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Background. Compound Kushen Injection (CKI) is a Chinese patent drug that shows good efficacy in treating lung cancer (LC).
However, its underlying mechanisms need to be further clarified. Methods. In this study, we adopted a network pharmacology
method to gather compounds, predict targets, construct networks, and analyze biological functions and pathways. Moreover,
molecular docking simulation was employed to assess the binding potential of selected target-compound pairs. Results. Four
networks were established, including the compound-putative target network, protein-protein interaction (PPI) network of LC
targets, compound-LC target network, and herb-compound-target-pathway network. Network analysis showed that 8 targets
(CHRNA3, DRD2, PRKCA, CDK1, CDK2, CHRNA5,MMP1, andMMP9)may be the therapeutic targets of CKI in LC. In addition,
molecular docking simulation indicated that CHRNA3, DRD2, PRKCA, CDK1, CDK2, MMP1, and MMP9 had good binding
activity with the corresponding compounds. Furthermore, enrichment analysis indicated that CKI might exert a therapeutic role
in LC by regulating some important pathways, namely, pathways in cancer, proteoglycans in cancer, PI3K-Akt signaling pathway,
non-small-cell lung cancer, and small cell lung cancer. Conclusions. This study validated and predicted the mechanism of CKI in
treating LC. Additionally, this study provides a good foundation for further experimental studies and promotes the reasonable
application of CKI in the clinical treatment of LC.

1. Introduction

Lung cancer (LC) has become an important etiology ofmalig-
nant mortality worldwide [1]. Approximately 1.37 million
deaths annually worldwide have been attributed to LC, and
LC is a significant cause of cancer-related deaths in China [2,
3]. LC is divided into several different categories, such as lung
adenocarcinoma, squamous cell lung carcinoma, large cell
carcinoma and small cell lung carcinoma (SCLC) [4]. Current
treatment strategies for LC include surgery, chemotherapy,
radiation therapy, laser therapy, and photodynamic therapy
[5–7]. The most important therapeutic tactic for LC is
chemotherapy, but invasion and metastasis of LC cells often
occur after chemotherapy [8].

Because traditional Chinese medicine (TCM) can alle-
viate uncomfortable symptoms, improve survival benefits,

and reduce the side effects of chemotherapy, TCM has
become one of the crucial options for comprehensive cancer
treatments [9, 10]. Compound Kushen Injection (CKI, also
known as Yanshu injection) is a TCM preparation derived
from two herbs, kushen (Radix Sophorae Flavescentis), and
baituling (Rhizoma Smilacis Glabrae) [11, 12]. Matrine and
oxymatrine are the primary active compounds in CKI and
have antitumor effects in different cancer cells, including
breast cancer cell lines (MCF-7), gastric cancer cells (SGC-
7901 and MKN45), and human liver cancer cells (SMMC-
7721) [13, 14]. Many clinical studies have confirmed that
CKI can be used to treat malignant tumors by inducing
apoptosis in tumor cells, as well as by inhibiting cancer
cell proliferation and tumor growth, migration and invasion
[13, 15, 16]. Moreover, a recent study has systematically
investigated the mechanism of CKI in treating hepatocellular
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carcinoma based on a network pharmacology method [17].
Additionally, CKI also synergizes the curative effects of
radiotherapy and chemotherapy for cancer patients as well
as mitigates radiotherapy and chemotherapy toxic side effects
[18, 19]. In particular, CKI relieves the pain of cancer patients,
which is of great significance to improve their quality of life
and prolong their survival [20, 21].

TCM serves as a multicomponent, multitarget, and mul-
tipathway therapy that acquires its special treatment efficacy
by acting on the biological network of body systems, and
thereby, it is difficult to elucidate the mechanisms of TCM
[22, 23]. Fortunately, network pharmacology provides a new
perspective for promoting a new understanding of the mech-
anisms of drugs [24, 25]. Network pharmacology updates
the “one target, one drug” model to the “multicomponent,
multitarget”model and better elucidates the complex interac-
tions among genes, proteins, and metabolites associated with
diseases and drugs from a network perspective [26, 27].

Although several studies have indicated that CKI has
efficacy in the treatment of LC [28–30], its molecular
mechanisms have not been completely elucidated. Therefore,
our study adopted the network pharmacology method to
better investigate and predict the molecular mechanism
of CKI against LC. A detailed flowchart of the network
pharmacology-based study is shown in Figure 1.

