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Detection and categorization 
of severe cardiac disorders 
based solely on heart period 
measurements
Shigeru Shinomoto1,2,3,6*, Yasuhiro Tsubo3,4,6 & Yoshinori Marunaka3,5

Cardiac disorders are common conditions associated with a high mortality rate. Due to their potential 
for causing serious symptoms, it is desirable to constantly monitor cardiac status using an accessible 
device such as a smartwatch. While electrocardiograms (ECGs) can make the detailed diagnosis of 
cardiac disorders, the examination is typically performed only once a year for each individual during 
health checkups, and it requires expert medical practitioners to make comprehensive judgments. Here 
we describe a newly developed automated system for alerting individuals about cardiac disorders 
solely by measuring a series of heart periods. For this purpose, we examined two metrics of heart 
rate variability (HRV) and analyzed 1-day ECG recordings of more than 1,000 subjects in total. We 
found that a metric of local variation was more efficient than conventional HRV metrics for alerting 
cardiac disorders, and furthermore, that a newly introduced metric of local-global variation resulted in 
superior capacity for discriminating between premature contraction and atrial fibrillation. Even with 
a 1-minute recording of heart periods, our new detection system had a diagnostic performance even 
better than that of the conventional analysis method applied to a 1-day recording.

Heart disease has one of the highest mortality rates of any condition, which is similar to that of cancer1–5. Early 
detection of cardiac disorders might help prevent fatalities. One of the most basic means of detecting irregularities 
is pulse assessment, which was first used in ancient China and Egypt in centuries B.C.6–8. In the modern era, the 
electrocardiogram (ECG) provides a detailed assessment of cardiac electrical activity, reflecting depolarization 
and repolarization of the atria and ventricles9. Based on this information, a variety of diagnoses can be made, 
such as premature ventricular contraction (PVC), premature atrial contraction (PAC), and atrial fibrillation (AF).

Though efficient, ECG examinations are costly and inconvenient. While electrical signals are efficiently ana-
lyzed by automated algorithms, comprehensive diagnoses must be made by medical practitioners in the end10,11. 
Accordingly, they are typically carried out only once a year for each individual during physical checkups, and 
fewer people are recommended to perform Holter ECG examinations continuously for 1 day, only if some car-
diac anomalies are found in the physical checkups. More serious is that those who were negative in those ECG 
examinations still have a chance of getting cardiac disorders.

Thus it is desirable to make it possible to alert all persons to cardiac dysfunction using a handy device such 
as a smartwatch. While full ECG information is not available, a handy device may make it possible to constantly 
monitor a series of pulse intervals, which may provide sufficient information for alerting cardiac disorders12. 
This has led us to an idea of identifying cardiac disorders by analyzing heart rate variability (HRV) through heart 
periods in as much detail, just as expert medical practitioners have been doing for centuries.

HRV is quantified by measuring fluctuations in heartbeat intervals, using metrics such as the standard devia-
tion of intervals between successive cardiac R waves or RR intervals (SDRR) and the coefficient of variation (Cv), 
which is defined as the ratio of the standard deviation to the mean13,14. Nevertheless, the variation in heartbeat 
intervals is caused by not only cardiac disorders but also slow fluctuations in the heart rate that occur even in 
healthy people15,16. There have been many attempts for isolating cardiac disorders from such miscellaneous 
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factors, using a variety of analysis methods such as linear, frequency domain, wavelet domain, and nonlinear 
methods17–21. Nevertheless, diagnosing cardiac symptoms still requires medical experts to consider various pos-
sible conditions when making comprehensive judgments.

Recently, artificial intelligence-aided methods based on deep learning algorithms have been adopted for 
detecting cardiac disorders from heartbeat signals5,22–25. While these methods achieve high performance, indi-
vidual decisions depend on a huge number of parameters that were empirically determined with given training 
datasets. A problem of such artificial intelligence-aided methods is that we cannot explain the reason for indi-
vidual diagnoses made for each case. Another problem is that such machine-learning diagnoses may depend 
sensitively on a huge number of model parameters, and accordingly, identical results may not be reproduced 
even from the same set of training data.

To improve these points, here we design an automatic diagnosing system by simply combining two metrics 
that measure specific aspects of heartbeat variability. On a plane of the two metrics, we specify decision bounda-
ries for different types of cardiac disorders. From this, we can characterize the difference in various cardiac 
diseases explicitly in terms of two metrics.

