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Abstract

The detection of somatic single nucleotide variants is a crucial component to the characterization of the cancer genome.
Mutation calling algorithms thus far have focused on comparing the normal and tumor genomes from the same individual.
In recent years, it has become routine for projects like The Cancer Genome Atlas (TCGA) to also sequence the tumor RNA.
Here we present RADIA (RNA and DNA Integrated Analysis), a novel computational method combining the patient-matched
normal and tumor DNA with the tumor RNA to detect somatic mutations. The inclusion of the RNA increases the power to
detect somatic mutations, especially at low DNA allelic frequencies. By integrating an individual’s DNA and RNA, we are able
to detect mutations that would otherwise be missed by traditional algorithms that examine only the DNA. We demonstrate
high sensitivity (84%) and very high precision (98% and 99%) for RADIA in patient data from endometrial carcinoma and
lung adenocarcinoma from TCGA. Mutations with both high DNA and RNA read support have the highest validation rate of
over 99%. We also introduce a simulation package that spikes in artificial mutations to patient data, rather than simulating
sequencing data from a reference genome. We evaluate sensitivity on the simulation data and demonstrate our ability to
rescue back mutations at low DNA allelic frequencies by including the RNA. Finally, we highlight mutations in important
cancer genes that were rescued due to the incorporation of the RNA.
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Introduction

Much of our current understanding of cancer has come from

investigating how normal cells are transformed into cancerous cells

through the stepwise acquisition of somatic genomic abnormali-

ties. These events include point mutations, insertions and deletions

(INDELs), chromosomal rearrangements, and changes to the copy

number of segments of DNA. Transforming a normal human cell

into a malignant, immortal cancer cell line requires an estimated

five to seven genetic alterations in key genes and pathways [1,2].

Not surprisingly, much research has been devoted to determining

how cancer cells are able to acquire their abilities through the

accumulation of somatic mutations.

The Cancer Genome Atlas (TCGA) project has produced

exome-wide data from thousands of tumors and patient-matched

normal tissues. With the development of RNA Sequencing (RNA-

Seq) [3], TCGA began providing an additional high-throughput

tumor sequence dataset. These three datasets consisting of tumor

and patient-matched normal DNA and tumor RNA have become

a new standard in cancer genomics. RNA-Seq enables one to

investigate the consequences of genomic changes in the RNA

transcripts they encode to better characterize 1) germline variants,

2) somatic mutations, and 3) variants in the RNA that are not

found in the DNA that could be the result of RNA editing [4].

Over the next few years, many more whole-genome and exome-

capture DNA and RNA-Seq BAM (the binary version of Sequence

Alignment/Map [5]) files will become available. TCGA has

collected over 10,000 tissue samples from more than 20 types of

cancer. There is a clear need for an efficient method for the

combined analysis of patient-matched tumor DNA, normal DNA,

and tumor RNA. Here we present a method called RADIA to

identify and characterize alterations in cancer using DNA and

RNA obtained by high-throughput sequencing data.

Somatic mutation calling is traditionally performed on patient-

matched pairs of tumor and normal genomes/exomes [6–11]. The

ability to accurately detect somatic mutations is hindered by both
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biological and technical artifacts that make it difficult to obtain

both high sensitivity and high specificity. Different mutation

calling algorithms often disagree about putative mutations in the

same source data, and frequently have discernible systematic

differences due to the trade-off between sensitivity and specificity

[12]. This is especially true for somatic mutations with low variant

allele frequencies (VAFs). By creating an algorithm that utilizes

both DNA and RNA, we have increased the power to detect

somatic mutations, especially at low variant allele frequencies.

RADIA combines patient-matched tumor and normal DNA

with the tumor RNA to detect somatic mutations. The DNA Only

Method (DOM) (Figure 1) uses just the tumor/normal pairs of

DNA (ignoring the RNA), while the Triple BAM Method (TBM)

(Figure 1) uses all three datasets from the same patient to detect

somatic mutations. The mutations from the TBM are further

categorized into two sub-groups: RNA Confirmation and RNA

Rescue mutations (Figure S1). RNA Confirmation mutations are

those that are made by both the DOM and the TBM due to the

strong variant read support in both the DNA and RNA. RNA

Rescue mutations are those that had very little DNA support,

hence not called by the DOM, but strong RNA support, and thus

called by the TBM. RNA Rescue mutations are typically missed

by traditional methods that only interrogate the DNA.

We have applied RADIA to data derived from over 3,300

patients representing 15 different cancer types from TCGA (Table

S1). Overall, the RNA Rescue mutations that are made possible by

the incorporation of the RNA-Seq data provide a two to seven

percent increase in somatic mutations compared to the DOM

(Table S1). Many of these mutations were new discoveries that

were not previously found by other mutation calling algorithms in

TCGA. Of these new discoveries, some mutations were found in

well-known cancer genes that were heavily mutated in a specific

cohort. We also find mutations in new samples where the same

gene has already been identified as harboring mutations in other

samples from the cohort. When these RNA Rescue mutations are

added to the DNA Only mutations, these genes achieve a

statistically significant overall mutation rate for the cohort.

