. The colored bars shown on the top of the figure indicate samples from the ITF (blue) or from inner tumor
(pink). Hierarchical clustering was performed in the R environment using the Euclidean distance with complete ligation for neoplastic island data and the
Euclidean distance with average ligation for stromal data. e, f Heat map of Pearson correlation coefficients derived from pairwise comparison of the 20-
patient samples for e neoplastic island samples and for the f tumor stroma samples analyzed by discovery proteomics. Log2 LFQ intensity values of the
protein dataset after filtering reverse and “only by site” entries were used to calculate the correlation coefficient using Perseus software, and the heat map
was constructed using R language with the function heatmap.3. The dendrogram was built using Euclidean distance with complete ligation. Samples with
low correlation values and low number of quantified proteins from tumor stroma dataset were removed, as shown in Supplementary Figure 2. g The
five most enriched GO terms that distinguished neoplastic islands from tumor stroma are represented. GO terms for cellular metabolic processes are
overrepresented for neoplastic island proteins, whereas cellular adhesion and protein cleavage processes are overrepresented for tumor stromal proteins.
The statistically significant proteins between neoplastic islands compared with tumor stroma (two-sided Student’s t test, P value < 0.05) also indicate,
among other overrepresented processes, metabolic processes for proteins upregulated in neoplastic islands

Table 1 Linear regression and correlation analyses of proteins with differential abundance in the invasive tumor front and inner
tumor with clinicopathological variables of the cases used for LMD and LC-MS/MS

Tumor area Protein Gene
name

Uniprot
ID

Abundance
(ITF/Inner
tumor ratio)

Clinicopathological
data

Linear
regression
(P value)

Correlation
coefficient (R)

R-squared

Neoplastic islands Actin-related
protein 2

ACTR2 P61160 −0.57 Second primary tumor 0.002 −0.7 0.4

Neoplastic islands Cystatin-B CSTB P04080 −1.55 Treatment 0.0009 0.7 0.5
Neoplastic islands Collagen alpha-2(I)

chain
COL1A2 P08123 1.07 Treatment 0.001 0.7 0.4

Neoplastic islands Leukotriene A-4
hydrolase

LTA4H P09960 −0.83 Second primary tumor 0.001 −0.7 0.4

Neoplastic islands Phosphoglycerate
kinase 1

PGK1 P00558 −0.48 Disease-free survival 0.001 — 0.4

Neoplastic islands Phosphoglycerate
kinase 1

PGK1 P00558 −0.48 Second primary tumor 0.001 −0.7 0.4

Neoplastic islands Protein NDRG1 NDRG1 Q92597 −1.47 Disease-free survival 0.001 — 0.4
Neoplastic islands Protein S100-A8 S100A8 P05109 2.11 Second primary tumor 0.0003 −0.7 0.5
Neoplastic islands Protein S100-A9 S100A9 P06702 2.35 Second primary tumor 0.0006 −0.7 0.5
Tumor stroma Collagen alpha-1

(VI) chain
COL6A1 P12109 0.534 Lymph node status 0.0006 0.7 0.5

Tumor stroma Fascin FSCN1 Q16658 −0.673 Poorly differentiated
tumor (WHO)

2.34e-05 0.8 0.7

Tumor stroma Integrin alpha-V ITGAV P06756 −1.674 Lymph node status 0.0014 0.7 0.5
Tumor stroma Myoglobin MB P02144 2.901 Clinical stage 0.0015 0.7 0.5
Tumor stroma Thrombospondin-2 THBS2 P35442 −0.712 Lymph node recurrence 0.0001 0.7 0.6

Abundance= Log2 of the LFQ intensity ratio (ITF/Inner tumor); Treatment: surgery, or surgery and radiotherapy, or combination of surgery, radiation and chemotherapy; WHO: Histopathological Grading
System
ITF invasive tumor front
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cytoplasmic staining was identified for all proteins; however,
the marked proteins were more pronounced or more specific to
the cell type in which they were identified. For the specificities of
the antibodies employed here, please see Supplementary Figure 7.

Integrating IHC data with clinicopathological parameters. In
the 125- and 96-patient cohorts, IHC combined with clin-
icopathological characteristics strengthened the prognostic values
for the selected proteins from the OSCC samples.

Cross-tabulation and the chi-square test indicated significant
associations between the clinicopathological parameters and
CSTB, PGK1, COL6A1, and ITGAV expression (Supplementary
Data 23−24). Kaplan−Meier survival analysis in the OSCC
patients indicated the association of lower abundance of CSTB
and NDRG1 in the ITF with local relapse and second primary
tumor, respectively, and higher abundance of PGK1 and ITGAV
in the ITF with locoregional relapse and lymph node relapse,
respectively (Fig. 5). CSTB, PGK1, and ITGAV were significant
for the 5-year disease-specific survival and disease-free survival,
while NDRG1 was only significant for the 5-year disease-free
survival (Table 2).

CSTB was associated with local relapse in Cox multivariate
analysis with 3-year disease-free survival rate of 82% for 44
patients, thus confirming this protein as an independent
prognostic marker for OSCC patients (Supplementary Data 25).
Also, this analysis showed that the lower abundance of CSTB in
the ITF was associated to a higher risk of developing local

recurrence (HR 0.1224, 95% CI 0.0153−0.9801, P value= 0.0478,
Cox multivariate analysis).

SRM-MS of prioritized proteins in saliva of OSCC patients.
Saliva samples from 40 OSCC patients (Supplementary Data 26)
were obtained to monitor peptides derived from CSTB, NDRG1,
LTA4H, PGK1, COL6A1, ITGAV, and MB (Supplementary
Data 27-28) based on the previously described criteria for protein
selection. The samples were divided into two groups: patients
without lymph node metastasis (N0) and patients with lymph
node metastasis (N+).

Among the seven proteins investigated in saliva, six proteins,
including CSTB, LTA4H, PGKI, NDRG1, COL6A1, and ITGAV,
showed lower abundances in the saliva of the patients with lymph
node metastasis (N+) than the patients without lymph node
metastasis (N0) (Mann−Whitney U test, with P values adjusted
for multiple comparisons using the Benjamini−Hochberg FDR
method, adj. P value < 0.05, Fig. 6a, c).

At the peptide level, we also determined that the majority of
peptides showed statistically significant lower abundances in
the N+ patients than in the N0 patients (Mann−Whitney U test,
with P values adjusted for multiple comparisons using the
Benjamini−Hochberg FDR method, adj. P value < 0.05, Fig. 6b, d,
Supplementary Data 29−31). The quality of SRM data and
unsupervised hierarchical clustering analysis of peptides are
illustrated in Supplementary Fig. 8−11.
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Fig. 3 Abundance profile of proteins selected for verification steps. a Differentially regulated proteins between the ITF and inner tumor for neoplastic
islands, as determined by plotting Student’s t test (P value < 0.05, two-sided) P values versus the log2 ratio of the LFQ intensity (ITF/Inner tumor), are
represented on volcano plots. Significant proteins are indicated by red dots. b Line plots depicting the abundance profiles (log2 of the LFQ intensity) of
the proteins selected for the verification step. Shown are the abundances across all MS runs from discovery proteomics analysis of neoplastic island
samples. Samples from the ITF are denoted by “F”, and samples from inner tumor are denoted by “I”. c Differentially regulated proteins between the ITF
and inner tumor for tumor stroma (see panel a for plot details). d Protein abundance profiles for tumor stroma samples (see panel b for plot details)
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Moreover, we performed an analysis of the relationship
between the tissue and saliva based on the two MS techniques
employed, DDA and SRM (Fig. 6e). Most evaluated proteins
exhibited lower abundance at the site of ITF and in saliva, which
correlated with a poor prognosis. However, the overall results
indicate that the abundance of proteins in saliva and its
association with prognosis (N+ and N0) is not necessarily
associated with the proximity of the altered oral epithelium
(Fig. 6f).