As the first metric, we have adopted the metric of local variation (Lv), which was previously used to analyze 
neuronal firing in the brain26–28. This is because Lv captures the difference in adjacent pulse intervals by remov-
ing the influence of slow fluctuations in heart rate. We have confirmed that Lv was superior to the conventional 
Cv in detecting premature contraction. The working of Lv is similar to that of an HRV index SD12 , in that they 
measure the variation of consecutive RR intervals. The superiority of Lv to Cv is similar to the superiority of 
SD12 to other linear HRV indices such as SDRR or SDSD29,30.

Nevertheless, we also realized that Cv may still have captured some aspect independent of Lv particularly for 
atrial fibrillation. By identifying the differences between Lv and Cv, we sought to combine them in a manner that 
would maximize the ability to characterize cardiac status. Through this process, we invented a new metric, the 
local-global variation ratio (Lg), that effectively discriminates between premature contractions and fibrillation. 
Using these two metrics Lv and Lg, we constructed an algorithm to automatically diagnose cardiac symptoms. 
The new method exhibits outstanding performance in alerting AF, which is associated with serious diseases31–34.

For this analysis, we used Holter ECG recordings obtained from more than 1,000 outpatients in total who 
had cardiological examinations at Clinic, Kyoto Industrial Health Association. Recordings contain a series of 
RR intervals monitored for 1 day, and are accompanied by diagnoses made by medical doctors and technicians, 
including not only AF but also PVC and PAC, the latter of which may take place even in healthy people35,36. By 
assuming that heart periods that can be measured by a handy device are noisy observation of RR intervals37,38, 
we attempted to infer diagnoses of PVC, PAC, and AF from a set of RR intervals and examined how the inference 
can withstand the possible fluctuations added to the RR intervals, mimicking the noisy observations. To examine 
the generality of the analysis, we also applied the current method to the publicly available MIT-BIH databases, 
which have been conventionally used as standard datasets.

Results
For Holter ECG data recorded from 1,017 subjects in total (863 independent persons), we computed the vari-
ability metrics from each series of RR intervals and compared their ability to alert cardiac conditions, such as 
PVC, PAC, and AF.

Comparison of variability metrics.  Figure  1 depicts the distributions of PVC, PAC, and AF plotted 
against the RR interval metrics: the heart rate Hr, the logarithm of coefficient of variation log10 Cv , and the loga-
rithm of the local variation log10 Lv (METHODS), each of which is calculated every 10 minutes and averaged 
over 18 hours. Because Cv and Lv computed for heartbeats are much smaller than unity, we take their logarithm 
to focus on their difference.

Many subjects have nonzero PVC and PAC, in which premature heartbeat is initiated in ventricles and atria, 
respectively. These events may occur even in healthy people. In our dataset, individual PVC and PAC events 
were identified by an automatic detection algorithm of ECG, and those with the occurrence probability higher 
than 10−3 comprised 49% and 33% of the entire subjects, respectively. In contrast with these, AF accompanied 
by the irregular beating of the atrial chambers is considered a serious symptom leading to cardiac dysfunction. 
In our dataset, the symptom was determined manually by expert medical doctors and technicians, and 72 of 
1,017 subjects (7%) exhibited nonzero AF.

For PVC, PAC, and AF, we categorized the diagnostic status of each subject as 0 or 1 according to whether 
the ratio of each condition was lower or higher than a threshold of 0.1, and predicted the dichotomic status 
based on Cv or Lv as obtained from pulsation signals. The numbers of the 1,017 subjects at high risk of PVC, 
PAC, and AF were 128 (12%), 34 (3%), and 53 (5%), respectively. Only one subject (0.1%) exhibited multiple 
symptoms (PAC and AF).

A conventional HRV metric Cv and our newly introduced metric Lv were strongly correlated with cardiac 
symptoms; subjects who exhibited the higher Cv or Lv were more likely to exhibit cardiac disorders. The average 
heart rate Hr was relatively weakly correlated with cardiac symptoms, and accordingly, we shall concentrate on 
Cv and Lv in the following analysis.