2. Materials and Methods
2.1. Chemical Components of CKI. After searching the litera-
ture [31, 32], 23 compounds of CKI were selected to further
study. We inputted all the compounds into the PubChem
database [33] (https://pubchem.ncbi.nlm.nih.gov), and then
removed the compounds with duplicated data and without
structural information. In total, 16 chemical components
were collected and these compounds were clustered by K-
means clustering algorithmbased on theirmolecular descrip-
tors.

2.2. Putative Targets of CKI. The simplified molecular
input entry specification (SMILES) information of 16 com-
pounds was imported into the Search Tool for Interacting
Chemicals (STITCH), SuperPred, and SwissTargetPrediction
databases. STITCH [34] (http://stitch.embl.de/) is a database
of known and predicted interactions between compounds
and proteins, and the database is based on text mining
and molecular docking techniques to predict interactions
between compounds and proteins. STITCH has been used
to study TCM to find the potential active components
and to explain the molecular mechanism of TCM [35].
The SuperPred database [36] (http://prediction.charite.de/)
is based on the principle of similarity that links the chem-
ical similarity of drug-like compounds to molecular targets
and the therapeutic approach. SwissTargetPrediction [37]
(http://www.swisstargetprediction.ch/) is a web server based
on chemical similarity that can accurately predict bioactive
molecular targets. Finally, we obtained corresponding targets
after discarding duplicate data.

2.3. LC Targets. Different genes related to LC were
gathered from the Therapeutic Target Database (TTD,

https://db.idrblab.org/ttd/), which is a database that provides
information about nucleic acid targets and therapeutic effects
of proteins [38], and the Online Mendelian Inheritance in
Man [39] (OMIM, http://www.omim.org/), which is an
online database of continuously updated human genes and
genetic diseases. The keyword “lung cancer” was used in the
TTD and OMIM databases to search for LC-related targets.

2.4. Protein-Protein Interaction Data. Protein-protein
interaction (PPI) data were extracted from Search Tool
for the Retrieval of Interacting Genes/Proteins (STRING,
https://string-db.org/). STRING is a database of known
and predicted PPIs, including both direct and indirect
interactions among proteins [40]. STRING defines PPIs with
confidence ranges for data scores (low: <0.4; medium: 0.4
to 0.7; high: >0.7). We inputted the LC-related targets into
the STRING database, with the species limited to “Homo
sapiens” and the confidence scores higher than 0.7.

2.5. Network Construction. We constructed four networks
in this study as follows: (1) a compound-putative target
network was established by linking chemical compounds
of CKI and corresponding targets; (2) the PPI network of
LC targets was built by connecting LC-related targets and
other human proteins that linked or interacted with LC
targets; (3) a compound-LC target network was constructed
by intersecting the compound-putative target network and
the PPI network of LC targets.The genes that did not intersect
were removed; namely, the common targets between the
compound-putative target network and the PPI network of
LC targets were the potential targets for the ingredients of
CKI in LC; and (4) an herb-compound-target-pathway net-
work was built by linking herbs, compounds, corresponding
targets, and pathways.

Cytoscape 3.5.1 software [41] (http://www.cytoscape.org/)
was used to construct all of the above networks. Cytoscape
is bioinformatics analysis software that is applied to visual
biological pathways and intermolecular interaction networks.
Cytoscape provides a set of basic data integration, analysis,
and visualization functions to analyze complex networks. For
each node in the interaction network, a significant parameter
“Degree” is calculated to evaluate its topological features. A
degree is defined as the number of edges to node i [41, 42].
The higher the degree is, the more important the node is.

2.6. Molecular Docking Simulation. SystemsDock [43]
(http://systemsdock.unit.oist.jp/iddp/home/index) is an
emerging web server for network pharmacology-based
prediction and analysis and illustrates the mechanism of
ligand acting on a complex molecular network by applying
high-precision docking simulation and molecular pathway
map. The docking score of systemsDock is a negative
logarithm of the experimental dissociation/inhibition
constant (pKd/pKi), which can directly indicate the binding
strength [44]. We used systemsDock to evaluate the binding
potential between selected targets and corresponding
compounds in the compound-LC target network.