Saliva prognostic signatures distinguish regional metastasis.
The low expression of the proteins LTA4H, PGK1, NDRG1,
COL6A1, and ITGAV in the saliva samples was associated with
lymph node metastasis and advanced clinical staging (cross-
tabulation and chi-square test, P value < 0.05, Supplementary
Data 32).

Further, through the strategies of machine learning described
(Fig. 7a), we evaluated the predictive power of individual and
groups of peptides and proteins to distinguish the patient with
lymph node metastasis (N+) from the patient without lymph
node metastasis (N0) (Fig. 7b–e, Table 3; Supplementary
Data 33−37). The groups S1: (Pep8_LTA4H, Pep12_CSTB), S2:
(Pep8_LTA4H, Pep9_COL6A1, Pep12_CSTB), S3: (Pep8_L-
TA4H, Pep9_COL6A1), and S4: (LTA4H) are the most relevant

signatures (Si) considering accuracy and AUC (Fig. 7d; Table 3,
Panel 1; Supplementary Data 38).

We determined that the signatures with the highest accuracies
did not have the highest AUC values, which may be explained by
the class imbalance between N0 and N+, further confirmed
through the oversampling analysis. The AUC of the peptide level
is considerably higher than that of the protein level, 82.8% (S2)
compared with 73.9% (S4). Only the signature S4 (LTA4H) was
selected at the protein level, with an AUC of 73.9%, as other
signatures have AUCs less than 62.5%. Further, balancing the
training subsets also increased the overall prediction performance
(Fig. 7b, e, Table 3, Panel 1).

Furthermore, the signatures S1 and S2 at the peptide level and
S4 at the protein level are the best candidates for both types
of cross-validation, using imbalanced and balanced classes.
In addition, the S2 is the best signature to discriminate N0 and
N+ of OSCC.

Discussion
The proteomic profiling of tumors is a promising approach for
the discovery of diagnostic and prognostic methods, based on the
identification of predictive markers of clinical aggressiveness and
treatment outcomes, and the potential of therapeutic monitoring.
However, the preparation of tissue samples for LC-MS/MS
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Fig. 5 Kaplan−Meier survival analysis of IHC and clinical outcomes. Overall survival (OS), disease-free survival (DFS) and specific survival (SS) were
available in relation to a second primary tumor, local, locoregional or lymph node relapse. a Patients with lower CSTB expression in the ITF had a higher risk
of local relapse and worse survival (P value < 0.05, log-rank test). In addition, a lower NDRG1 expression in the ITF was associated with a higher risk of the
patient presenting a second primary tumor and a worse DFS (P value < 0.05, log-rank test). Equal expression between the ITF and the inner tumor or higher
CSTB and NDRG1 expression in the ITF did not influence the local relapse or second primary tumor. Patients with higher PGK1 expression in the ITF had a
worse survival and early locoregional recurrence (P value < 0.05, log-rank test). b Patients with higher expression of ITGAV in the ITF have a greater risk to
present lymph node metastasis relapse and poor survival (P value < 0.05, log-rank test)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05696-2

8 NATURE COMMUNICATIONS |  (2018) 9:3598 | DOI: 10.1038/s41467-018-05696-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


analysis can be challenging as a result of their morphological and
molecular complexity7,12,28.

In this context, a comprehensive understanding of the pro-
teome of the ITF of OSCC may enhance prognostic accuracy
and guide appropriate treatment, thus improving the survival of
patients with OSCC. The interest in ITF composition has aug-
mented because recent studies using histopathological grading
systems have incorporated the analysis of the histopathology
of invasion patterns4,9,29 and IHC analyses of OSCC tissues for
clinical decisions14,15,30. Besides, the differential protein compo-
sition of the neoplastic islands and the stroma has also been
identified as prognostic factors considering its association with
tumor progression12,13. The tumor stroma has a distinct histo-
logical origin from the neoplastic cells of OSCC, which is pri-
marily composed of fibroblasts, endothelial cells, and
inflammatory cells31,32. Altogether, the tumor microenvironment
is in fact increasingly complex and mediates the signaling
crosstalk of different tumor cell and stromal cell types and tumor
regions12–14,32. Previous proteomic studies of oral cancer have
used LDM to evaluate tumor cells of epithelial origin29,33–35 and
Jensen et al.17 analyzed the ITF and the central area of the
OSCC tumor; however, they did not evaluate the stroma from
each region.

With our study, we demonstrated using discovery and tar-
geted/verification phases that not only the canonical approach
using morphological tumor heterogeneity, the classic clin-
icopathological characteristics of patients, including TNM, and
the immunolocalization of proteins, but also the knowledge about
the proteome map should be implemented in the clinical routine
to identify proteins of prognostic value for OSCC.

Here, for the discovery phase, we overcame the histopatholo-
gical complexity of the tumor tissue samples using
histopathological-guided LC-MS/MS to separate small and large
neoplastic islands and their surrounding tumor stroma by LMD,
followed by mapping the proteome of these distinct tumor areas,
which contributes to a better understanding of the protein
composition between different areas of the tumor. We identified
32 proteins with significantly different abundances between
neoplastic islands from the ITF and the inner tumor and 101
proteins with distinct abundances in the stroma from both tumor
regions (Figs. 2, 3 and Supplementary Data 9 and 13). With this
approach, distinct overrepresented biological processes were

enriched in the neoplastic island proteome, such as cellular
metabolic processes, whereas the proteome of the tumor stroma
was overrepresented by cellular adhesion and other processes
associated with protein and peptide cleavage (Fig. 2g). The
enriched terms of neoplastic islands are associated with a hall-
mark of cancer, as the ability to reprogram the metabolism to
meet the bioenergetic, biosynthetic, and redox demands of
malignant cells36,37. Interestingly, the loss of cell adhesion
favoring invasion and metastasis is one of the most characterized
alterations in carcinoma36,37.

Considering the significant proteins from different areas of
tumor have a potential prognostic value, we subsequently prior-
itized them for the next targeted phase, IHC and SRM-MS.
Among them, 13 proteins correlated with clinicopathological
parameters and of these proteins, eight proteins were identified in
neoplastic islands (ACTR2, CSTB, COL1A2, LTA4H, PGK1,
NDRG1, S100A8, S100A9) and five proteins were identified in
tumor stroma (COL6A1, FSCN1, ITGAV, MB, THBS2) (Table 1).
We followed-up with verification steps with the seven potential
candidates COL6A1, CSTB, NDRG1, LTA4H, ITGAV, PGK1,
and MB, according to the additional criteria for protein prior-
itization (Supplementary Data 18).