We first examined whether the high value of Cv or Lv could signal each cardiac disorder. We categorized data 
as “positive” or “negative” according to whether or not log10 Cv or log10 Lv was greater than a given threshold. 
Positive data were categorized as “true positive (TP)” or “false positive (FP)” according to whether or not sub-
jects exhibited a given cardiac disorder (PVC, PAC, or AF). In contrast, negative data were categorized as “false 
negative (FN)” or “true negative (TN)” according to whether or not subjects exhibited a given cardiac disorder.
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The upper rows in Fig. 2 depicts the true positive ratio TPR = NTP/(NTP + NFN) , and the true negative ratio 
TNR = NTN/(NTN + NFP) , where NTP , NFN , NTN , and NFP are the numbers of true-positive, false-negative, true-
negative, and false-positive cases, respectively. Higher Cv or Lv results in higher TNR, implying that subjects in 
whom the metric is lower than the threshold are unlikely to exhibit cardiac disorders. However, a high threshold 
lowers TPR, implying that many cardiac disorders are missed.

One means of achieving a reasonable balance between true and false positives and negatives is to maximize 
the Matthews correlation coefficient (MCC)39 defined as

MCC =
NTPNTN − NFPNFN√

(NTP + NFP)(NTP + NFN)(NTN + NFP)(NTN + NFN)
.

Figure 1.   Cardiac disorders plotted against Hr, log10 Cv , and log10 Lv . Each dot represents the average 
of 10-minute statistics for a single subject over 18 hours. Vertical axes are the logarithm of (a) premature 
ventricular contraction (PVC); (b) premature atrial contraction (PAC); and (c) atrial fibrillation (AF). Values of 
the Pearson correlation r are indicated above. Yellow zones represent regions of > 0.1.
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The lower rows in Fig. 2 depict the MCC values for PVC, PAC, and AF; peaks occur at an intermediate value for 
a threshold of log10 Cv or log10 Lv . For PVC and PAC, the new metric Lv is more efficient than Cv in achieving 
higher MCC values. By contrast, Cv results in a higher MCC than Lv for AF.

Improving the detection of cardiac disorders.  In the aforementioned analysis, we have seen that Cv 
and Lv had different strengths for different disorders. Because these metrics capture different aspects of the 
RR-variability, their performance in alerting cardiac disorders might be increased if these metrics were suitably 
combined.

Figure 2.   The true positive rate (TPR), true negative rate (TNR), and the Matthews correlation coefficient 
(MCC) measuring the ability of two individual metrics, thresholds of log10 Cv and log10 Lv , to detect cardiac 
disorders: (a) PVC, (b) PAC, and (c) AF. For each cardiac disorder, each subject was categorized into positive 
or negative, according to whether the ratio of anomalous states identified by an automatic detection algorithm 
of ECG was higher or lower than 10%. TPR and TNR indicate the probability of each person being positive and 
negative according to whether the metric Cv or Lv is higher and lower than a given value, respectively. MCC 
measures a balance between true and false positives and negatives.
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Figure 3a displays the distribution of datapoints representing subjects with different cardiac diseases plotted 
on a plane spanned by log10 Lv and log10 Cv . The distribution seemingly comprises different groups; there is 
one big cluster at the lower left, centered at low log10 Lv ≈ −3 and low log10 Cv ≈ −1.2 , while the datasets with 
higher log10 Lv > −2 tended to align linearly with the slope in parallel to log10 Lv − 2 log10 Cv.

Measurements associated with cardiac disorders are located in the upper right region defined by high values of 
log10 Lv and log10 Cv . On further analysis, the data points representing different cardiac disorders are distributed 
differently in this region; fibrillation (AF) cases are located on the upper side, whereas premature contraction 
(PVC and PAC) cases are located on the lower side. Representative pulse sequences of 1 minute taken from these 
diagnostic cases are depicted in Fig. 3b.

To determine how the local variation Lv and the coefficient of (global) variation Cv contribute to the separa-
tion of premature contractions and fibrillation, we newly introduce a metric of the local-global variation ratio 
(Lg), defined as

In the denominator, Cv, which measures the standard deviation of intervals, is squared to conform to the power 
of deviation in the numerator Lv measures the squared deviation (METHODS). For a Poisson random pulse 
train, Lg exhibits the value unity because both Lv and Cv take the value unity. For a locally regular pulsation 
whose rate is slowly modulated, Lg ≪ 1 , because Lv is much smaller than Cv2 . For a perfectly regular pulsation 
in which RR intervals are identical, Lg is undefined because both the numerator Lv and the denominator Cv2 
are zero. We shall prove in the METHODS that Lg takes the value 3/2 for a sequence in which RR intervals of 
similar durations are arranged randomly. For a pulsation in which long and short intervals alternate, however, 
Lg takes the even higher value 3. In this way, the local-global variation ratio Lg can discriminate how intervals 
are arranged even if the intervals are close to each other (as is the case with heartbeats).