Here we specifically focus on results from 177 endometrial

carcinoma [13] and 230 lung adenocarcinoma [14] patients from

TCGA. To demonstrate the increase in sensitivity from including

the tumor RNA-Seq dataset, we simulated mutations by spiking

them into the tumor DNA and tumor RNA of a breast cancer

patient using bamsurgeon (https://github.com/adamewing/

bamsurgeon). We also evaluated sensitivity and precision on the

endometrial carcinoma and lung adenocarcinoma data using

validation data that was generated by TCGA. We highlight RNA

Rescue mutations found by the TBM in tumor suppressor genes

such as TP53, STK11, and CDKN2A in lung adenocarcinoma.

Methods

RADIA operates on two or more BAM files, producing somatic

mutation calls through a series of steps outlined in Figure 1. Each

step in this process is described in detail, beginning with the initial

selection of sites for further processing and ending with a

description of filters used to eliminate false positives while

maintaining true positives.

2.1 Variant Detection with RADIA
RADIA is typically run on three BAM [5] files consisting of a

pair of patient-matched tumor and normal genomes and a tumor

transcriptome and outputs germline (inherited) variants and

somatic Single Nucleotide Variants (SNVs). Here we focus

specifically on the detection of somatic SNVs with RADIA. The

DOM is run on the pairs of tumor and matched-normal DNA

while the TBM is applied to the DNA and RNA triplets. After the

DOM and TBM specific filters, the results are merged and run

through a final read support filter (Figure 1). If RNA-Seq data is

not available, RADIA can utilize paired tumor and normal DNA

genomes using the DOM to detect germline variants and somatic

SNVs.

Internally, RADIA uses the samtools [5] mpileup command

(version 0.1.18) to examine the pileups of bases in each sample in

parallel. A heuristic algorithm determines the existence and type of

variant at any given position based on the user-configurable

minimum thresholds for overall depth, variant depth, Base

Alignment Quality (BAQ) [15], and mapping quality. Initially,

RADIA requires a minimum overall depth of four bases,

minimum variant depth of two bases, minimum phred BAQ of

10, and minimum phred mapping quality of 10. These initial calls

are lenient in coverage and provide a good baseline set of calls for

further filtering.

RADIA scans pileups of reads across the reference genome and

outputs variants in Variant Call Format (VCF) (https://github.

com/samtools/hts-specs). For each position, summary information

such as the overall depth, allele specific depth and frequency,

average BAQ base quality, average mapping quality, and the

Figure 1. Overview of the RADIA work-flow for identifying
somatic mutations. The normal DNA, tumor DNA, and tumor RNA
BAMs are processed in parallel and initial low-level variants are
identified. The variants are filtered by the DNA Only Method using
the pairs of normal and tumor DNA and by the Triple BAM Method
using all three datasets. The mutations from the two methods are
merged and output in VCF format.
doi:10.1371/journal.pone.0111516.g001
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fraction of reads on the plus strand are calculated for both the

DNA and RNA. All of this information is used during the filtering

process.

2.2 Variant Filtering
After the initial variants are detected, a number of filters are

applied to remove false positive variants that result from biological

and technical artifacts. Each filter is described here in detail.

2.2.1 Filtering Around INDELs. Many current mutation

calling algorithms have a pre-processing step to account for

misaligned reads around INDELs. This realignment step is

computationally expensive and relies on accurately predicting

the location of INDELs which itself is not a trivial problem. Base

Alignment Quality (BAQ) is an alternative option for dealing with

alignment ambiguity around INDELs. It calculates the probability

that a base has been misaligned and returns the minimum of the

original base quality and the base alignment quality. BAQ is run

by default when executing a samtools mpileup command and has

been shown to improve SNP calling accuracy [15]. We use the

extended version of BAQ (option –E) that is activated by default in

the latest version of samtools (0.1.19) for increased sensitivity and

slightly lower specificity [5].

2.2.2 1000 Genomes Blacklist Filter. The 1000 Genomes

Project coined the term ‘‘accessible genome’’ to be the part of the

reference genome that is reliable for accurate variant calling after

removing ambiguous or highly repetitive regions [16]. Since the

reference genome is incomplete, repetitive in places, and does not

represent human genetic variation comprehensively, reads often get

mapped incorrectly in locations outside the accessible genome

(inaccessible sites), leading to false positive variant calls. Over 97% of

inaccessible sites are due to high copy repeats or segmental

duplications. In the pilot, the 1000 Genomes Project determined

that 85% of the reference sequence and 93% of the coding region was

accessible. Due to longer read lengths (75–100 bp) and improvements

to both paired end protocols and sequence alignment algorithms, the

accessible genome increased in Phase I to 94% of the reference and

98% of the coding region [17]. We filter variants that are not in the

accessible genome using the Phase I mapping quality and depth

blacklists (ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/phase1/

analysis_results/supporting/accessible_genome_masks/).