Although elucidating the role of these selected proteins was
beyond the aim of this study, it is interesting that the spatial
organization of the proteins may reflect different phenotypes
when observed inside neoplastic cells, whereas in the periphery of
neoplastic cells, such as in the ITF, they may be associated with a
highly aggressive phenotype, including invasion and cellular
migration mechanisms9,12,17,38. All selected proteins have pre-
viously been reported in some type of cancer, with limited
information regarding their role associated with their localization
in the tumor microenvironment. It is interesting that it has
previously been reported that low levels of CSTB result in an
increase in extracellular matrix (ECM) degradation, migration,
and cell invasion39,40. Moreover, a recent study indicated that its
downregulation may promote the development of gastric cancer
by affecting cell proliferation and migration, as well as activation
of the PI3/Akt/mTOR signaling pathway39. Higher levels of
human NDRG1 may act as a tumor suppressor that is involved in
cellular differentiation, cell cycle regulation, responses to hor-
mones, nickel and stress, cell adhesion and ECM degradation41.
NDRG1 has been reported to correlate with metastasis in prostate

Table 2 Kaplan−Meier survival analysis of OSCC patients according to the levels of protein expression obtained by IHC analysis

Parameter Disease-free survival
in 5 years % (n)

HR; CI (P value) Specific survival
in 5 years % (n)

HR; CI (P value)

CSTB
Lower expression in ITF 45% (25) 54% (26)
Equal expression 76% (15) 81% (11)
Higher expression in ITF 86% (44) 0.21; 0.07−0.60 (0.001) 90% (40) 0.28; 0.10−0.79 (0.01)

NDRG1
Lower expression in ITF 44% (43) — —
Equal expression 83% (35) — —
Higher expression in ITF 100% (11) 0.31; 0.12−0.79 (0.01) — —

PGK1
Lower expression in ITF 82% (24) 82% (25)
Equal expression 50% (44) 61% (42)
Higher expression in ITF 50% (48) 3.22; 1.45−7.15 (0.02) 52% (42) 3.96; 1.82−8.64 (0.005)

ITGAV
Lower expression in ITF 100% (10) 100% (08)
Equal expression 90% (52) 92% (50)
Higher expression in ITF 65% (17) 4.02; 0.77−20.76 (0.02) 72% (16) 4.99; 0.90−27.68 (0.01)

HR hazard ratio, CI confidence interval, ITF invasive tumor front
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cancer, pancreatic cancer, and colorectal cancer42. Another pro-
tein from the neoplastic islands, PGK1, is a glycolytic enzyme that
is involved in the tumor biology, angiogenesis, replication and
repair of DNA and metastasis, and its increase has been inves-
tigated in breast cancer, pancreatic cancer, gastric cancer, and
liver cancer43. The protein LTA4H belongs to the family of zinc
metalloproteases and has a role in the response to inflamma-
tion44. Another recent study has indicated that LTA4H regulates

the cell cycle and the knockout of the protein reduced skin cancer
development in mouse model45.

Among the proteins from tumor stroma, the protein ITGAV is
a receptor of ECM and serves as a subunit for receptors of
integrins, RGD-motif bound containing substrates, such as
vitronectin, fibronectin and fibrinogen, which are components of
the stroma involved in the EMT transition46. Furthermore, high
levels of ITGAV have previously been associated with tumor
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growth regulation and metastasis in tumors of the hypopharynx
and larynx47 and tumor progression in colorectal cancer48, but
not previously in oral cancer. COL6A1 protein is composed of
three distinct chains (α1, α2, and α3) secreted in the ECM to form
a network of microfilaments, which is associated with the basal
membrane of muscular cells and interacts with several compo-
nents of the ECM49. Collagen VI is an important protumorigenic
factor that acts in the tumor microenvironment, promoting
events of inflammation and angiogenesis50.

For the targeted phase, several technologies could be used, such
as targeted proteomics, IHC, ELISA, and western blotting17,51.
IHC was the first method of choice because of its broad appli-
cations in clinical practice and ability to provide results for
patient postoperative management decisions28. In addition, his-
topathology remains the gold standard to determine the post-
surgical treatment prognosis of OSCC patients, based on the
evaluation of morphological findings, such as invasion by neo-
plastic islands and perineural invasion that lead to a worse clinical
outcome of the disease4,10.

The seven selected proteins were evaluated by IHC in a larger
patient cohort, with 125 and 96 patients for the evaluation of
proteins identified in neoplastic islands and tumor stroma,
respectively. The clinical characteristics of both patient cohorts
used in the discovery and verification phases are considered to
be typical of the profiles of patients affected by oral cancer
(Supplementary Data 19)1,29. The IHC analysis of the neoplastic
islands and tumor stroma (Fig. 4) confirmed the proteins’ pre-
ferential location and abundance identified by MS discovery
analysis (Table 1, Supplementary Data 21) and further strength-
ened the correlation with the patients’ outcomes (Supplementary
Data 23−24, Fig. 5).

The results indicated that prioritized proteins, CSTB, NDRG1,
PGK1, and ITGAV, may play a relevant biological role in tumor
progression, since they were potentially associated, directly or
indirectly, with patient prognosis (Table 2, Fig. 5). Interestingly,
the clinical data indicated a high-power correlation of the low
expression of CSTB in the ITF with local recurrence, resulted
from aggressive or advanced tumors, as an independent prog-
nostic marker (Supplementary Data 25), using the criteria for
the consideration of a marker for cancer prognosis based on the
REMARK guidelines51. In fact, the lower expression of CSTB in
the ITF also observed in discovery phase correlated with patient
treatments combining surgery, radiotherapy and chemotherapy,
which is usually the therapeutic modality prescribed to patients
with advanced/aggressive tumors (Table 1).

A literature review of oral cancer indicated that recurrence
episode occurs within 7.5 months after initial treatment5, whereas
our study showed a mean recurrence period of 12 months for

patients with lower CSTB expression in the ITF. It is known that
local or regional recurrence of oral cancer represents a clinical
challenge for the choice of therapeutic methods and clinical
follow-up, considering that failures in postoperative treatment
and radiotherapy have been indicated to explain up to 90% of
recurrences52. Low CSTB levels have previously been correlated
with a shorter disease-free survival rate in breast cancer53. In
contrast, the study by Feldman et al.54 identified high levels of
CSTB as an independent marker for bladder cancer recurrence.
Similarly, low levels of NDRG1 in the ITF area revealed to be
associated to the presence of secondary primary tumor and low
disease-free survival, whereas patients with locoregional recur-
rence and with lymph node relapse presented higher abundance
of PGK1 and ITGAV in the ITF, respectively, associated to
disease-free survival (Fig. 5).

To further investigate the prognostic value of the selected
proteins in OSCC patients in another targeted phase via SRM-
MS analysis, we used saliva, a noninvasive fluid, as a promising
source for candidate markers. The lymph node status was
the prioritized clinical parameter employed because lymph
node metastasis is the most important factor for prognosis in
oral cancer55,56 and its presence is highly associated with a
poor prognosis3. Moreover, compromised lymph nodes showed
significant clinical correlations for some selected proteins,
besides associations with clinical stage and disease-free survival
(Table 1, Fig. 5 and Supplementary Data 23−24), which are
clinical data established to correlate with lymph node metastasis
in oral cancer57–59.