It is noteworthy that in Fig. 3, premature contractions (PVC and PAC) and fibrillation (AF) are well separated 
by the line log10 Lg = log10 Lv − 2 log10 Cv ≈ 0.15 . It is helpful to recall that Lg = 3/2 for randomly arranged RR 
intervals and that log10 3/2 ≈ 0.18 . As we have seen, Lg can be as large as 3 if long and short intervals alternate. 
This means that long and short pulse intervals tend to alternate in premature contractions, as they are distributed 
on the lower side of the line log10 Lg = log10 Lv − 2 log10 Cv ≈ 0.18.

Considering these features, it is advantageous to infer the presence of each cardiac disorder based on a com-
bination of variability metrics given by the following set of constraints,

Lg =
Lv

Cv2
.

log10 Lv > a

Figure 3.   Different cardiac disorders plotted on a plane spanned by the new and old metrics log10 Lv and 
log10 Cv . (a) Dots represent 1,017 subjects, who were diagnosed as atrial fibrillation (AF), premature ventricular 
contraction (PVC), premature atrial contraction (PAC), and negative, respectively colored in magenta, blue, and 
green, and black. The prediction zone for each cardiac disorders, given by the set of constraints log10 Lv > a and 
log10 Lg = log10 Lv − 2 log10 Cv > b (or < b) is depicted by the appropriate colors. (b) Representative pulse 
sequences of 1 minute, respectively taken from four different cases. NS stands for no symptom.
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and

We selected the parameters a and b and the inequality direction so that the goodness index MCC is maximized 
for each cardiac disorder. The selected parameters are as follows: (PVC): log10 Lv > −1.3 , log10 Lg > 0.14 ; (PAC): 
log10 Lv > −1.5 , log10 Lg > 0.15 ; (AF): log10 Lv > −1.3 , log10 Lg < 0.15 . The selected zones are depicted in 
different colors in Fig. 3.

The method of combining Lv and Lg achieves MCC performances much higher than those obtained from 
simple thresholding of either Cv or Lv alone (Table 1). In particular, the ability to alert fibrillation (AF) was 
drastically improved by the combination method. Note that the obtained MCC performances would practically 
be unchanged even if we make leave-one-out cross-validation because the number of parameters (one or two) 
is much lower than the number of data points (higher than 1,000).

Alerting cardiac disorders based on a shorter recording period.  So far we have compared alerting 
methods using 18-hour data of RR intervals extracted from 1-day Holter ECG. As the Holter recording is costly 
and burdensome, it would be ideal to be able to detect cardiac disorders even with a shorter interval. Here we are 
interested in how the detection performance degrades if the recording duration is shortened, such as 1 hour, 10 
minutes, or even 1 minute. We clipped out such shorter recordings from full-length data and estimated the MCC 
values for detection performance using the single metrics Cv and Lv as well as the combination method. Figure 4 
shows that our new combination method may provide good performance even based on shorter recordings, with 
an accuracy comparable to or even higher than that obtained by applying a conventional single metric such as 
Cv to an 18-hour data of RR intervals.

Figure 5 depicts distributions of HRV metrics computed from recording periods of 1 minute, 10 minutes, 
and 1 hour. While datasets of shorter durations are more scattered on a plane spanned by log10 Lv and log10 Cv , 
the distributions of premature contraction (PVC and PAC), fibrillation (AF), and negative cases remain well 
separated.

Robustness against erroneous observation.  If we monitor pulsations using a handy device such as a 
smartwatch, the measurement will be inaccurate since the pulse intervals are not identical to RR intervals. Con-
sidering possible fluctuations in the measurements, we created noisy data by jittering the original RR intervals 
with noises of the mean zero and the standard deviations of 10, 50, 100, 200, and 500 ms. Figure 6 demonstrates 
the manner in which the MCC values degrade with different noise durations. We can see that the combination 
method withstands the fluctuations if their noise level is less than 100 ms.

log10 Lg > b (or < b).