2.2.3 Strand-Bias Filter. It has recently been shown that

variant allele reads that occur exclusively on one strand are largely

associated with false positives [8]. In order to account for this

technical artifact, we filter based on the variant allele strand bias. If

we have at least four total reads supporting the variant allele, then

we apply the strand bias filter if more than 90% of the reads are on

the forward strand or more than 90% are on the reverse strand.

2.2.4 Filtering by mpileup Support. RADIA can be

executed on patient-matched pairs of tumor and normal DNA

samples using the DOM to identify germline variants and somatic

mutations. We first compare the matched normal DNA to the

human reference genome. We require the normal DNA to pass the

mpileup support filters described in Table 1 for all germline

variants.

If no germline variant is found, we compare the tumor DNA to

the matched normal DNA and the reference genome to search for

somatic mutations. We require the normal DNA and tumor DNA

to pass the mpileup support filters shown in Table 1 for all somatic

variants. To ensure that we have the power to detect a possible

germline variant at this site, we require that the germline DNA

depth is 10 or more.

We use the Triple BAM Method to augment our somatic

mutation calls using both the pairs of DNA and the RNA-Seq

data. The normal DNA, tumor DNA, and tumor RNA must pass

the mpileup support filters shown in Table 2 for all somatic

mutations. We require at least one read with a minimum BAQ

phred score of 15 in the tumor DNA. To rule out possible

germline variants, we again require that the normal DNA depth is

10 or more. In addition, we filter out calls that overlap with

common SNPs that are not flagged as clinically relevant and found

in at least one percent of the samples in dbSNP [18]. We

downloaded this subset of dbSNP from the ‘‘Common SNPs’’

track on the UCSC human genome browser [19,20]. We found

that many false positive variants overlapped with earlier versions of

dbSNP. These variants were due to technical artifacts and were

removed from subsequent versions of dbSNP [21]. Therefore, we

filter out all variants that overlap with dbSNP versions 130, 132 or

135 (ftp://ftp.ncbi.nih.gov/snp/). The TBM calls are subjected to

further filtering procedures as shown in Figure 1 and described

below.

2.2.5 Pseudogene Filter. We noticed that many of our TBM

mutations overlapped with predicted pseudogenes. Although

expressed pseudogenes have recently been reported to be

significant contributors to the transcriptional landscape and shown

to play a role in cancer progression [22], mutations that overlap

with predicted pseudogenes have a high false positive rate.

Sequence similarity of pseudogene copies to their parent genes

leads to uncertainty in alignment within these regions. Because of

these technical artifacts, we remove TBM mutations that overlap

with pseudogenes annotated in GENCODE by the ENCODE

project (version 19) [23] and predicted by RetroFinder (version 5)

[23,24]. We downloaded the pseudogene annotations from the

following tracks on the UCSC human genome browser [19,25]:

Gene Annotations from ENCODE/GENCODE and Retroposed

Genes. The predicted pseudogenes occupy 1.5% of the total

genome.

2.2.6 Highly Variable Genes Filter. We remove TBM

mutations that overlap with families of genes that have high

sequence similarity. Some examples of these gene families are

Human Leukocyte Antigens (HLAs), Ribosomal Proteins (RPLs),

and immunoglobulins. While mutations in these genes may exist,

special processing would be needed to distinguish them from false

positive calls due to misaligned reads. We annotate the mutations

using SnpEff [26] and filter out the following five gene families:

RPLs, RP11s, HLAs, IGHVs and IGHCs.

2.2.7 Positional Bias Filter. False positive calls are associ-

ated with misaligned reads where the alternative allele is

consistently within a certain distance from the start or end of the

read. The positional bias filter is applied when 95% or more of the

reads that have an alternative allele are such that the alternate

allele falls in the first third or last third of the read.

2.2.8 BLAT Filter. We observed multiple instances where

RNA-Seq reads appeared to be incorrectly mapped due to the

added difficulties in aligning RNA-Seq data, such as dealing with

hard to identify splice junctions and multiple gene isoforms. To

guarantee that the RNA-Seq reads that support a variant do not

map better to another location in the genome, we created a BLAT

filter. All of the RNA-Seq reads that support a variant are

extracted from the BAM file and aligned to the human genome

using BLAT [27]. If the read maps to another location with a

better score, the read is rejected. After using BLAT on each read,

we again require that there are at least four valid reads that

support the variant and that 10% or more of the reads support the

variant.

2.2.9 Read Support Filter. We merge the calls from the

DOM and the TBM and apply one final filter. We require that

each somatic mutation be supported by at least four ‘‘perfect’’

reads. We define a perfect read as follows:

RADIA: RNA and DNA Integrated Analysis for Somatic Mutation Detection
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1. Minimum mapping quality of read is 10

2. Minimum base quality of alternative allele in read is 10

3. Minimum base qualities of the five bases up- and down-stream

of the alternative allele are 10

4. Read is properly paired

5. Read has fewer than four mismatches across its entirety when

compared to the reference

6. Read does not require an insertion or deletion to be mapped

After determining the number of perfect reads that support the

reference and the alternative at a coordinate, we re-apply the

strand bias filter to guarantee that no more than 90% of the total

perfect reads are from one strand.

