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Recent epidemiological and clinical studies have shown that type 2 diabetic patients can
develop diabetic vascular complications even after intensive glycaemic control. It has been
suggested that this phenomenon could be explained by the hypothesis of ‘metabolic mem-
ory’. The underlying mechanisms between these enduring effects and the prior hypergly-
caemic state are still not well understood. Preliminary studies demonstrate that hypergly-
caemia can regulate gene expression by epigenetic modifications, such as DNA methylation,
which can persistently exist even after glucose normalization. Increasing evidence shows
that epigenetic mechanisms may play a substantial role in the pathophysiology of diabetes
and its associated vascular complications, including atherosclerosis, diabetic cardiomyopa-
thy (DCM), nephropathy and retinopathy. In this review, we will examine the growing role of
DNA methylation in diabetes and its vascular complications, thus it can provide critical im-
plications for the early prevention of diabetes and its vascular complications.

Introduction
Epidemiology of diabetes and its vascular complications
The epidemic of diabetes is a serious and growing public health problem. In 2015, the International Di-
abetes Federation (IDF) declared that 415 million people have diabetes and the number will rise to 642
million by 2040 worldwide [1]. Diabetes is yielding enormous effects on individuals, public health and
social economy. Despite prominent advances in diabetes treatment, glucose monitoring and biomarkers
of glycaemic control, detrimental vascular complications still remain in most diabetic patients [2]. Di-
abetes is associated with significantly accelerated rates of several macrovascular complications such as
atherosclerosis, diabetic cardiomyopathy (DCM) and other cardiovascular diseases and microvascular
complications such as nephropathy and retinopathy [3,4]. Diabetic cardiovascular diseases are the main
cause of disability and death of diabetic patients [5]. It reports that the risk of cardiovascular complica-
tions occurring on diabetic patients is two to four times higher than the healthy people [6]. In addition, it
indicates that approximately 20–30% of type 2 diabetic patients have severe renal impairments, with their
glomerular filtration rate lower than 60 ml/min [7]. Diabetic retinopathy is the most common microvas-
cular complication of diabetes, and it remains a leading cause of legal blindness and visual impairment in
the working-age population in the developed world [8].

Diabetic complications and metabolic memory
Although the prevalence of diabetes and its vascular complications are increasing, the pathogenesis of
diabetes and its complications have not been clearly understood. There is growing evidence support-
ing the role of ‘metabolic memory’ in diabetic complications and metabolic memory plays a critical role
in the development of vascular complications in diabetic patients [9,10]. Metabolic memory is the phe-
nomenon of diabetic vascular stresses, which can persist after glucose normalization in diabetic patients
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Figure 1. Schematic diagram shows the role of epigenetic mechanisms in metabolic memory and diabetic vascular

complications

Metabolic memory is the phenomenon of diabetic vascular stresses persisting after glucose normalization in diabetic patients because

of early a hyperglycaemic environment. Increasing studies show that epigenetics may be the underlying mechanisms, which can explain

metabolic memory. Epigenetic mechanisms including DNA methylation, histone methylation, histone acetylation, are regulated via the action

of corresponding DNMTs, HMTs and HATs. In addition, miRNAs can also play a significant role in the process. Together they activate multiple

signal transduction pathways and regulated related gene expression, involving blood vessels, heart, kidney and eyes. Then, it can increase

the susceptibility of macrovascular complications such as atherosclerosis, DCM and microvascular complications such as nephropathy and

retinopathy. ECs, endothelial cells; VSMCs, vascular smooth muscle cells.