Interestingly, SRM-MS analysis showed CSTB, LTA4H, PGK1,
COL6A1, ITGAV, and NDRG1 were significantly downregulated
in patients with lymph node metastasis (Fig. 6a, b). Moreover,
they were significantly associated with lymph node metastasis,
which, in turn, correlated with advanced clinical staging,
with exception of CSTB (Supplementary Data 32). Notably,
the expression levels of ITGAV and COL6A1 in the tissues were
also previously associated with lymph node status (Table 1 and
Fig. 5). Future studies could evaluate the CSTB, PGK1, LTA4H
levels in saliva according to recurrence and/or second primary
tumor, which were relevant clinical data associated with their
expression in the tissues (Table 1, Fig. 5) and are also clinical
challenges for therapeutic management in OSCC.

Furthermore, to test the strength of the association of these
proteins with lymph node status, through multivariate analysis,
we evaluated the individual and combined performances of the
selected proteins and their peptides, with the aim to identify the
best signatures with prognostic value. We performed a robust
pipeline (Fig. 7a) for which the groups, N+ and N0, were used to
determine the discrimination power of each signature through

Fig. 6 Targeted proteomics of saliva proteins. a, b Volcano analyses show log2 ratio of N+/N0 of a proteins and b peptides according to the adjusted
P value. Proteins that met the indicated statistical cut-off criteria (Mann−Whitney U test, with P values adjusted for multiple comparisons using the
Benjamini−Hochberg FDR method, adjusted P value < 0.05) are colored in red. c The graph demonstrates individually the L/H intensity ratio (not log
transformed) of six differentially expressed proteins CSTB, COL6A1, ITGAV, LTA4H, PGK1, and NDRG1 between N+ and N0 saliva samples. *P value <
0.05, Mann−Whitney U test. d Peptide relative quantification (log2 L/H ratio) between N+ and N0 saliva samples. For each protein, 2−3 proteotypic
peptides were monitored, with exception for NDRG1, only one proteotypic peptide was monitored. The light peptide (corresponding to the endogenous
peptide present in saliva) and the heavy peptide (which corresponds to the synthetic peptide spiked-in saliva) were monitored, and the light/heavy ratio for
each of the 14 peptides was obtained by Skyline. Box plots represent the median and interquartile range, whiskers represent the 1–99 percentile, and
outliers are represented by empty circles. e Bar plots represent the relationship between MS Discovery analysis of tissue and SRM-MS of saliva in the
identification of potential prognostic signatures. The log2 N+/N0 ratio for saliva samples and log2 ITF/inner ratio for neoplastic islands and tumor stroma
from microdissected tissues are represented in the graph. f Representative figure illustrates the gradient dynamics of the protein abundance between tissue
(ITF and inner tumor) and saliva (N+ and N0), which indicates that the abundance of proteins in saliva and its association with prognosis (N+ and N0) is
not necessarily associated with the proximity of the altered oral epithelium. Other components, such as water, electrolytes, DNA, RNA, and
microorganisms, were not included. Images in f were adapted from files provided by Servier Medical Art (https://smart.servier.com/, licensed under a
Creative Commons Attribution 3.0 Unported License)
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cross-validation, testing all possible combinations of proteins and
peptides. The prognostic value of protein LTA4H was strength-
ened by the cross-validation performance, being the most accu-
rate signature at the protein level. At the peptide level, the
analysis indicated three good candidates, S1 and S2 with the
highest accuracy in both balanced and imbalanced cross-
validations. Comparing the overall performance among all sig-
natures, we determined that peptide groups are more accurate
than protein groups and that S2 is the best signature to

discriminate the stages N0 and N+ of OSCC (Fig.7e, Table 3,
Panel 2).

In summary, the discovery phase enabled us to spatially map
the proteome of neoplastic islands and their surrounding stroma
of OSCC, identifying proteins with potential prognostic value.
The targeted phase of IHC and SRM-MS in independent cohorts
verified prognostic signature markers that may have applications
in routine clinical practice of tissue histopathology and in very
promising noninvasive biofluid saliva, driving prognostic
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decisions that can contribute to precise treatment protocols and
reduction of tumor local relapse or lymph node metastasis.
Extensive longitudinal study with large-sized independent patient
cohorts is still necessary before clinical implementation. Here we
indicate a robust prognostic signature with CSTB, at low protein
expression levels in the ITF, as an independent marker for local
recurrence; and with the combination of LTA4H-, COL6A1-, and
CSTB-specific peptides in saliva, able to distinguish patients with
and without lymph node metastasis.

Methods
Clinical tissue sample collection. This retrospective cohort study was approved
by the Research Ethics Committee of the Faculty of Medical Sciences at the Uni-
versity of Campinas (Campinas-SP, Brazil) through Plataforma Brasil protocol
CAAE 23163113.5.1001.5404 and the Research Ethics Committee of the Piracicaba
Dental School through Plataforma Brasil protocol CAAE: 71351517.7.0000.5418.
The methods and experimental protocols of the present study were performed in
accordance with the approved guidelines and informed consent was obtained from
all human participants. Two sets of tissue samples were used: the 20-patient cohort
1 (Supplementary Data 1), with samples for mass spectrometry analysis, and the
125- and 96-patient cohorts (Supplementary Data 19, including approximately 14
cases used in cohort 1 for the discovery MS), with surgical samples for IHC
staining. The first set comprised 20 cases of primary tongue squamous cell carci-
noma, retrieved from two reference hospitals in Cascavel, Paraná, Brazil, the
Oncology Center of Cascavel, CEONC and the UOPECCAN Cancer Hospital,
collected over a 20-year period (from 1998 to 2008). The inclusion criteria were as
follows: (a) demographic and complete clinicopathological data; (b) location of the
tumor in the tongue; (c) type of treatment based on radical surgery with or without
postoperative radiotherapy and/or chemotherapy; and (d) availability of surgical
specimens in FFPE blocks. The presence of small and large neoplastic islands in the
ITF and the inner tumor from hematoxylin and eosin (H&E)-stained histological
sections was evaluated and used as inclusion criteria. As proposed by Bryne et al.16

and Brandwein-Gensler et al.11, neoplastic islands with more than 15 cells were
classified as large islands; neoplastic islands with 15 cells or less were classified as
small islands. The ITF region was considered the area that contained the neoplastic

islands invading the normal tissues, such as connective tissue, muscle, salivary
glands and blood vessels, and the inner part of the tumor was the region close to
the neoplastic epithelium (when present), i.e., the most distant region from the
invasion. The second set of samples, employed for the IHC assays, was retrieved
from reference oncology centers in Brazil and Finland: (1) 96 OSCC surgical
specimens from patients diagnosed and treated at the Oncology Center of Cascavel
CEONC and the UOPECCAN Cancer Hospital in Cascavel, Paraná, Brazil; and (2)
29 OSCC surgical specimens from patients diagnosed at the initial stage (I and II)
of the disease at the University Hospital of Oulu in Finland. The use of OSCC
samples from Finland was approved by National Supervisory Authority for Welfare
and Health (Valvira, Dnro 7449/06.01.03.01/2013). From this second set of sam-
ples, 125 cases were used for the verification of proteins identified in neoplastic
islands, and 96 cases were used for the verification of proteins in the tumor stroma.