2.7. Gene Ontology and Pathway Enrichment. To illustrate the
role of potential targets in gene function and signal pathways,
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Figure 1: Flowchart for CKI in treating LC.



4 Evidence-Based Complementary and Alternative Medicine

isomatrine

cluster
1
2
3
4
5

400 20

20

0

10

trifolirhizin

piscidic acid

macrozamin

lamprolobine

N-methylcytisine

matrine

sophoridine

sophocarpine
oxymatrine

sophoranol

9a

oxysophocarpine

hydroxymatrine
baptifoline

liriodendrin

Dim1 (53.8%)

Cluster plot
adenine

D
im

2 
(1

4.
6%

)

Figure 2: Cluster plot of 16 compounds.

we used the Database for Annotation, Visualization and Inte-
grated Discovery [45] (DAVID, https://david.ncifcrf.gov/) to
perform Gene Ontology (GO) function enrichment analysis
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis of genes in the compound-LC
target network.

3. Results

3.1. Compound-Putative Target Network. The details of the
16 compounds in CKI are described in Supplementary Table
S1. And these compounds were clustered into 5 clusters
(Figure 2). As shown in Figure 3, the compound-putative
target network included 196 nodes (16 compound nodes and
180 putative target nodes) and 326 edges. In this network,
many putative targets were regulated bymultiple compounds.
For example, CHRNA4 and CHRNB2 were modulated by
matrine, oxymatrine, and so on. In addition, network analysis
showed that the average degree value of compounds was
20.38, indicating the properties of multitargets of CKI in
treating LC. Notably, there were 3 compounds with degree
≥ 20.38, namely, adenine (degree = 72), matrine (degree
= 21), and oxymatrine (degree = 21), demonstrating their
significance in the network.

3.2. PPI Network of LC Targets. A total of 97 LC targets were
retrieved from the TTD and OMIM databases (as shown in
Supplementary Table S2). In Figure 4, the PPI network of LC
targets was composed of 188 LC-related genes and 2019 LC-
associated PPIs.Three topological features of each node in the
network were calculated to find the major nodes. Ultimately,

26 nodes with an average degree value ≥ 21.48, betweenness ≥
0.01251 and closeness ≥ 0.4547 were selected as major nodes
(the details about the information of 26 nodes are described
in Supplementary Table S3). Therefore, these genes might be
the key genes in the development of LC.

3.3. Compound-LC Target Network. The compound-LC tar-
get network is shown in Figure 5 and includes 39 nodes (12
compound nodes and 27 target nodes) and 41 edges. The
network showed that the 27 notes might serve as potential
targets of CKI for treating LC (Supplementary Table S4).
To find the major nodes, we selected 8 targets based on
an average value of degree ≥ 1.52, namely, neuronal acetyl-
choline receptor subunit alpha-3 (CHRNA3), D(2) dopamine
receptor (DRD2), protein kinase C alpha type (PRKCA),
cyclin-dependent kinase 1 (CDK1), cyclin-dependent kinase
2 (CDK2), neuronal acetylcholine receptor subunit alpha-
5 (CHRNA5), interstitial collagenase (MMP1), and matrix
metalloproteinase-9 (MMP9), indicating that theywere likely
to be potential targets of CKI for the treatment of LC. In
addition, 6 compounds were selected with degree ≥ 3, such as
adenine, macrozamin, matrine, oxymatrine, baptifoline, and
N-methylcytisine, illustrating that these compounds were
likely to be key compounds of CKI in treatment for LC.

3.4. Molecular Docking Verification. The 3D structures of the
above 8 selected targets were gathered from the PDB database
[46] (https://www.rcsb.org/), which is the single global
archive and includes experimentally determined atomic-level
3D structures of biological macromolecules (proteins, DNA,
and RNA). The results showed that 7 targets (CHRNA3,

https://david.ncifcrf.gov/
https://www.rcsb.org/
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Figure 3: Compound-putative target network of CKI. Yellow rectangles represent compounds in CKI. Red octagons represent corresponding
targets. There is a positive proportional relationship between the node size and the degree.