Results

We evaluate the sensitivity of RADIA using simulation data that

was generated from patient data. We also measure the sensitivity

and precision of RADIA using patient and validation data

generated by TCGA. All patients in this study provided written

informed consent to genomic studies in accordance with local

Institutional Review Boards (Table S2) and the policies and

guidelines outlined by the Ethics, Law and Policy Group from

TCGA. All patient data is anonymous and was originally collected

for routine therapeutic purposes.

3.1 Sensitivity on Simulation Data
In order to evaluate sensitivity and demonstrate the increase in

power from including the RNA-Seq data, we simulated somatic

mutations starting from patient data. We spiked mutations into a

pair of breast cancer tumor DNA and tumor RNA samples using

bamsurgeon (https://github.com/adamewing/bamsurgeon), a

tool we developed to generate simulation data that closely mimics

actual experimental data from high-throughput sequencing

datasets. Bamsurgeon first determines the loci that have an

appropriate DNA and RNA depth to spike in mutations. It then

extracts the reads at the loci, adjusts the VAF according to the

user-defined VAF distribution, and then re-maps the reads (Figure

S2). This simulation strategy is more sophisticated than simply

generating simulated reads from a reference genome, as it retains

the biological and technical artifacts that are inherently present in

next generation sequencing data. We performed two spike-in

experiments: one varying the DNA VAF while holding the RNA

VAF constant, and one varying the RNA VAF while holding the

DNA VAF to 10% or less.

3.1.1 Sensitivity on Variable DNA-Constant RNA

Simulation Data. To evaluate the sensitivity of RADIA, we

spiked in 1,594 mutations to the tumor DNA sequence with a

variant allele frequency ranging from 1–50% and to the tumor

RNA sequence at a constant frequency of 25%. The overall

sensitivity rate averaged across all VAFs is 85% consisting of 1,351

out of 1,594 spiked in mutations (Figure 2A). Of the 243 calls that

Table 1. DNA Only Method mpileup Support Filters.

Filter Germline Somatic

Normal DNA Normal DNA Tumor DNA

Min Total Depth 10 10 10

Min Alt. Depth 4 NA 4

Min Alt. Percent 10% NA 10%

Min Avg. Alt. BAQ 20 NA 20

Max Alt. Strand Bias 90% NA 90%

Max Alt. Percent NA 2% NA

Max Other Percent 2% 2% 2%

The germline variants and somatic mutations from the DOM are filtered according to the parameters described here. The minimum average alternative read BAQ filter
uses the phred scale. The maximum other percent restricts the percentage of reads that are allowed to support an additional alternative allele.
doi:10.1371/journal.pone.0111516.t001

Table 2. Triple BAM mpileup Support Filters.

Filter Somatic

Normal DNA Tumor DNA Tumor RNA

Min Total Depth 10 1 10

Min Alt. Depth NA 1 4

Min Alt. Percent NA NA 10%

Min Avg. Alt. BAQ NA 15 15

Max Alt. Strand Bias NA 90% 90%

Max Alt. Percent 10% NA NA

Max Other Percent 10% 10% 2%

The somatic mutations from the TBM are filtered according to the parameters shown here.
doi:10.1371/journal.pone.0111516.t002
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were filtered out, over 50% are removed because they failed to

meet the minimum variant allele frequency, more than 20% land

in blacklist regions that the method ignores, and nearly 20% are

discarded due to the BLAT filter. The number of mutations that

are rejected by the full list of filters can be found in Figure S3.

3.1.2 Sensitivity on Low Frequency DNA-Variable RNA

Simulation Data. To demonstrate the ability of the TBM to

rescue calls at low DNA VAFs, we spiked in 1,761 mutations to the

tumor RNA sequence with a variant allele frequency ranging from

1–50% and to the tumor DNA sequence at a frequency of 10% or

less. Most of the mutations by the DOM are filtered out due to the

low allelic frequency in the DNA (Figure S4). For the mutations

that have sufficient read support in the RNA, these low DNA

VAFs are rescued back (Figure 2B).

3.2 Precision and Sensitivity on Patient Data
We made somatic mutation calls on 177 non-hypermutated

TCGA endometrial carcinoma samples [13]. All 177 tumor and

matched normal whole exome sequencing and RNA-Seq align-

ments in BAM [5] format were downloaded from TCGA at the

Cancer Genomics Hub (CGHub, https://cghub.ucsc.edu, Table

S2). The exomes were sequenced using the Illumina Genome

Analyzer II, and the paired-end sequencing reads were aligned by

Figure 2. Sensitivity of RADIA on simulation data. Artificial mutations were spiked into the tumor DNA and RNA BAM files of a breast cancer
patient using bamsurgeon. (A) Mutations were spiked into the DNA at variant allele frequencies distributed from 1–50% and into the RNA at a
constant 25%. The overall sensitivity of RADIA was 85%. RNA Rescue calls from the Triple BAM method detected the mutations that had a DNA VAF
less than 10%. (B) Mutations were spiked into the DNA at 10% or less and into the RNA distributed from 1–50%. Most of the DOM mutations are
filtered due to the low DNA allelic frequency. The mutations that have adequate RNA read support are rescued back at these low DNA allelic
frequencies.
doi:10.1371/journal.pone.0111516.g002