due to the early hyperglycaemic environment [11]. Hyperglycaemia appears to be remembered in organs such as the
vessels, heart, kidney and eyes [11]. This metabolic memory phenomenon emerged from two large clinical trials:
the Diabetes Complications and Control Trial (DCCT) [12] and its follow-up Epidemiology of Diabetes Interven-
tions and Complications (EDIC) trials [13]. It showed that patients on the standard treatment regimen during the
DCCT still had a higher incidence of microvascular diabetic complications such as nephropathy and retinopathy,
compared with their counterparts receiving intensive therapy throughout the trial several years after switching to
intensive therapy [13]. This suggests that early metabolic control has enduring effects in diabetes and its complica-
tions. However, little is known about the molecular mechanisms underlying metabolic memory. Increasing studies
show that epigenetics may be the underlying mechanisms, which can explain metabolic memory [14]. Epigenetic pro-
cesses play a critical role in regulating tissue-specific gene expression and hence alterations in these processes may
induce long-term changes in gene function and metabolism, which can persist throughout the course of diseases [15].
Epigenetic mechanisms including DNA methylation, histone methylation, histone acetylation, are regulated via the
action of corresponding DNA methyltransferases (DNMTs), histone methyltransferases (HMTs) and histone acetyl-
transferases (HATs). In addition, miRNAs can also play a significant role in the process [16]. Together, they activate
multiple signal transduction pathways and regulate related gene expression, involving blood vessels, heart, kidney and
eyes [17]. Therefore, it can increase the susceptibility of macrovascular complications such as atherosclerosis, DCM
and microvascular complications such as nephropathy and retinopathy. A schematic diagram (see Figure 1) shows
the role of epigenetic mechanisms in metabolic memory and diabetic vascular complications.
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Figure 2. Molecular mechanisms of DNA methylation

DNA methylation is exerted by DNMTs at the 5′-position of cytosine residues in CpG dinucleotides (the p denotes the intervening phosphate

group) by transferring methyl groups from SAM, thus 5-methylcytosine is formed. DNA methylation of promoter CpG islands generally can

regulate gene expression.

Epigenetics and DNA methylation
A glimpse at epigenetics
Epigenetics has been widely accepted as the heritable changes in gene function, which is independent of DNA se-
quence [18]. It can be inherited among generations steadily by mitosis and meiosis through cell differentiation and
division [19]. Epigenetic changes are crucial for the development and differentiation of the various cell types in an
organism and are often involved to switch on or off the genes that produce permanent changes associated with the dif-
ferentiation of diverse cell type [20]. Epigenetic modifications consist of three basic processes, including DNA methy-
lation, histone modification and non-coding RNAs [18]. In this review, we will examine the role of DNA methylation
in diabetes and its vascular complications and recent progress that have significantly accelerated this field.

What is DNA methylation?
DNA methylation is the earliest discovered and most important epigenetic modification with extensive investiga-
tions. DNA methylation is exerted by DNMTs at the 5′-position of cytosine residues in CpG dinucleotides (the p
denotes the intervening phosphate group) by transferring methyl groups from S-adenosyl methionine (SAM), thus
5-methylcytosine is formed [21]. Most CpG dinucleotides are often grouped in clusters at the 5′-regulatory regions
of many genes, which are called CpG islands. DNA methylation of promoter CpG islands generally can regulate gene
expression (Figure 2) [22]. As one of the most stable epigenetic modifications, DNA methylation is essential for nor-
mal development and is associated with a number of key processes and metabolic diseases, such as obesity [23], type
2 diabetes [24] and cardiovascular diseases [25].

DNA methylation and diabetic vascular complications
DNA methylation and atherosclerosis
It is well known that atherosclerotic cardiovascular disease is the major cause of morbidity and mortality in diabetes.
Atherosclerosis occurs earlier and with greater severity in diabetic patients, leading to a much higher risk of limb
ischaemia, myocardial infarction and stroke [26]. Arterial smooth muscle cell migration and proliferation are central
features in atherogenesis. It showed that genomic hypomethylation was observed during atherogenesis in human,
mouse and rabbit lesions, which correlated with increased transcriptional activity. Then, they identified that DNMT
was expressed in various types of atherosclerotic lesions [27]. Furthermore, whole genome hypomethylation was
present in peripheral blood mononuclear cells and aortas of 4-week-old ApoE-null mice, preceding any histological
sign of atherosclerosis, which means that DNA methylation maybe a potential biomarker for early atherosclerosis
in diabetic patients [28]. In VSMCs, ECs and mouse models, altered DNA methylation of several candidate genes
linked with atherosclerosis was identified, including vasodilator endothelial nitric oxide synthase, hypoxia-inducible
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factor-1a and matrix metalloproteinases [29]. Other risk factors of cardiovascular diseases, such as hyperhomocys-
teinaemia, hypercholesterolaemia and inflammation have also been implicated in differential DNA methylation as-
sociated with atherosclerosis [30].