The information collected from the medical records and follow-up of patients
included the following: sex; age; habits, such as smoking and alcohol consumption;
tumor location; TNM stage; status of surgical margins; local recurrence and lymph
node metastasis; distant metastasis; the presence of second primary tumors;
treatment; and survival. After treatment, the patients were monitored for at least 5
years, and disease recurrence was histologically confirmed. Outcomes were
classified as specific survival (SS) for the disease, the time from the beginning of
treatment until death as a result of OSCC or the last follow-up information when
the patient was alive, and DFS, the time from the beginning of treatment until
diagnosis of the first recurrence (local, regional or distant) or last follow-up
information for patients without recurrence. Stained H&E histological slides were
evaluated according to four histopathologic classification systems, the WHO
classification system60, the Malignancy Grading (MG) system61, the Histologic Risk
(HR) model11 and the Budding and Depth of invasion (BD) model4, and the slides
were calibrated by two pathologists10.

Sample preparation and LMD. Four histological slides were prepared for each of
the 20 OSCC samples. Paraffin blocks were cut using a microtome with a thickness
of 5 μm; the other three slides had a thickness of 10 μm. Histological sections with a
thickness of 5 μm were stained with H&E to guide the LMD. The other three
sections of 10 μm thickness were prepared using specific membrane slides (PEN
Arcturus® Membrane, Life Technologies, Foster City, CA, USA) for LMD, which
were deparaffinized in xylol, hydrated with decreasing concentrations (100, 90, 70,

Fig. 7 Prognostic signature in saliva distinguishes OSCC patients. a Workflow for machine-learning approach to measure the predictive power of peptides
and proteins. b, c The predictive relevance of individual proteins and peptides to distinguish N0 from N+ patients is represented by a bar chart indicating
their cross-validation ROC AUC (100 repetitions of stratified tenfold cross-validation). The most relevant protein and peptide ordered by the AUC is
LTA4H and Pep8_LTA4H, respectively. When only the AUCs of the individual signatures (size 1) are considered, the three highest areas at the protein level
are LTA4H (73.9%), COL6A1 (62.1%), and ITGAV (60.5%) and at the peptide level are Pep12_CSTB (73.5%), Pep8_LTA4H (72.8%), and Pep9_COL6A1
(71.0%). d Cross-validation estimated ROC curves of the best protein and peptide signatures. e Box plots representing the AUC of all possibilities of
signatures for both imbalanced and balanced (SMOTE) cross-validation. At the peptide level, 1024 signatures were tested. At the protein level,
63 signatures were tested. Signatures formed by peptides from different proteins S1 {Pep8, Pep12} and S2 {Pep8, Pep9, Pep12} have approximately
10.5% higher AUC than the peptide signature formed by LTA4H (S4). S2 peptide signature outperformed both S1 and S4 signatures. The candidate
signatures are indicated by labels: S1, S2, S3, and S4. Peptide sequences: Pep1_MB: HGATVLTALGGILK; Pep2_MB: YLEFISECIIQVLQSK; Pep3_PGK1:
VLNNMEIGTSLFDEEGAK; Pep4_PGK1: VLPGVDALSNI; Pep5_ITGAV: LQEVGQVSVSLQR; Pep6_ITGAV: STGLNAVPSQILEGQWAAR; Pep7_LTA4H:
LTYTAEVSVPK; Pep8_LTA4H: DLSSHQLNEFLAQTLQR; Pep9_COL6A1: GLEQLLVGGSHLK; Pep10_COL6A1: TAEYDVAYGESHLFR; Pep11_NDRG1:
EMQDVDLAEVKPLVEK; Pep12_CSTB: HDELTYF; Pep13_CSTB: SQVVAGTNYFIK; and Pep14_CSTB: VHVGDEDFVHLR. Four peptides were not included
in the training model because they did not pass the filtering step (step 2 from Part 2 of Fig. 7a; P value < 0.1, Mann−Whitney U test). Box plots
represent the median and interquartile range, whiskers represent the 1–99 percentile, and outliers are represented by “+”

Table 3 Comparison among the best candidates from cross-validation without (Panel 1) and with oversampling (Panel 2)

Si Accuracy (%) AUC (%) F1 (%) Sensitivity (%) Specificity (%) Precision (%) Signature

Panel 1: Cross-validation
S1 75.9 82.3 80.5 75.6 76.6 86.2 Pep8 Pep12
S2 74.6 82.8 80.1 77.9 68.4 82.7 Pep8 Pep9 Pep12
S3 75.4 80.1 80.8 79.4 67.6 82.5 Pep8 Pep9
S4 76.2 73.9 82.0 83.4 62.3 80.8 LTA4H
Panel 2: Cross-validation (oversampling by SMOTE)
S2 77.2 85.9 81.6 76.9 77.8 87.1 Pep8 Pep9 Pep12
S1 76.9 85.5 80.9 74.5 81.5 88.5 Pep8 Pep12
S3 75.0 83.0 80.2 77.1 70.9 83.7 Pep8 Pep9
S4 69.3 74.0 74.18 68.05 71.55 81.95 LTA4H

Si, Signature; F1, F score; SMOTE, Synthetic Minority Over-sampling Technique. Pep8_ LTA4H: DLSSHQLNEFLAQTLQR; Pep9_COL6A1: GLEQLLVGGSHLK; Pep12_CSTB: HDELTYF
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and 50%) of ethanol, washed in water and stained with hematoxylin blue for 8 min
prior to drying for LMD62.

Samples were processed using Leica Laser Microdissection Systems. The
microdissected areas were as follows: (1) small neoplastic islands from the ITF; (2)
large neoplastic islands from the ITF; (3) small neoplastic islands from the inner
tumor; (4) large neoplastic islands from the inner tumor; (5) stroma from the ITF;
and (6) stroma from the inner tumor (Fig. 1b). Neoplastic islands from the ITF
were collected from the farthest island in the invasive surface of the tumor, up to a
depth of one millimeter in the histological section, and neoplastic cell islands from
the inner tumor were cut from the farthest island inside the tumor, up to a depth of
one millimeter (Fig. 1a). Average microdissected tissue areas of 100,000 µm2 and
1,000,000 µm2 were isolated for small neoplastic islands and large neoplastic
islands, respectively, and an average area of 1,000,000 µm2 for stroma
(Supplementary Fig. 1).

All samples were collected in 600 μL microtubes and stored at −80 °C. LMD
was standardized for FFPE tissues with a thickness of 10 μm. The adjustable
parameters in the LMD Laser Microdissection Leica software are considered
optimum for these samples, and the area (µm2) cut for each patient was recorded.