Table 1.   MCC values measuring the performances of each alerting method.

Alerting method PVC PAC AF

Cv 0.54 0.30 0.33

Lv 0.55 0.32 0.26

Combination 0.63 0.38 0.59

Figure 4.   The MCCs for Cv and Lv, and the combination method based on datasets with various recording 
durations: 1 minute, 10 minutes, 1 hour, and 18 hours. (a) PVC, (b) PAC, and (c) AF. The MCCs for the shorter 
recording durations are represented with the mean and standard deviation.
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Figure 7 depicts HRV metrics of noisy datasets, in which the original series of RR intervals of 18 hours were 
jittered with noises of the standard deviations of 10, 50, and 100 ms. While datasets of noisy RR intervals were 
shifted toward higher values of log10 Cv and log10 Lv , the distributions of premature contraction (PVC and PAC), 
fibrillation (AF), and negative cases remain well separated for these cases.

Application to public databases.  To examine if our method may also be valid for other datasets, we 
applied it to the data of the MIT-BIH databases, which have been deemed standard. Here we considered the 
“Atrial Fibrillation Database” as representing the symptoms similar to the AF cases selected by Kyoto Industrial 
Health Association, while the “Arrhythmia Database” and the “Normal Sinus Rhythm Database” represent those 
who were not AF. Figure 8 represents the distributions of log10 Lv versus log10 Cv of 1minute, 10minute, 1hour, 
and 18hour data of the MIT-BIH datasets. For each dataset, two parameters a and b of our prediction model 
were selected so that MCC is maximized. The MCC values obtained for the AF cases of MIT-BIH datasets were 
much higher than those obtained for our Kyoto datasets; for instance, the MCC value for 18-hour data was as 
high as 0.761. The difference may have arisen because diagnostic criteria and the population ratio of cardiac 
cases were different between these datasets. Nevertheless, it is noteworthy to see the two parameters a and b were 
similar to those of Kyoto database; for instance, a = −0.115 and b = 0.27 for 18 hour data. This implies that a 
similar criterion may be applicable even for different datasets.

Figure 5.   Two metrics log10 Lv and log10 Cv computed from shorter recording periods. (a), (b), and (c) 
Datasets of 1 minute, 10 minutes, and 1 hour, plotted on a plane spanned by log10 Lv and log10 Cv . The 
parameters a and b of each prediction zone were adapted to respective datasets.

Figure 6.   The MCCs for the combination method applied to recording duration of 1 minute and 18 hours. (a) 
PVC, (b) PAC, and (c) AF. Original pulse times were jittered with Gaussian noises of the standard deviation of 
10, 50, 100, 200, and 500 ms.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17019  | https://doi.org/10.1038/s41598-022-21260-x

www.nature.com/scientificreports/

Discussion
In this study, we constructed an automated algorithm for alerting cardiac symptoms from pulsation signals. We 
first compared Lv with Cv and found that Lv was superior for detecting premature contractions, while Cv was 
superior for identifying fibrillation. Considering the specificity of each metric, we introduced the local-global 
variation ratio Lg = Lv/Cv2 and found that this metric effectively discriminates between premature contractions 
and fibrillation. With a method for combining Lv and Lg, we have obtained a performance far superior to that 
obtained by simple thresholding with single metrics.

Considering the cost and time needed to perform 1-day Holter ECG, it is desirable to be able to make a rea-
sonable inference from a shorter recording, such as the few-minute ECG carried out during a regular medical 
checkup. We confirmed that applying our new combination method to 1-minute recordings provided detection 
performance that was comparable to or even better than that of the conventional HRV metric Cv applied to a 
1-day recording.

Nevertheless, this favorable performance might not be exclusive to our method. Experienced medical prac-
titioners should be able to achieve similar performance through pulse diagnosis, or by making full use of the 
many existing HRV metrics. Some of these metrics can detect features similar to Cv and Lv. For instance, if we 
map consecutive RR intervals, as was done in40–42, the variability along a diagonal line in the map corresponds to 
the global variability as represented by Cv, while the variability along the orthogonal axis is similar to the local 
variability of consecutive intervals as represented by Lv, in which slow rate fluctuation is effectively mitigated.