RADIA: RNA and DNA Integrated Analysis for Somatic Mutation Detection

PLOS ONE | www.plosone.org 5 November 2014 | Volume 9 | Issue 11 | e111516

https://cghub.ucsc.edu


BWA [28]. The RNA was sequenced using the Illumina Genome

Analyzer II, and the single-end sequencing reads were aligned by

MapSplice (V2) [29].

3.2.1 RADIA Precision on Endometrial Carcinoma Patient

Data. For the study on endometrial carcinoma by TCGA [13],

mutations were submitted by three independent TCGA Genomic

Data Analysis Centers (GDACs). These mutations were merged

and targeted for custom recapture and resequencing using new

cDNA libraries from the tumor and normal DNA samples [13].

We downloaded the validation BAMs containing the results of the

hybrid capture and resequencing of targeted mutations from

CGHub (https://cghub.ucsc.edu, Table S2). We utilized the

identical validation criteria used by the TCGA Endometrial

Analysis Working Group to validate the somatic mutations

detected by RADIA [13]. For each somatic mutation, we queried

the patient-matched tumor and normal validation data. We

required at least 10 reads in both the tumor and normal data in

order to determine if a call validated, otherwise we classified it as

ambiguous. If the variant was present at low levels in both datasets,

we also classified it as ambiguous. Otherwise, we determined

whether a mutation validated as germline/LOH, somatic, or

neither according to Table 3. In addition, any RNA Rescue call in

the ‘‘Not Validated’’ group that overlapped with a COSMIC

somatic mutation that was confirmed in another study was

considered as validated.

We made a total of 27,900 somatic mutation calls over 177

endometrial samples, of which the DOM and TBM made 27,390

and 6,325 calls respectively. Of the 6,325 TBM calls, there were

5,815 RNA Confirmation mutations that were made by both the

DOM and TBM signifying high DNA and RNA support, and

importantly, a total of 510 RNA Rescue mutations that were

missed by the DOM.

Using the validation strategy described above, we demonstrate

that the overall precision for RADIA is 98% (Figure 3A). Due to

lack of coverage or uncertainty in the tumor and normal validation

BAMs, a total of 1,825 calls were considered to be ambiguous. Of

the remaining 26,075 mutations called by RADIA, 25,520

validated as somatic, 271 validated as germline/LOH variants

and 284 did not validate. The precision of calls made by the DOM

and the TBM was 98% and 98.5% respectively. For the RNA

Confirmation mutations made by both the DOM and the TBM,

the precision was 99.3%. There were 510 RNA Rescue mutations

made only by the TBM, and even though most of these calls were

not targeted for validation, the precision was 74%. For the 510

RNA Rescue calls, 251 were classified as ambiguous, 6 validated

as Germline/LOH, and 61 did not validate. Of the remaining 192

RNA Rescue mutations that validated, 178 (93%) were verified

using the validation BAMs and 14 (7%) were confirmed as somatic

mutations in COSMIC.

We next examined the precision of the DOM with varying

RNA-Seq reads supporting the variant allele as well as the

precision of RNA Rescue mutations with differing levels of DNA

supporting reads. Sixty-two percent of the DOM mutations were

covered by reads in the RNA-Seq data, and 29% had at least 10

RNA-Seq reads covering the mutation. Nearly half (44%) had at

least one RNA read supporting the DNA variant allele, while 25%

of the DOM mutations had at least four supporting RNA reads.

The precision of the DOM is lowest (92%) with no RNA-Seq

support, increases to 95% with weak RNA-Seq support (at least

one but less than five supporting reads), and increases to 99.3% for

RNA Confirmation mutations. Overall, mutations that are

detected by the DOM validate above 92%, regardless of the

RNA-Seq support, and the precision increases as the RNA-Seq

support increases.

On the other hand, RNA Rescue mutations weakly supported

by the DNA validate at low levels. For RNA Rescue mutations, we

require at least one variant supporting read in the DNA in order to

distinguish between RNA Rescue mutations and possible RNA

editing events. The precision of RNA Rescue mutations with only

one read supporting the variant in the DNA was 11%, with two

supporting reads in the DNA 23%, with three supporting reads in

the DNA 43%, and with four or more supporting reads in the

DNA 94%.