DNA methylation and DCM
Cardiovascular complications are a primary cause of mortality and morbidity in diabetic patients. DCM was first
proposed in 1972, which is a distinct primary disease process, independent of coronary artery disease [31]. It can
lead to heart failure in diabetic patients, characterized by left ventricular hypertrophy and decreased diastolic com-
pliance [32]. There is very scant information on the epigenetic regulation of the genes involved in the pathophysiology
of DCM. In a streptozotocin (STZ)-induced diabetic rat model, it showed that demethylation of liver X receptor α
(LXRa) was found to be responsible for its increased expression in myocardial ventricles of diabetic rats [33]. In
another study, it indicated that tumour necrosis factor (TNF)-α increased DNMT levels, thus enhancing the methy-
lation in the sarcoplasmic reticulum Ca-ATPases (SERCA2a) promoter region with a result of reducing SERCA2a
expression in cardiomyocytes [34]. One previous study of type 2 DCM patients demonstrated that demethylation
of the CpG islands in the Kelch-like ECH associated protein 1 (Keap1) promoter activated the expression of Keap1
protein, which then increased the targeting of nuclear factor-like 2 for proteosomal degradation [35]. Genes involved
in renin–angiotensin–aldosterone system (RAAS) pathway can be up-regulated in DCM and this results in cardiac
hypertrophy. Bogdarina et al. [36] showed that the proximal promoter of the AT1b angiotensin receptor gene in the
adrenals was significantly undermethylated [36]. These data suggest that expression of related genes is regulated by
DNA methylation and may have a significant role in the pathophysiology of DCM.

DNA methylation and diabetic nephropathy
Diabetic nephropathy is a serious microvascular complication of diabetes mellitus and and has become the most
common cause of end-stage renal disease (ESRD). There is increasing evidence to suggest that dysregulation of the
epigenome is involved in diabetic nephropathy [37]. One clinical study showed that whole blood genomic DNA from
type 1 diabetic patients with diabetic nephropathy exhibited differential DNA methylation patterns at 19 genes in-
cluding protein unc-13 homologue B (UNC13B), relative to those without nephropathy [38]. Pirola et al. [39] found
that hyperglycemia was associated with hypermethylation changes localized to regions close to transcription start
sites of primary vascular cells. One recent study indicated that the average methylation ratio of the let-7a-3 promoter
in the diabetic nephropathy individuals was significantly higher than that in the type 2 diabetic patients without
nephropathy, which was relevant to the down-expression of let-7a-3 in diabetic nephropathy patients [40]. Further-
more, several differentially methylated genes were also identified in DNA extracted from saliva of diabetic patients
with ESRD compared with patients with chronic kidney disease who did not progress to ESRD [41]. However, more
extensive studies with larger samples should be conducted to comprehensively address the significance of aberrant
gene methylation in diabetic nephropathy.

DNA methylation and diabetic retinopathy
Diabetic retinopathy remains one of the major causes of blindness in adults. Clinical and experimental studies have
demonstrated that hyperglycaemia has long-lasting effects on the retina and the damage continues even after ter-
mination of the hyperglycaemic abberration [42]. Epigenetic modifications may be the underlying mechanisms that
can explain this phenomenon. Genome-wide analysis of DNA methylation in subjects with type 1 diabetes identi-
fied epigenetic modifications associated with proliferative diabetic retinopathy, which is a primary cause of vision
loss in subjects with diabetes [43]. Matrix metalloproteinase-9 (MMP-9) has an important role in the pathogenesis of
diabetic retinopathy. Recently, Kowluru et al. [44] showed that the regulation of hypomethylation of retinal MMP-9
promoter regulated its transcription and prevented mitochondrial damage in STZ-induced diabetic C57BL/6J mice.
In STZ-induced diabetic Wistar rats, continued hypermethylation of the CpG sites at the regulatory region of poly-
merase γ 1 (POLG), which is the catalytic subunit of the mtDNA replication enzyme, affected its binding to the
mtDNA, which were associated with continued progression of diabetic retinopathy [45]. This indicates that modula-
tion of DNA methylation can regulate the progression of diabetic retinopathy.