We have seen that longer recording of pulses provides more reliable inference. This is partly because the 
estimation of variability metrics becomes more accurate with time. But the main reason may be that cardiac 
symptoms occur intermittently during 1-day recording and it is difficult to identify disorders if the analysis is 
performed while symptoms are absent. But if we can use a more convenient device such as a smartwatch that can 
constantly monitor heartbeats, cardiac disorders can be easily detected using our analysis algorithm.

By assuming that pulses reflect the RR intervals of cardiac beats, being accompanied by noises occurring 
downstream, we tested whether our analysis method was robust against noisy data. By jittering the original RR 

Figure 7.   Noisy datasets of different cardiac disorders plotted on a plane spanned by log10 Lv and log10 Cv . 
(a), (b), and (c): Datasets were obtained by jittering original pulse times with Gaussian noises of the standard 
deviation of 10 ms, 50 ms, and 100 ms. The parameters a and b of each prediction zone were adapted to 
respective noisy datasets.

Figure 8.   Two metrics log10 Lv and log10 Cv computed for three kinds of MIT-BIH databases. (a), (b), (c), and 
(d): Datasets of 1 minute, 10 minutes, 1 hour, and 18 hours plotted on a plane spanned by the two metrics. The 
parameters a and b of the prediction zone (magenta) for the AF cases were adapted to respective datasets.
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intervals with fluctuating noises, we have confirmed that the detection of cardiac symptoms did not deteriorate 
if the fluctuation in the measurements was shorter than 100 ms. Thus our method might work for alerting to 
cardiac disorders from pulse signals obtained with a smartwatch. However, it should be noted that HRV analysis 
is limited in that it cannot classify arrhythmic events such as isolated premature ventricular contraction43,44. 
Once any malfunction is detected by HRV analysis, one should move on to ECG analysis for diagnosing the 
more detailed morphological features.

Here we selected the parameters for determining cardiac symptoms so that the performance was maximized in 
terms of the MCC. However, the MCC was based on a balance between true and false positives and negatives, in 
the sense that positives and negatives are considered to have equal weights. We may lower the threshold of Lv if we 
wish to be more cautious in predicting cardiac disorders, even though this results in an increase of false positives.

To test the generality of the analysis method, we applied it to the data of the MIT-BIH databases. We have 
confirmed that our method may detect AF cases with much higher MCC values, indicating the higher classifica-
tion performance. It is noteworthy that we obtained a similar criterion for this dataset, although the diagnostic 
criteria may generally be different between different medical institutions. The advantage of our method may be 
its simplicity in representing and diagnosing cardiac status; our method has only two parameters a and b, and 
we may check whether they have been dependent on training datasets, which may be largely dependent on the 
diagnostic criterion of different institutions.

In this study, we achieved high detection performance by combining Cv and Lv, particularly by paying atten-
tion to the local-global variation ratio Lg. The essential point of improvement was to combine multiple metrics 
that detect different features of heartbeats. If we can obtain more sample data, it might be worthwhile to look 
for more detailed combinations of additional variability metrics.

Methods
ECG data.  The data of Holter ECG were obtained from outpatients who had cardiological examinations at 
Clinic, Kyoto Industrial Health Association, Kyoto 604-8472, Japan. Japanese institutions or corporations are 
requested to let workers undergo a medical checkup once a year. If potentially concerning results are observed 
during the ECG recording performed during the physical checkup, individuals are recommended to undergo 
1-day Holter ECG monitoring. Accordingly, subjects who received Holter ECG may have been more likely to 
have cardiac disorders than the overall population. Nevertheless, the majority of these individuals were still 
“healthy” in that they were not diagnosed with heart failure, and some were asymptomatic.

In the analysis of 1-day Holter recording, each pulse was automatically diagnosed as PVC and/or PAC by 
software provided by Fukuda Denshi Co. Ltd. Based on the summary data, we calculated the fraction of pulses 
exhibiting PVC and/or PAC contained in an entire set of pulses. Medical doctors analyzed the full records of indi-
vidual subjects, and if abnormalities were detected, they manually determined the periods of AF. We calculated 
the ratio of the AF period to the total measurement time, 18 hours. The ECG data obtained from a CM5 lead 
were analyzed. From the recorded RR intervals, we computed Cv and Lv. We discarded 14 datasets whose record-
ing period was shorter than 18 hours. Accordingly, we had datasets of 1,017 subjects in total (863 independent 
persons, men: 625, women: 238), and analyzed the initial 18 hours. The ages of the subjects ranged from 20 to 90.