DRD2, PRKCA, CDK1, CDK2, MMP1, and MMP9) had
3D structures, while the 3D structure of CHRNA5 was not
available. These 7 targets were inputted into systemsDock for
molecular docking verification. As shown in Table 1, a total
of 20 pairs of target-compound combinations were delivered
into docking.The docking scores of most of them were larger
than 5.52, which showed that they possessed good binding
activity [47].The details of the target-compound interactions
of the docking simulation are shown in Figure 6.

3.5. GO and Pathway Enrichment Analysis. To elucidate
the multiple mechanisms of CKI on LC from a systematic
level, we performed GO enrichment analysis for 27
targets of the compound-LC target network. In total,
16 enriched GO terms were identified (FDR < 0.01,
as shown in Figure 7). For biological processes, the
targets of CKI were enriched in protein phosphorylation
(GO:0006468), positive regulation of ERK1 and ERK2
cascade (GO:0070374), G1/S transition of mitotic cell cycle
(GO:0000082), positive regulation of gene expression
(GO:0010628), ERBB2 signaling pathway (GO:0038128),
phosphatidylinositol-mediated signaling (GO:0048015),
positive regulation of protein phosphorylation (GO:0001934),
protein autophosphorylation (GO:0046777), and regulation
of phosphatidylinositol 3-kinase signaling (GO:0014066).
Protein kinase activity (GO:0004672), protein serine/
threonine kinase activity (GO:0004674), ATP binding
(0005524), cyclin-dependent protein serine/threonine kinase

activity (GO:0004693), kinase activity (GO:0016301), and
cyclin binding (GO:0030332) were the particularly enriched
molecular functions. For cellular components, the targets
of CKI were enriched in cyclin-dependent protein kinase
holoenzyme complex (GO:0000307).

To illustrate the crucial pathways among the 27 potential
targets in LC treatment, we screened 22 pathways according
to FDR< 0.01 (as shown in Figure 8), including proteoglycans
in cancer (hsa05205), non-small-cell lung cancer (hsa05223),
pathways in cancer (hsa05200), glioma (hsa05214), blad-
der cancer (hsa05219), prostate cancer (hsa05215), pancre-
atic cancer (hsa05212), melanoma (hsa05218), endometrial
cancer (hsa05213), chronic myeloid leukemia (hsa05220),
small cell lung cancer (hsa05222), FoxO signaling path-
way (hsa04068), focal adhesion (hsa04510), progesterone-
mediated oocyte maturation (hsa04914), estrogen signaling
pathway (hsa04915), p53 signaling pathway (hsa04115), rap1
signaling pathway (hsa04015), hepatitis B (hsa05161), PI3K-
Akt signaling pathway (hsa04151), measles (hsa05162), ErbB
signaling pathway (hsa04012), and HIF-1 signaling path-
way (hsa04066). Finally, based on the above information,
we constructed an herb-compound-target-pathway network
(Figure 9) to holistically explain the mechanism of CKI in
treating LC.

4. Discussion
CKI has been clinically used to treat various types of
solid tumors [48]. Currently, CKI has been widely used
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Figure 4: PPI network related to LC. There is a positive proportional relationship between the node size and the degree.

for pain treatment in combination with chemotherapy and
radiotherapy throughout China [49]. In the present work,
we constructed a compound-putative target network, PPI
network of LC targets, compound-LC target network, and
herb-compound-target-pathway network to systematically
analyze the mechanism of CKI in the treatment of LC.

In the compound-putative target network, adenine,
matrine, and oxymatrine were recognized as significant com-
pounds. Adenine was shown to be associated with a variety
of LC targets, including CDK1, CDK2,MMP1, MMP9, and so
on. Matrine is widely known as the main chemical compo-
sition of CKI and matrine derivatives containing the benzo-
𝛼-pyrone structure are potent antilung cancer agents [50].
A recent study indicated that matrine inhibits the migration
and invasion of non-small-cell lung cancer (NSCLC) cells
by interfering with the epithelial-mesenchymal transition
signaling pathway [51]. Moreover, the matrine derivative YF-
18 inhibits the growth and migration of LC cells by inducing
G2/M cell cycle arrest and downregulating Skp2 [52]. The
present research found that matrine was associated with
some LC-related targets, including MMP9, CHRNA3, and
CCND1. Moreover, previous studies have also demonstrated
that matrine could decrease the expression of MMP9 and
cyclin D1 [53, 54]. For oxymatrine, modern studies have
demonstrated that oxymatrine has anticancer potential in

various types of cancer cells by multiple mechanisms [55–
57]. Furthermore, a relevant report implied that oxymatrine
inhibits NSCLC by suppressing the activity of the EGFR
signaling pathway [58]. In addition, oxymatrine has been
proven to be a restrainer of TLR2 and TLR4 and an agonist
of MMP1 [59, 60]. Fortunately, our current study also dis-
covered that oxymatrine interacted with the above three LC-
related targets. However, some results of our study have been
rarely reported, and thus, further studies are urgently needed
to validate our results.