Taken together, the aforementioned clinical studies, animal models and in vitro experiments have shown that DNA
methylation may play a substantial role in the pathophysiology of diabetes and its associated vascular complications,
including atherosclerosis, DCM, nephropathy and retinopathy. The relevant evidence was summarized in Table 1.
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Table 1 Summary of relevant studies about DNA methylation and diabetic complications

Vascular complications Species Regulated genes Methylation Reference

Atherosclerosis Human, mouse and rabbit Whole genome Hypomethylation Hiltunen et al. [27]

Atherosclerosis ApoE-null mice Whole genome Hypomethylation Lund et al. [28]

Atherosclerosis VSMCs, ECs and eNOS-null
mice

Hypoxia-inducible factor-1a,
vasodilator endothelial nitric
oxide synthase and matrix
metalloproteinases

Hypermethylation and
hypomethylation

Matouk and Marsden [29]

Atherosclerosis Human macrophages Whole genome Hypomethylation Zaina et al. [30]

DMC STZ-induced diabetic rat LXRa Demethylation Cheng et al. [33]

DMC HL-1 cardiomyocytes SERCA2a Hypermethylation Kao et al. [34]

DMC Type 2 diabetic patients Keap1 Demethylation Liu et al. [35]

DMC Wistar rats AT1b angiotensin receptor gene Undermethylated Bogdarina et al. [36]

Diabetic nephropathy Type 1 diabetic patients 19 CpG sites Differential DNA methylation Bell et al. [38]

Diabetic nephropathy Primary vascular cells Whole genome Hypermethylation Pirola et al. [39]

Diabetic nephropathy Type 2 diabetic patients Let-7a-3 Hypermethylation Peng et al. [40]

Diabetic nephropathy Diabetic patients Whole genome Differentially methylated Sapienza et al. [41]

Diabetic retinopathy Type 1 diabetic patients 233 unique genes including TNF,
CHI3L1

Differential DNA methylation Agardh et al. [43]

Diabetic retinopathy STZ-induced diabetic C57BL/6J
mice

MMP-9 Hypomethylation Kowluru et al. [44]

Diabetic retinopathy STZ-induced diabetic Wistar rat POLG Hypermethylation Tewari et al. [45]

CHI3L1, chitinase-3-like protein 1.

Epigenetic reversibility and potential therapeutic
perspectives
Traditionally, it was considered that epigenetic modifications were static in the regulation of gene expression. How-
ever, this idea is now being altered and epigenetic marks, including DNA methylation are dynamic induced by some
factors. Some preliminary studies have showed that DNA methylation plays an important role in the reversibil-
ity and treatment of diabetic complications. One of the first study showed that epigenetic modifications was re-
versibly regulated in diabetic complications. It demonstrated that treatment of type 2 diabetic db/db mice with
the angiotensin II type 1 receptor (AT1R) blocker losartan not only ameliorated diabetic nephropathy, but also re-
versed epigenetic changes. More specifically, it showed significantly increased expression of HMTs and HATs in
db/db mice. However, these increases were abolished in losartan-treated mice, accompanied with decreased blood
pressure, mesangial hypertrophy and proteinuria [46]. Lou et al. [47] aimed to investigate the effects of resveratrol
(trans-3,5,40-trihydroxystilbene) on the expression of pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α and
IFN-γ in diabetic rat aortas and the potential epigenetic mechanisms involved. It showed that the expression levels of
pro-inflammatory cytokines were significantly lower in the resveratrol-treated diabetic group. Furthermore, the un-
treated group showed reduced levels of DNA methylation at the specific cytosine phosphate guanosine sites of IL-1β,
IL-6, TNF-α and IFN-γ and these levels were reversed by resveratrol [47]. Thus, although the studies were limited,
they implicated that epigenetic modifications may be one of the protective mechanisms and it can be reversible, which
may be used as a therapeutic tool targeting diabetic vascular complications.

Conclusions
In summary, DNA methylation plays a critical role in the pathogenesis of diabetic complications. A better under-
standing of the role and mechanism of DNA methylation and diabetic complications can inspire critical implications
for the early prevention of type 2 diabetes and provide unique opportunities to develop novel therapeutic approaches
of diabetic complications. Furthermore, increasing evidence shows that epigenetic modifications are not static, which
are dynamic and even reversible. Therefore, in view of the reversibility of epigenetic mechanisms, intervention with
pharmaceuticals or other interventions during early course of diabetes may ameliorate its complications in later life,
which can generates long-lasting effects.
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