Protein extraction and trypsin digestion. For protein extraction and digestion,
samples were treated with 8 M urea, followed by protein reduction with dithio-
threitol (5 mM for 25 min at 56 °C) and alkylation with iodoacetamide (14 mM for
30 min at room temperature in the dark). For protein digestion, urea was diluted to
a final concentration of 1.6 M with 50 mM ammonium bicarbonate, and 1 mM of
calcium chloride was added to the samples for trypsin digestion for 16 h at 37 °C
(2 µg of trypsin)63. The reaction was quenched with 0.4% formic acid, and peptides
were desalted with C18 stage tips64, dried in a vacuum concentrator, reconstituted
in 0.1% formic acid and stored at −20 °C for subsequent analysis by LC-MS/MS.

Mass spectrometry analysis using DDA. The peptide mixture (4.5 µL) was
analyzed using an LTQ Orbitrap Velos (Thermo Fisher Scientific) mass spectro-
meter coupled to nanoflow liquid chromatography on an EASY-nLC system
(Proxeon Biosystems) with a Proxeon nanoelectrospray ion source. Peptides were
subsequently separated in a 2–90% acetonitrile gradient in 0.1% formic acid using a
PicoFrit analytical column (20 cm × ID75, 5 µm particle size, New Objective) at a
flow rate of 300 nL/min over 212 min, in which a gradient of 35% acetonitrile is
reached in 175 min. The nanoelectrospray voltage was set to 2.2 kV, and the source
temperature was set to 275 °C. The instrument methods employed for LTQ
Orbitrap Velos were set up in DDA mode. Full scan MS spectra (m/z 300–1600)
were acquired in the Orbitrap analyzer after accumulation to a target value of 1e6.
Resolution in the Orbitrap was set to r= 60,000, and the 20 most intense peptide
ions (top 20) with charge states ≥2 were sequentially isolated to a target value of
5000 and fragmented in the high-pressure linear ion trap by CID (collision-
induced dissociation) with a normalized collision energy of 35%. Dynamic exclu-
sion was enabled with an exclusion size list of 500 peptides, an exclusion duration
of 60 s and a repetition count of 1. An activation Q of 0.25 and an activation time
of 10 ms were used. The run order of the samples is described in Supplementary
Data 2.

Proteomic data analysis. One hundred and twenty LC-MS/MS runs were per-
formed, in which 20 LC-MS/MS runs were conducted for each region (Fig. 1e;
Supplementary Data 2). Raw data were processed using MaxQuant v1.3.0.3 soft-
ware65, and MS/MS spectra were searched against The Human UniProt database
(released January 7, 2015, 89,649 sequences, and 35,609,686 residues) using the
Andromeda search engine66. As search parameters, a tolerance of 6 ppm was
considered for precursor ions (MS search) and 0.5 Da for fragment ions (MS/MS
search), with a maximum of two missed cleavages. Carbamidomethylation of
cysteine was considered a fixed modification, and oxidation of methionine and
protein N-terminal acetylation were considered variable modifications. A max-
imum of a 1% false discovery rate (FDR) was set for both the protein and peptide
identification. Protein quantification was performed using the LFQ algorithm
implemented in MaxQuant software, with a minimal ratio count of 2 and a window
of 2 min for matching between runs. Statistical analysis was performed with Per-
seus v1.2.7.4 software65, which is available in the MaxQuant package. Both the raw
files of large and small neoplastic islands from the ITF and the large and small
neoplastic islands from the inner tumor were combined in the experimental design
of MaxQuant. Identified protein entries were processed, excluding reverse
sequences and those identified “only by site” entries. Contaminants were not
removed from the dataset because keratin proteins are of interest in the study of
squamous tissues. Tumor stroma samples from three patients exhibited low cor-
relation values and low number of quantified proteins and were thus removed from
the analysis (Supplementary Fig. 2).

Protein abundance, which was calculated based on the normalized spectrum
intensity (LFQ intensity), was log2-transformed, and the dataset was filtered by
minimum valid values in at least one group (ten valid values for neoplastic island
samples and eight valid values for tumor stroma samples). Missing values for the
LFQ intensity were imputed with random numbers from a normal distribution, the
mean and standard deviation of which were selected to best simulate low
abundance values close to the noise level (imputation width= 0.3, shift= 1.8)67,68.

Significance was assessed using Student’s t test to identify differentially expressed
proteins between the ITF and inner areas (P value < 0.05). Exclusive and common
proteins from each comparison are presented as a Venn diagram generated using
the InteractiVenn tool69. For data visualization, heat maps with z-score values of
log2 LFQ intensities and volcano plots were built using the open-source statistical
programming language R.

GO annotation of biological processes for the proteome of neoplastic islands
and tumor stroma was performed using the BinGO plugin70 within Cytoscape71,
with the significance threshold set at P value < 0.05 using Hypergeometric test. The
whole human proteome Gene Ontology (GO) annotation file was used as a
reference set. Overrepresented GO terms are represented as bar plots according to
the P value of the enrichment analysis. The fold enrichment was calculated between
the enriched terms for the upregulated proteins and the downregulated proteins in
neoplastic islands, and the terms are presented in a volcano plot (Fig. 2g).

Discovery proteomics and clinicopathological data correlation. Linear regres-
sion analysis was performed using the R code to evaluate the linear relationship
between protein expression and the following clinicopathological variables: age
(>40 or <40 years old for island samples, >50 or <50 years old for stroma), sex,
smoking habits, tumor size, lymph node metastasis at diagnosis, clinical stage, type
of treatment (surgery, surgery and radiotherapy, or a combination of surgery,
radiation and chemotherapy), disease-free survival, second primary tumors (from
different histological origins), local recurrence, lymph node recurrence, presence of
the worst pattern of invasion11, presence of inflammatory infiltrate, perineural
invasion, second histological classification11, presence of tumor buddings according
to the BD model4, and the WHO histopathological grading system60. P value < 0.05
was used to define significance. The Pearson product−moment correlation coef-
ficient was also calculated to measure the strength of the association between the
previously described variables.

IHC of OSCC tissues. Slides of the OSCC cases (125 cases for the evaluation of
neoplastic island proteins and 96 cases for tumor stroma) were incubated with anti-
PGK1 (SAB1300102, Sigma) diluted 1:50, anti-NDRG1 (HPA006881, Sigma)
diluted 1:100, anti-LTA4H (HPA008399, Sigma) diluted 1:100, anti-CSTB
(HPA017380, Sigma) diluted 1:250, anti-COL6A1 (HPA019142, Sigma) diluted
1:1000, anti-ITGAV (HPA004856, Sigma) diluted 1:300 and anti-MB (HPA003123,
Sigma) diluted 1:75 according to The Human Protein Atlas and the manufacturers’
instructions and were assessed using the Envision detection system (Dako). The
control reactions were performed by exclusion of the primary antibodies. The
specificities of the antibodies employed were shown by western blot with seven cell
line extracts.