In the PPI network of LC targets, TP53, PCNA,CDK1, and
CDK2, which possessed high values for degree, betweenness,
and closeness, were selected as major nodes. TP53 is a
significant tumor suppressor gene that is closely related to the
cell cycle, proliferation, differentiation, aging, and apoptosis
[61]. Meanwhile, gene alteration of TP53 is associated with
a poor prognosis in patients with NSCLC [62]. PCNA
is a key eukaryotic replication accessory factor that plays
an important role in the cell cycle and apoptosis [63]. In
addition, PCNA can promote LC progression [64]. CDK1
and CDK2 belong to the cyclin-dependent kinases (CDKs)
family. CDKs are a specific family of enzymes that turn
on cell cycle mechanisms. CDKs require association with
regulatory proteins (cyclins), and the absence of regulatory
proteins at cell cycle checkpoints leads to carcinogenesis or
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Figure 5: Compound-LC target network. Yellow octagons represent compounds in CKI. Red circles represent potential targets for CKI in
the treatment of LC. There is a positive proportional relationship between the node size and the degree.

tumor development [65]. The CDK2 and cyclin A complex
plays a vital role in the G1 phase arrest of cancer cells
[66]. A previous study has shown that the CDK2 inhibitor
could elicit antineoplastic effects in LC [67]. The CDK1 gene
plays an important role in the progression of cells from the
G2 phase to the M phase. In addition, high expression of
CDK1 is associated with poor prognosis in patients with
advanced NSCLC [68]. Moreover, a study found that CDK1
was a direct target of miR-181a and that miR-181a inhibited
cell proliferation by modulating CDK1 mRNA and protein
levels in NSCLC cells [69]. Fortunately, our work found
that CDK1 and CDK2 interact with multiple ingredients
for CKI, including adenine, and macrozamin, and CKI has
been shown to have therapeutic effects on cancer through
inhibiting CDK2 activity [70]. In addition, matrine, the main
active compound of CKI has been found to exhibit time-
dependent inhibition of the expression of CDK1 in prostate
cancer cells [71]. Hence, CKI might treat LC by modulating
the expression of CDK1 and CDK2.

The compound-LC target network included 27 tar-
gets, and these targets mainly act on adenine, macroza-
min,matrine, oxymatrine, baptifoline, andN-methylcytisine.
The 8 targets with a degree ≥ 1.52 were determined as
key targets, including CHRNA3, DRD2, PRKCA, CDK1,
CDK2, CHRNA5,MMP1, andMMP9.Moreover, we inputted
the above targets and corresponding compounds into sys-
temsDock for molecular docking verification. The dock-
ing scores showed that most of them had good binding

activity, especially the CHRNA3-isomatrine pair (6.802),
CHRNA3-baptifoline pair (6.787), CHRNA3-matrine pair
(6.783), CHRNA3-sophoridine pair (6.731), and PRKCA-9𝛼-
hydroxymatrine pair (6.657). For CHRNA3 and CHRNA5,
several genome-wide association studies (GWAS) have ascer-
tained that CHRNA3 and CHRNA5 are associated with
the risk of LC [72]. CHRNA3 may be a more important
candidate susceptibility gene for LC. A study has shown that
the CHRNA3 subunit binds to nicotine-derived nitrosamine
ketone (NNK), subsequently upregulating nuclear factor-
kappa B (NF-𝜅B) to induce cell proliferation and increase
the risk of LC [73]. For CHRNA5, a study has shown
that knockdown of 𝛼5-nAChR, which is encoded by the
CHRNA5 gene, could significantly mediate crux pathways,
including cell cycle distribution, apoptosis, DNA replication
and pathways in cancer. Additionally, silencing 𝛼5-nAChR
restrains the progression of nicotine-related NSCLC [74].
Therefore, CKI might produce therapeutic effects by inhibit-
ing the expression of CHRNA3 and CHRNA5. DRD2 was
targeted by 3 compounds fromCKI, including baptifoline, N-
methylcytisine and sophocarpine. DRD2 is expressed in dif-
ferent pulmonary carcinoma cells [75]. Moreover, the DRD2
agonist quinpirole could counteract SCLC cell proliferation
in a dose- and time-dependent manner [76]. Campa D et al.
[77] indicated that DRD2 polymorphisms were related to a
2- to 5-fold increased risk of NSCLC. Thus, we deduced that
the mechanism for treating LC might be associated with the
activation of DRD2 by CKI. PRKCA is a serine-threonine
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Table 1: The docking information of 7 targets with corresponding compounds.