All methods were carried out in accordance with relevant guidelines and regulations. Informed consent 
was obtained from all subjects or their legal guardians. Categorization of cardiac symptoms of outpatients was 
performed by medical doctors who acquired the license as Physician and Surgeon in Japan. The present study 
was approved by Institutional Research Board, Kyoto Industrial Health Association (Permission No. S18-0006), 
and the Ethics Review Committee for Medical and Health Research involving Human Subjects, Ritsumeikan 
University (Permission No. BKC-LSMH-2021-039).

MIT‑BIH ECG databases.  In addition to the Kyoto databases, we examined public databases MIT-BIH 
provided by the Harvard-MIT Division of Health Sciences and Technology45–47. Here we adopted three kinds 
of databases: MIT-BIH Atrial Fibrillation Database (2-channel Holter ECG recorded at a sampling frequency of 
250 Hz for 10 hours); MIT-BIH Arrhythmia Database (2-channel Holter ECG recorded at a sampling frequency 
of 360 Hz for 24 hours. We adopted the 30-minute waveform data); and MIT-BIH Normal Sinus Rhythm Data-
base (2-channel ambulatory ECG recorded at a sampling frequency of 128 Hz for 24 hours). We obtained RR 
intervals from the waveform data of the first channel. R-peaks were detected using the ecg_peaks function of 
neurokit2 software48. For datasets whose recording period was less than the specified period (1minute, 10min-
utes, 1hour, 18hours), we analyzed the entire recording period.

Metrics for measuring heartbeats.  Given a sequence of RR intervals, we computed variability metrics 
defined as follows.

•	 Average heart rate (Hr) The most basic metric for measuring heartbeats is the average heart rate Hr, defined 
as, 

 The 18-hour average value was adopted as an HR statistic for each subject.
•	 Coefficient of variation (Cv)
	   There are many conventional approaches for detecting HRV, such as linear, frequency domain, wavelet 

domain, and nonlinear methods. As a representative HRV metric, we used the coefficient of variation of RR 
intervals, defined by 

Hr = number of heartbeats per minute.
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 where �I and I  represent the standard deviation and the mean of RR intervals. These statistics are typically 
measured every 10 minutes (references). Unless specified in the main text, the 18-hour mean of the logarithm 
of the 10-minute mean Cv was adopted. In Fig. 4, the 1-minute Cv and the 10-minute Cv were used only 
one-shot data by averaged over the first 1 minute and 10 minutes duration after 10-minute transient time, 
respectively. The 1-hour Cv was estimated as the logarithm of the 10-minute mean Cv averaged over the first 
1 hour after the 10-minute transient. The coefficient Cv is designed to exhibit a value of unity for a Poisson 
random pulse train and is zero for a perfectly regular pulsation signal.

•	 Local variation (Lv)
	   The conventional method of measuring HRV is adversely affected by slow variations in the heart rate and is 

also sensitive to artifacts and errors. There have been efforts to remove these artifacts, and modern methods 
employ machine learning techniques such as the state-space method49,50. Here we employ a simple metric 
called the local variation Lv, which was introduced for measuring the firing irregularity of the neurons in 
the brain26–28. The local variation Lv is defined as, 

 where Ii and Ii+1 are the ith and i + 1 st RR intervals, respectively, and n is the total number of the intervals 
in a given duration. Note that the heartbeat that makes up the end of the ith RR interval and the start of the 
i + 1 st RR interval was within the duration. The coefficient 3 in the definition of Lv was chosen so that Lv 
gives the value of unity for a Poisson pulse train26. Lv is zero for a regular pulsation.

Whereas Cv represents the global variability of an entire sequence and is sensitive to rate fluctuations, Lv detects 
the instantaneous variability of intervals. To demonstrate the difference in the workings of these metrics, we 
created synthetic pulse sequences. In Fig. 9a, RR intervals are lined up in a regular manner from long to short 
and then short to long, while in Fig. 9b, the identical set of RR intervals is presented in a random sequence. 
Accordingly, (a) represents a locally regular pulsation while the rate is slowly modulated, whereas (b) represents 
irregular pulsation.