Western blot analysis. Protein extracts were obtained from BJ-5ta (ATCC CRL-
4001, a fibroblast immortalized cell line), CAF (a primary oral cancer-associated
fibroblasts, α-SMA positive), SCC-9 (ATCC CRL-1629, a tongue cancer cell line),
HSC3 (JCRB 0623, a human tongue squamous cell carcinoma cell line, Osaka
National Institute of Health Sciences, Japan), SK-MEL-28 (ATCC HTB-72,
malignant skin-derived melanoma cell line), MCF7 (ATCC HTB-22, a breast
cancer cell line) and A549 (BCRJ 0033, an epithelial lung cancer cell line) and
subjected to western blot (Supplementary Fig. 7). The antibodies were anti-CSTB
(1:500, Sigma—HPA017380), anti-LTA4H (1:500, Sigma—HPA008399), anti-
NDRG1 (1:500 Sigma—HPA006881), anti-PGK1 (1:500, Sigma—SAB1300102),
anti-COL6A1 (1:1000, Sigma—HPA019142), anti-ITGAV (1:1000, Sigma—
HPA004856), anti-MB (Sigma—HPA003123). Western blots were performed using
40 μg of total lysate protein and analyzed on a 10–15% SDS-PAGE gel. After
incubation with secondary antibodies, visualization of the proteins were achieved
by chemiluminescence with the ECL kit (Amersham Biosciences). Anti-ACTB
(1:2000, Sigma—A1978) antibody was used as loading control. Uncropped scans of
all blots are shown in Supplementary Fig. 7 in the Supplementary Information. The
cell lines were tested for mycoplasma contamination.

IHC data analysis. Histological slides were independently evaluated by three
pathologists in a blinded manner. The examiners were instructed to reach a con-
sensus on discordant cases. The ITF and the inner tumor were scanned under a low
power field to select the correct tumor area28. We used the protocol of da Silva
et al.27 with modifications. Samples were classified according to the intensity and
percentage of immunostaining, both for the ITF and the inner tumor separately.
Each intensity score was added to the percentage score to generate a combined
score, one score for the ITF and one score for the inner OSCC. The ITF score was
deducted from the inner score to determine the difference in expression for each
area. Values lower than zero were considered to indicate lower expression in the
ITF, values greater than zero were considered to indicate higher expression in the
ITF, and negative or missing values, with equal values between the ITF and the
inner portion, were considered equal (Supplementary Data 20−22).

Correlations between the immunostaining and clinical parameters of the
tumors were performed via crosstabulation and the chi-square test. Furthermore, a
survival analysis was calculated using Kaplan−Meier methodology and compared
with the log-rank test. In the univariate survival analysis, the comparison was
performed between the greater expression in the ITF in relation to the lower
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expression in the ITF. For the multivariate survival analysis, the Cox proportional
hazard model with a stepwise method was used. For this analysis, the equal
expression between the ITF and inner was clustered to the low expression data. P
value < 0.05 was used to define significance using Cox proportional hazard model.
The criteria for the consideration of a marker for cancer prognosis were based on
the REMARK guidelines51.

Saliva sample collection. This study was approved by the Ethics Review Board of
the Cancer Institute of São Paulo (ICESP), Octavio Frias de Oliveira, ICESP, São
Paulo, SP, Brazil, and Plataforma Brasil through protocol CAAE
30658014.1.1001.0065. Informed consent was obtained from all patients. The
procedures used for saliva collection22 and annotation were performed in accor-
dance with the approved guidelines and experimental protocols defined by the
ethics committee of the ICESP, and it comprised a 40-independent patient cohort.
Saliva samples were voluntarily obtained from OSCC patients with active lesions at
the time of saliva collection and were subsequently distributed based on their
clinical stage (TNM), including patients without lymph node metastasis (desig-
nated as N0, n= 14) and patients with lymph node metastasis (designated as N+,
n= 26). The detailed clinical and pathological information for the 40 patients
enrolled in this study are summarized in Supplementary Data 26. Individuals who
had not eaten for at least 1 h first rinsed their mouths with 5 mL of drinking water,
and saliva was subsequently harvested without stimulation into a glass receptacle.
The saliva samples were aliquoted into 15 mL tubes and frozen at −80 °C for long-
term storage until use.

Proteotypic peptides and transition selection. The proteins CSTB, LTA4H,
NDRG1, PGK1, COL6A1, ITGAV, and MB were selected for verification in saliva
patients without (N0) and with (N+) lymph node metastasis. Briefly, three pro-
teotypic peptides per protein were selected based on the number of residues,
hydrophobicity, and DDA and/or SRMAtlas evidence72,73. Seventeen proteotypic
peptides were selected and purchased as crude heavy-isotope-labeled peptide
standards (Thermo Fisher Scientific). The stable isotope-labeled peptides (SIL)
were synthesized with heavy isotopes on lysine, arginine or leucine (+8, +10, or
+7 Da, respectively), localized, preferentially, at the C-terminal of the peptide
(Thermo Fisher Scientific). Three transitions were monitored for the light and
heavy counterparts of each peptide, with a total of 102 monitored transitions
(Supplementary Data 27). Eight or nine peptides with their respective 24 or 27
transitions of the internal retention time standard (Pierce™ Peptide Retention Time
Calibration Mixture, Thermo Fisher Scientific) were monitored as a control for
retention time shifts in liquid chromatography. A detailed description of the
peptide and transition selection is provided (Supplementary Data 27) as follows:

Peptide selection: (1) Peptides were selected based on previous DDA data from
the same samples that were used in the discovery phase. With our own DDA data,
we generated spectral libraries using Skyline software; (2) In the cases we could not
retrieve three proteotypic peptides per protein, considering the rules for
proteotypic peptide selection72,73; we chose peptides informed by SRMAtlas.

Transition selection: (1) All transitions monitored in saliva were initially
obtained by spectral libraries built from our own DDA data and Human plasma
DDA data (obtained from the PeptideAtlas repository); (2) In the cases of
transitions that were not confidently detected, they were excluded from the method
and were complemented with transitions informed by the SRMAtlas during the
refinement of the SRM method; (3) The transitions were selected based on the rank
of intensity identified in the spectral libraries or the SRMAtlas spectra. The three
most intense transitions were preferably selected for further SRM analysis.

Saliva sample preparation for SRM-MS. The saliva samples were centrifuged at
1500 × g for 5 min at 4 °C to pellet the debris. The resulting supernatant was
collected and quantified using the Bradford assay (Bio-Rad, Hercules, CA, USA). A
volume that corresponded to 10 µg of total protein was used for sample prepara-
tion, and the sample volumes were adjusted. Ten micrograms of total protein were
denatured in urea buffer (100 mM Tris-HCl pH 7.5, 8 M urea, 2 M thiourea, 5 mM
EDTA, 1 mM PMSF, and 1 mM DTT) that contained Protease Inhibitor Cocktail
Complete Mini Tablets (Roche, Auckland New Zealand). The samples were soni-
cated for 10 min and subsequently centrifuged at 10,000 × g for 5 min. The
supernatant was collected, and the proteins were reduced with 5 mM DDT and
alkylated with 14 mM iodoacetamide. Prior to the addition of trypsin, all samples
were diluted 1:5 in 50 mM ammonium bicarbonate. Proteins were digested over-
night at 37 °C using 1.8 µg of trypsin. After digestion, the reaction was terminated
by the addition of trifluoroacetic acid. Desalting was performed by solid-phase
extraction using Stage-tips C18 resin22,63 (with modifications). After vacuum
drying, the peptides were resolubilized in 0.1% formic acid. SIL peptides and iRT
(Pierce) retention time standards (used here as a quality control for retention time
shift) were spiked into 10 µg of digested saliva.