Number Target PDBID Compound CID Docking score

1 CHRNA3 4ZK4

isomatrine 5271984 6.802
baptifoline 621307 6.787
matrine 91466 6.783

sophoridine 165549 6.731
lamprolobine 87752 6.123

N-methylcytisine 670971 6.069

2 DRD2 2HLB
baptifoline 621307 6.616

sophocarpine 115269 6.486
N-methylcytisine 670971 6.370

3 PRKCA 4RA4
9𝛼-hydroxymatrine 15385684 6.657

sophoranol 12442899 6.635
adenine 190 6.058

4 CDK1 5LQF macrozamin 9576780 6.111
adenine 190 5.385

5 CDK2 2R3I macrozamin 9576780 5.933
adenine 190 5.712

6 MMP1 1SU3 adenine 190 5.508
oxymatrine 114850 5.371

7 MMP9 1ITV adenine 190 6.068
matrine 91466 5.464

CHRNA3

isomatrine

sophoridine

sophocarpine

lamprolobine N-methylcytisine

N-methylcytisine

CDK1

macrozaminbaptifoline

baptifoline

adenine
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adenineadeninesophoranol

macrozamin adenine

CDK2

MMP1

oxymatrine

matrine

matrine

MMP9

DRD2

PRKCA
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Figure 6: The detailed target-compound interactions of the docking simulation
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Figure 7: GO analysis of potential targets. The Y-axis shows the enrichment scores of these terms or the counts of targets, and the X-axis
shows significantly enriched GO categories of the target genes (FDR < 0.01).

kinase that is associated with various cellular functions [78].
Previous studies have proven that the PRKCA gene might
have multiple effects on the lung, such as peribronchiolar cell
proliferation and proinflammatory and profibrotic cytokine
expression [79]. In addition, a study has shown that PKC𝛼
(PRKCA) is a significant protein in LC [80]. Other research
has also demonstrated that PRKCA is a potential hub in LC-
related signals [81]. Therefore, the mechanism of CKI for the
treatment of LC may be related to its regulation of PRKCA
expression. MMP1 and MMP9 are matrix metalloproteinase
(MMP) genes that belong to a large family of zinc-dependent
endopeptidases [82, 83]. The upregulation of MMP has
been shown in various types of solid cancers [84]. A study
has shown that the imbalance between MMPs and their
depressors plays a significant role in the development of head
and neck cancer and the prognosis of patients [85]. The
expression of MMP1 is related to many diseases, including
emphysema and malignant tumors [86]. A previous study
demonstrated that the polymorphism MMP1 -1607 1G > 2G
was significantly related to a remarkable increase in cancer
risk [87]. A study by Yu et al. [88] found that the expression of
MMP1 increased in the process of invasion and metastasis of
NSCLC. Notably, our study showed that MMP1 was targeted
by adenine and oxymatrine, and previous evidence has indi-
cated that oxymatrine inhibits the proliferation and facilitates
apoptosis of cancer cells through downregulatingMMP2 and
MMP9 expression [89–91]. However, the relationship among

oxymatrine, MMP1, and LC cells is still unclear, which needs
to be further explored. MMP9 is undetectable in healthy
tissue, but during inflammation and cancer it is highly upreg-
ulated [92]. A study has indicated that MMP9 is regulated by
myocardial infarction-associated transcript (MIAT) to affect
the migration and invasion of NSCLC [93]. Furthermore,
an existing study has found that 3T3-L1 adipocyte-derived
exosomes promote murine 3LL Lewis LC cells invasion in
vitro through increasing MMP9 activity [94]. The present
study found thatMMP9was targeted by adenine andmatrine,
and several studies have shown that matrine could reduce
the level of MMP9 in cancer cells [53, 95]. In addition, CKI
has been proved to have the suppression action for growth
and migration of LC cells by inhibiting MMP9 expression
[96]. Therefore, this indicated that CKI produced the healing
efficacy for LC by regulating MMP1 and MMP9 expression.