3.2.2 RADIA Sensitivity on Endometrial Carcinoma

Patient Data. In order to measure the sensitivity of RADIA,

we considered the union of all mutations submitted by TCGA

GDACs that validated as somatic as our truth set. There were

30,239 mutations that validated as somatic from TCGA. We

compared our somatic mutations to this truth set and demon-

strated an overall sensitivity of 84% (Figure 3B, Figure S5). Of the

4,751 calls that were missed, 1,539 (33%) were filtered by RADIA

because they had a variant allele frequency less than 8% (Figure

S6). In addition, 1,072 (23%) landed in blacklist regions that were

not considered (Figure S6).

3.2.3 RADIA Precision on Lung Adenocarcinoma Patient

Data. Finally, RADIA somatic mutations were analyzed during

the course of our participation in the TCGA Lung Adenocarci-

noma Analysis Working Group [14]. We ran RADIA on 230

TCGA lung adenocarcinoma triplets that we downloaded from

CGHub (https://cghub.ucsc.edu, Table S2). The exomes were

sequenced using the Illumina HiSeq platform, and the paired-end

sequencing reads were aligned by BWA [28]. The RNA was

sequenced using the Illumina HiSeq platform, and the paired-end

sequencing reads were aligned by MapSplice (V2) [29]. Validation

was performed by the Broad Institute on 74 genes of interest along

with an additional 1,150 somatic SNVs. Validation was attempted

on 2,404 RADIA somatic mutations and 2,395 (99.63%) were

verified. From the DOM, 2,336 of the 2,345 mutations (99.62%)

Table 3. Validation Criteria for Endometrial Carcinoma Data.

Normal VAF Tumor VAF

0% ,8% $8%, ,20% $20%

= 0% Not Validated Somatic Low Somatic Med Somatic High

,3% Not Validated Ambiguous Somatic Med Somatic High

$3% Germline/LOH Germline/LOH Germline/LOH Germline/LOH

Validation BAMs were used to determine the validation status for somatic mutations as shown here. A mutation is considered validated in the Somatic Low, Med, or
High groups (bold), not validated in the ‘‘Not Validated’’ (italics) and Germline/LOH groups (italics), and Ambiguous when there was low read depth (,10 reads) or low
VAFs in both the normal (,3%) and tumor (,8%) validation BAMs.
doi:10.1371/journal.pone.0111516.t003
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Figure 3. Precision and sensitivity of RADIA on 177 non-hypermutated endometrial carcinoma samples. Mutations are considered
validated in the Somatic Low, Med, or High groups (blue), not validated in the ‘‘Not Validated’’ (green) and Germline/LOH (red) groups, and
Ambiguous (orange) when there was low read depth (,10 reads) or ambiguity in the validation data. (A) An overall precision of 98% was
demonstrated. RNA Confirmation mutations with strong DNA and RNA support validated over 99%. RNA Rescue mutations validated at 74%. (B) The
union of all mutations submitted by TCGA GDACs that validated as somatic was considered as the truth set. RADIA demonstrated an overall
sensitivity rate of 84%. Of the mutations that were missed, 33% occurred at low variant allele frequencies (,8%) and 23% occurred in blacklist regions
that were ignored.
doi:10.1371/journal.pone.0111516.g003
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validated. Importantly, 469/469 (100%) of the TBM mutations

consisting of 410 RNA Confirmation and 59 RNA Rescue

mutations validated.

3.3 Somatic Mutations in Specific Lung Adenocarcinoma
Genes

Mutations in the tumor suppressor gene TP53 are common in

the majority of human cancers. Most of the mutations occur in the

DNA-Binding Domain (DBD) and are considered change-of-

function mutations that alter activity of TP53, sometimes acting in

a dominant negative manner to sequester wildtype tp53 protein in
trans [30]. As such, many p53 mutant proteins endow cells with

oncogenic characteristics by promoting cell proliferation, survival,

and metastasis [31].

We ran RADIA on 230 TCGA lung adenocarcinoma triplets

[14] and discovered two non-synonymous TP53 mutations that

were below the detection threshold for other mutation calling

algorithms used by TCGA (Table 4). Both of the mutations were

validated by the deep-sequencing validation data and confirmed as

somatic in COSMIC by other studies. One of the mutations

(G266E) was confirmed as somatic in another lung cancer study

[32] as well as in prostate [33], pancreas [34], urinary tract [35],

and hematopoietic and lymphoid [36] cancer studies. The G266E

mutation occurs in the TP53 DBD mutation hotspot frequently

resulting in pathological effects [37–39]. This mutation has also

been described as a gain-of-function mutation in a melanoma cell

line [40]. The other TP53 mutation (G199V) was confirmed as

somatic in breast [41], ovarian [42], and medulloblastoma [43]

studies. It is a known anti-apoptotic gain-of-function mutation that

promotes cell survival through the signal transducer and activator

of transcription-3 (STAT3) pathway [44]. Knockdown experi-

ments of G199V p53 mutants demonstrated a level of anti-tumor

activity similar to high doses of chemotherapeutic agents,

suggesting that inhibition of G199V p53 mutants may be

beneficial for cancer treatment [44].