To prevent bias during the measurements, the data collection was blocked and
randomized for each group (N0 and N+). Samples from both the N0 and N+
groups were randomized using the R (v3.4.0) environment. Randomization was
applied for each set of technical replicates (Supplementary Data 28). Each sample
was analyzed in three technical replicates using the same instrument parameters as
described below.

SRM-MS. Samples were analyzed on a Xevo TQ-XS triple quadrupole mass
spectrometer (Waters, Milford, MA, USA) equipped with an electrospray ion
source (Ion Key, Waters, Milford, MA, USA) with MassLynx software (version
4.2).

An aliquot that contained 1 µg of saliva peptide mixture was separated on a trap
column (Waters Acquity UPLC BEH C18 130A, 5 µm, 300 µm × 50 mm) and a
BEH Shield C18 IonKey column (10 cm × 150 µm ID packed with 1.7 µm C18
particles, Waters, USA) heated to 40 °C. Peptides were maintained at 4 °C in
sample manager and loaded onto the column from an Acquity UPLC-Class M LC
autosampler (Waters, Milford, MA, USA). Chromatographic conditions were as
follows: 60-min gradient at a flow rate of 1.2 µL/min starting with 98% A (water),
followed by 40% B (ACN) at 45 min with a step increase, followed by a step
increase to 85% B until 47 min and 2% B at 60 min. Targeted acquisition of eluting
ions was performed using the mass spectrometer operated in SRM-MS mode with
Q1 and Q3 analyzers set to 0.7 Th FWMH and a cycle time of 3 s. For all SRM-MS
runs, multiple scheduled injections with a 3-min elution window were used, each
targeting three transitions per peptide. The optimal collision energy was
determined for each peptide by Skyline74. The dwell time for all monitored
peptides was automatically set in MassLynx software (v.4.2), from 14ms to 163 ms,
with at least ten points per peak. To avoid carryover between the samples, one
blank sample using the trap column (90% isocratic gradient, over 15 min) and one
blank sample using both the trap and analytical columns (80% B isocratic gradient,
over 10 min) were run.

Quantitative and statistical analysis. Visualization and inspection of peaks were
manually performed in Skyline. Both the light and heavy peptides were checked
regarding the quality of the data by observing the alignment of light and heavy
peptide elution times, the co-elution of all three transitions, relative intensity
correlation with the spectral library (dotp, close to 1), relative intensity correlation
of light with heavy transitions (rdotp close to 1), proximity to the predicted
retention time and reproducibility in terms of retention time and intensity between
technical replicates (Supplementary Fig. 8−9). All monitored peptides were
detected and presented a measured retention time close to the predicted retention
time among the replicates (r= 0.9955 for set 1 and r= 0.9994 for set 2, Supple-
mentary Fig. 8).

The reproducibility based on sample group were assessed by Pearson
correlation analysis (Supplementary Fig. 10), and visualization of sample grouping
was assessed by unsupervised hierarchical clustering (Supplementary Fig. 11). Each
peptide was quantified in a sample by dividing the intensity of the light peptide
(sum of light transitions) by the intensity of each reference SIL peptide (sum of
heavy transitions) to obtain the light-to-heavy peptide ratio.

Comparison of the levels of the monitored peptides between the groups of
patients was performed using Mann−Whitney U test (not log transformed data). P
values were adjusted for multiple comparisons using the Benjamini−Hochberg
FDR method75. Adjusted P values less than 0.05 were considered statistically
significant.

Targeted proteomics and clinicopathological data correlation. Correlations
between the protein abundance in SRM and the clinicopathological data of the
tumors were performed by crosstabulation and the chi-square test (Supplementary
Data 32). P value < 0.05 was used to define significance.

Machine learning to predict power of prognostic signatures. To analyze the
prediction power of combinations of peptides and proteins to distinguish OSCC
patients by the presence of lymph node metastasis, the peptide and protein
abundances of 14 patients (N0) and 26 patients (N+) were used (Supplementary
Data 33). We split the dataset (40 samples) into a training set (80% of the dataset)
and an independent test set (20% of the dataset).

The training set was used to perform filtering of the variables, cross-validation
and running of the SES tool method76. A preselection of the appropriate features
may facilitate the performance of machine learning, particularly when applied to
proteomic and transcriptomic data77. We filtered proteins/peptides by the Mann
−Whitney U test to obtain only variables with significant differences between the
groups (P value < 0.10). We further combined all proteins/peptides to create all
possible signatures (size 1 to N, where N is the total amount of peptides/proteins)
to test in the next step.

To define the best classifier to evaluate the predictive power of signatures, we
performed a repeated cross-validation (100 rep. of stratified tenfold cross-
validation) on the training set and employed seven different types of machine-
learning algorithms (Linear SVM, RBF SVM, Decision Tree, Logistic Regression,
Random Forest, Perceptron, and Naive Bayes). For both levels (protein and
peptide), Random Forest has the highest performance (Supplementary Data 34-35).

The steps used to obtain and validate the signatures are detailed in Fig. 7a. We
performed a repeated cross-validation (100 rep. of stratified tenfold cross-
validation) on the training set using Random Forest to classify samples in N0
versus N+, thus creating a list of potential signatures with the highest accuracy
scores (Fig. 7b–d; Supplementary Data 36−37). Furthermore, we performed the
SES method76 to identify potential statistically equivalent signatures
(Supplementary Data 39). We generated ROC curves considering the 100 rep. of

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05696-2 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3598 | DOI: 10.1038/s41467-018-05696-2 | www.nature.com/naturecommunications 15

www.nature.com/naturecommunications
www.nature.com/naturecommunications


stratified tenfold cross-validation on the selected signatures (Fig. 7d). We compared
the AUC of each signature, as well as their accuracy, specificity, sensitivity, and
precision, as shown in Supplementary Data 38, to identify the most relevant results
regarding the pairs of Accuracy and ROC AUC. Finally, we validated the models
using the independent test set (Supplementary Fig. 12−13). Groups of signatures
with both the highest accuracy (≥74% for peptides, >68% for proteins) and the
highest AUC were selected as the most relevant features. Moreover, we applied a
technique to oversample the training subsets and balance the number of samples in
each class, using the Synthetic Minority Over-sampling Technique (SMOTE)78. For
comparisons based on the AUC, oversampling provides more accurate results than
undersampling79 (Supplementary Data 40−41, Fig. 7e). The 1000 training subsets
were synthetically oversampled, and the associated 1000 test subsets were
composed of only original samples (nonsynthetic).

Data availability
The mass spectrometry proteomic data have been deposited in the ProteomeXchange
Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner
repository80 with the dataset identifier PXD007232 (https://www.ebi.ac.uk/pride/archive/
projects/PXD007232).

The SRM analyses for the seven measured proteins are available through the
Panorama repository at the following link (https://panoramaweb.org/labkey/saliva_SRM.
url). Skyline exported data for all quantified peptides are available in Supplementary
Data 29−30. All other data supporting the findings of this study are available from the
corresponding author on reasonable request.
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