The coefficient of variation Cv has identical values for (a) and (b) because the standard deviation and the mean 
are the same for both sequences. However, Lv successfully ignores slow heart rate modulation, and accordingly, 
it identified the difference in local irregularity between the two sequences. Note that we made the variations in 
RR intervals much larger than those of real cardiac beats so that their differences would be apparent.

In addition to these metrics, we have newly introduced the local-global variation ratio Lg = Lv/Cv2 . Its 
characteristics are analyzed in the following subsection. Lg takes a value much smaller than unity for a locally 
regular pulsation whose rate is slowly modulated (Fig. 9a). Lg takes the value 3/2 for a sequence in which RR 
intervals of mutually similar values are arranged randomly (Fig. 9b). Lg takes an even higher value of 3 for a 
pulsation in which long and short intervals alternate (Fig. 9c).

Cv =
�I

I
,

Lv =
3

n− 1

n−1
∑

i=1

(

Ii − Ii+1

Ii + Ii+1

)2

,

Cv = 0.28
Lv = 0.0003
Lg = 0.003

Cv = 0.20
Lv = 0.12
Lg = 3.0

Cv = 0.28
Lv = 0.13
Lg = 1.5

b

a

c

Figure 9.   Synthetic pulse sequences and the computed values of the coefficient of variation Cv, the local 
variation Lv, and the local-global variation ratio Lg. (a) Pulsation is locally regular while the rate is slowly 
modulated from low to high and then back to low. (b) Pulsation is irregular, although the average rate is nearly 
constant. (c) Long and short RR intervals alternate with each other. Cv has the same value for (a) and (b), which 
are composed of identical sets of RR intervals, whereas Lv is small for (a), in which the RR intervals are well 
organized, and is large for (b), in which RR intervals are arranged randomly. Lg is very small for (a), in which 
the rate is slowly modulated. Lg ≈ 3/2 for (b), in which RR intervals are randomly arranged. Lg ≈ 3 for (c), in 
which long and short RR intervals alternate.
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Analytical calculations of Cv, Lv, and Lg for some limiting cases.  Renewal process with gamma‑dis‑
tributed interval.  Expectation values are analytically available for a wide class of renewal processes in which 
pulse intervals are derived from the gamma distribution,

where Ŵ(z) is the gamma function defined as Ŵ(z) =
∫∞
0 dt tz−1 exp(−t) . The Poisson process corresponds to 

the case of z = 1 , and we can generate more regular pulse trains with the larger z.
In this case, the expectation value of Lv is obtained analytically as 3/(2z + 1) , and the expectation value of 

Cv is obtained as 1/
√
z . Accordingly, the local-global variation ratio Lg is

While Lg = 1 for the Poisson process with z = 1 , Lg = 3/2 for a regular pulse train at a limit of z → ∞.

Sequences consisting of long and short pulse intervals.  The local-global variation ratio Lg is undefined for a 
perfectly regular pulse train, for which both Lv and Cv2 are zero. Though we have obtained Lg = 3/2 for a regu-
lar pulse train in a limiting case of the renewal process with gamma interval distribution z → ∞ , it might be 
sensitive to the arrangement of pulse intervals. Here we consider long pulse trains in which equal numbers of 
long and short intervals are arranged in various orders. Let the long and short intervals be denoted as τ + δ and 
τ − δ , respectively ( τ > δ > 0 ). Because the mean interval and standard deviation are τ and δ , respectively, the 
coefficient of variation Cv is δ/τ . By denoting the switching probability between long and short intervals as p, the 
local variation Lv is given as 3p δ2/τ 2 . Accordingly, the local-global variation ratio Lg is obtained as

Thus Lg = 3/2 if long and short intervals alternate randomly, in which case the switching probability between 
long and short is half, p = 1/2 . But Lg can be as high as 3 if the long and short intervals always alternate ( p = 1 ). 
Lg can be close to zero for a long pulse train in which switching between long and short intervals occurs very 
rarely ( p ≈ 0 ). In this way, the local-global variation ratio may discriminate the order of long and short intervals, 
even if the difference between the long and short intervals is very small ( δ ≪ τ).

Data availability
Raw patient-related data are protected and are not available due to data privacy laws. Processed data are available 
from Yoshinori Marunaka upon request under the permission of the ethical committees.
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