Additionally, we found mutations in other well-known tumor

suppressor genes such as STK11 and CDKN2A. In the lung

adenocarcinoma manuscript from TCGA, mutations in STK11
and CDKN2A were reported in 17% and 4% of all patients,

respectively [14]. STK11 was the fourth most mutated gene and

CDKN2A was the sixteenth [14]. The proximal-proliferative

subtype in lung adenocarcinoma is characterized by an enrich-

ment of mutations in KRAS along with inactivation mutations in

STK11 [14]. In the STK11 gene, we discovered a nonsense

mutation at W239* in the structurally conserved protein kinase

domain that was below the detection threshold for other mutation

algorithms used by TCGA. This mutation introduces an early stop

codon in exon five (of ten) leading to a truncated protein. This site

is in COSMIC and was previously reported to be part of a 398

nucleotide deletion in a lung cancer study [45].

In the CDKN2A gene, we found one nonsense mutation at

R122*, R163* and one missense mutation at R131H, R80H that

were both validated by TCGA and found in COSMIC. CDKN2A
is silenced in many CpG island methylator phenotype-high

(CIMP-High) tumors by DNA methylation [14], but mutations

and deletions in CDKN2A also result in loss of function. The

nonsense mutation at R122*, R163* results in an early stop codon

in exon two (of three or four, isoform dependent) leading to a

truncated protein. Previous lung cancer studies [46–48] have

reported frameshifts and deletions at this site. The missense

mutation at R131H was also found in colon cancer [49], clear cell

sarcoma [50], and chronic myeloid leukemia [51] and confirmed

as somatic in biliary tract cancer [52].

Discussion

Identifying somatic mutations is a key step in characterizing the

cancer genome. Until now, algorithms for mutation detection have

concentrated on comparing just the normal and tumor genomes

within the same individual. In the past few years, it has become

common to also sequence the tumor transcriptome using RNA-

Seq technologies. Large genomics studies, such as those conducted

by TCGA, primarily use the RNA-Seq for gene expression, gene

fusion, and splicing analyses. With the cost of sequencing steadily

decreasing and the wealth of information that can by obtained

from RNA-Seq, we predict that the sequencing of the tumor RNA

will continue to be routine in large cancer profiling projects. We

have developed a novel method called RADIA that combines the

normal DNA, tumor DNA, and tumor RNA from the same

individual to increase sensitivity to detect somatic mutations

without compromising specificity. Here we have focused on the

ability of RADIA to detect germline variants and somatic single

nucleotide variants. In the future, we plan to include other classes

of somatic mutations such as small insertions and deletions

(INDELs), loss of heterozygosity events (LOHs) and RNA editing

events.

The accurate detection of somatic mutations is complicated by

biological and technical artifacts such as tumor purity and

subclonality, varying allele frequencies, sequencing depths, and

copy-number variation. There is a trade-off between high

sensitivity and high specificity, such that it is difficult to achieve

both. By including an additional dataset, we are increasing our

ability to reliably detect mutations, especially at low variant allele

frequencies (Figure S7) where the signal to noise ratio becomes

unfavorable.

Many widely used mutation calling algorithms see a large

decrease in precision as the DNA variant allele frequency declines

Table 4. RNA Rescue Mutations in Lung Adenocarcinoma not Detected by Other Methods in TCGA.

Gene Mutation DNA VAF RNA VAF Validation DNA VAF

TP53 G266E 1/7 (13%) 6/10 (60%) 47/183 (26%)

TP53 G199V 4/64 (6%) 8/57 (14%) 17/380 (4%)

CDKN2A R131H 3/45 (7%) 22/62 (35%) 9/149 (6%)

CDKN2A R122*/R163* 2/16 (13%) 31/34 (91%) 20/92 (22%)

STK11 W239* 1/13 (7%) 20/40 (50%) NA

These mutations were below the detection threshold for other mutation calling algorithms used by TCGA. The ratio of reads supporting the mutations along with the
variant allele frequencies are shown for both the DNA and RNA. Validation was done on four of the mutations, and the resulting validation DNA variant allele
frequencies are shown.
doi:10.1371/journal.pone.0111516.t004
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[6,8,9,11,12]. We found that a DNA VAF of 10% gives us the best

balance between sensitivity and precision. To demonstrate this

point, we lowered the DNA VAF to 5% and reran RADIA on the

endometrial carcinoma data from Section 3.2. We used the same

validation strategy as described in Section 3.2 and compared the

results to the ones with a DNA VAF of 10%. We found a slight 1%

increase in overall sensitivity from 84% (at 10% VAF) to 85% (at

5% VAF) but an 8% decrease in overall precision from 97% (at

10% VAF) to 89% (at 5% VAF).

By combining the RNA with the DNA, we are able to confirm

the expression of a mutation, providing insight into its likely

functional effect. Confirming mutations through RNA-Seq is

also advantageous for large genomic studies in providing a

means for weak validation for mutations without costly

resequencing for validation (Figure S8). We find that over

99% of mutations that have both strong DNA and RNA support

validate upon resequencing, suggesting that if one is not using

mutations in clinical practice but rather estimating overall

frequencies of specific mutations in a research cohort, the

extreme expense in validating every mutation may not be

warranted. While the integration of RNA and DNA provides an

important but limited use as a DNA variant validation

technique, studying the impacts on gene expression levels may

lead to a deeper understanding of the functional impact of

DNA-originating variants.