In this study, we performed a GO enrichment analysis
to clarify the multiple mechanisms of CKI against LC from
a systematic level. These targets were highly associated with
G1/S transition of mitotic cell cycle, ERK1 and ERK2 cascade,
protein phosphorylation, protein kinase activity, and ATP
binding in the GO enrichment analysis. Thus, the results
demonstrated that CKI mainly produces therapeutic effects
by participating in these biological processes and molecular
functions.

In the pathway enrichment, we found that the pathways
directly associated with LC were non-small-cell lung cancer
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(hsa05223) and small cell lung cancer (hsa05222). Histo-
logical subtypes of LC mainly included NSCLC and SCLC;
approximately 85% of all LC cases are NSCLC, and 15% are
SCLC [97, 98]. In addition, pathways in cancer (hsa05200)
were identified as a significant pathway in LC treatment with
the highest number of genes. In this pathway, the genes in
the compound-LC target network were members of many
vital subpathways, such as the PI3K-Akt signaling pathway
The other significantly enriched pathway was proteoglycans
in cancer (hsa05205), and it also included the PI3K-Akt
signaling pathway as an important subpathway. The PI3K-
Akt signaling pathway (hsa04151) regulates numerous cellular
functions, such as cell growth, proliferation, differentiation,
survival, and invasion, and modulates the occurrence of
NSCLC [99]. Moreover, the PI3K-Akt pathway is involved
in cell apoptosis in multiple cell lines, such as LC cell lines
[100]. A study has demonstrated that MMP9 promotes the
development of LC through the PI3K-Akt signaling pathway
[101]. Other research has shown that matrine regulates the
expression of related genes and proteins through the PI3K-
Akt signal transduction pathway to induce apoptosis in A549
cells, a LC cell line [102]. Therefore, it was speculated that the
ingredients of CKImight play a significant role in treating LC
through key factors in these signaling pathways.

5. Conclusions

In the present study, we found 16 compounds of CKI and
predicted 180 putative targets, proving that CKI was a com-
plex preparation with the multicomponent and multitarget
features. CKI exerted treatment effects on LC by regulating 27
targets, which were mainly connected to adenine, macroza-
min,matrine, oxymatrine, baptifoline, andN-methylcytisine,
and 8 core targets were found through network analysis,
namely CHRNA3, DRD2, PRKCA, CDK1, CDK2, CHRNA5,
MMP1, and MMP9. Additionally, further molecular docking
simulation confirmed that CHRNA3, DRD2, PRKCA, CDK1,
CDK2, MMP1, and MMP9 had good binding affinities with
the corresponding compounds. The GO enrichment analysis
showed that the targets of CKI in the treatment of LC might
be closely associated with certain biological processes and
molecular functions, such as G1/S transition of mitotic cell
cycle, positive regulation of ERK1 and ERK2 cascade, and
so on. Furthermore, the KEGG pathway enrichment analysis
suggested that CKI might simultaneously act on a variety
of signal transduction pathways associated with the patho-
genesis of LC, including pathways in cancer, proteoglycans
in cancer, PI3K-Akt signaling pathway, non-small-cell lung
cancer, and small cell lung cancer.
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of 2 herbs. Blue rectangles represent corresponding targets. Green rectangles represent 27 potential targets of CKI in the treatment of LC.
Purple diamonds represent 22 corresponding pathways involving 27 potential targets.

In summary, the current study employed the network
pharmacology method to investigate the complex network
relationship betweenmultiple components, targets, and path-
ways for CKI in the treatment of LC.The results validated and
predicted the molecular mechanism of CKI in LC at a system
level, which might provide insight into the mechanisms of
CKI and other anticancer TCMs and facilitate the widespread
application of CKI in treating LC. However, the results from
our research are based on computational analysis, and further
experiments are needed to verify these hypotheses.
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