Here we have outlined some of the strengths of RADIA, but

approaches that use RNA-Seq for detecting variants have clear

limitations [53,54]. Only expressed alleles can be evaluated, which

reduces the number of genes that can be assessed. In addition,

several classes of mutations, such as the introduction of premature

stop codons that lead to nonsense mediated decay, cannot be

verified. Expression levels can also confound the ability to detect

an imbalance in the genomic VAF as influences due to feedback

control to rebalance gene dosage are currently unknown.

With RADIA, we are able to detect mutations in important

cancer genes such as TP53 that were previously not identified by

other algorithms because the signal was lost in the noise. Somatic

mutations are commonly used to group patients into subtypes that

are critical for diagnosis and treatment of the disease. Our ability

to rescue back mutations for individual patients will assist in

correctly identifying each patient’s specific subtype and conse-

quently their treatment options.

Supporting Information

Figure S1 Schematic of mutations detected by the DNA
Only Method (DOM) and Triple BAM Method (TBM). In

the first and middle columns, there is enough DNA read support

for the DOM and other algorithms acting on DNA pairs to detect

a mutation. In the middle and last columns, there is sufficient

RNA read support for the TBM to detect a mutation. The middle

column illustrates ‘‘RNA Confirmation’’ mutations that are

detected by both the DOM and the TBM due to high read

support in both the DNA and RNA. The last column represents

the ‘‘RNA Rescue’’ mutations that have some support in the DNA

and strong evidence in the RNA. The RNA Rescue mutations are

typically missed by traditional mutation calling algorithms that

only investigate the pairs of DNA.

(PDF)

Figure S2 Diagram of bamsurgeon methodology. Muta-

tions are spiked into BAM files by selecting locations with

adequate coverage, extracting the reads, and adjusting the VAF

according to the desirable VAF distribution. Once the bases in the

reads are changed, the reads are remapped to the genome,

replacing the reads in the original BAM file.

(PDF)

Figure S3 Filters applied in the Variable DNA-Constant
RNA bamsurgeon simulation experiment. The DNA

variant allele frequencies were distributed from 1–50% and the

RNA was held constant at 25%. Most of the DOM mutations

were filtered because of the low variant allele frequency and tumor

strand bias. In the TBM, most of the mutations were filtered due

to the minimum number of alternative alleles required to make a

call (n = 4) and strand bias in the tumor DNA and RNA.

(PDF)

Figure S4 Filters applied in the Low Frequency DNA-
Variable RNA bamsurgeon simulation experiment. The

RNA variant allele frequencies were distributed from 1–50% and

the DNA was held at 10% or less. Most of the DOM mutations

were filtered because of the low DNA variant allele frequency and

tumor strand bias. In the TBM, most of the mutations were

filtered due to the minimum number of alternative alleles required

to make a call (n = 4) and the low RNA variant allele frequency.

(PDF)

Figure S5 Distribution of overlaps between RADIA and
the endometrial TCGA MAF file. The distribution of the

overlaps between RADIA and the validated somatic mutations

from the endometrial TCGA network MAF file.

(PDF)

Figure S6 Filters applied to the RADIA mutations that
validated as somatic in the endometrial TCGA MAF file.
Thirty-three percent of the mutations had a DNA VAF of eight

percent or less while 23% landed in blacklist regions that were

ignored.

(PDF)

Figure S7 RNA Rescue mutations are primarily at low
DNA VAFs. RNA Rescue mutations are primarily found at low

DNA variant allele frequencies, but they also occur at higher

frequencies where they were filtered due to non-depth related

artifacts (e.g. strand-bias).

(PDF)

Figure S8 Distribution of RNA Confirmation Calls. The

total number of mutations (blue) that are covered by at least one

RNA read (yellow), one RNA read supporting the alternative allele

(orange), and RNA Confirmation mutations with high support in

both the DNA and RNA (purple).

(PDF)

Table S1 Summary of TCGA samples analyzed by
RADIA. RADIA has been run on over 3,300 TCGA samples

across 15 different types of cancer. The RNA Rescue mutations

make up two to seven percent of the total somatic mutations across

the 15 types of cancer. Variant Call Format (VCF) and Mutation

Annotation Format (MAF) files can be downloaded from the

TCGA Data Portal (https://tcga-data.nci.nih.gov/tcga/). Open-

access somatic MAFs can be visualized and downloaded via the

UCSC Cancer Browser (https://genome-cancer.ucsc.edu/).

(PDF)

Table S2 TCGA barcodes and Universally Unique
Identifiers (UUIDs) for the TCGA samples used in this
study. All patients provided written informed consent in

accordance with TCGA guidelines and local Institutional Review

Boards (IRBs).

(XLSX)
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