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Genome-wide deciphering intercellular differential DNA methylation as well as its roles in transcriptional regulation remains
elusive in cancer epigenetics. Here we developed a toolkit META2 for DNA methylation annotation and analysis, which aims to
perform integrative analysis on differentiallymethylated loci and regions through deepmining and statistical comparisonmethods.
META2 containsmultiple versatile functions for investigating and annotatingDNAmethylation profiles. Benchmarkedwith T-47D
cell, we interrogated the association within differentially methylated CpG (DMC) and region (DMR) candidate count and region
length and identified major transition zones as clues for inferring statistically significant DMRs; together we validated those DMRs
with the functional annotation. Thus META2 can provide a comprehensive analysis approach for epigenetic research and clinical
study.

1. Introduction

Genome-wide DNA methylation analysis and annotation
acrossmultiple samples are essential in interrogating pairwise
base-pair differences, while it still remains elusive in recent
pancancer studies [1–7]. Pancancer DNA methylation study
can retrieve cell- and tissue-specific properties by detecting
differentially methylated loci and regions.

Heyn et al. adopted the Illumina Infinium 450K tech-
nique to identify DOK7 as novel biomarker in breast can-
cer [8]; and the genome-wide composition, patterning, cell
specificity, and dynamics of DNA methylation at single-base
resolution in human and mouse frontal cortex throughout
their lifespan were reported recently [9]; Bell et al. applied
whole-bloodDNAmethylation to investigatemolecular clues
in chromic pain [10].

However, till now, our knowledge about the genome-
wide distribution of DNA methylation, how to decipher the
genome-wide difference, and how it relates to other epige-
netic modifications in mammals remains limited. And there
still lacks comprehensive analysis toolkits for biochemical
experiment design and postexperiment validation.

Herein we developed an analysis toolkit, META2, for
intercellular DNA methylation annotation and analysis.
META2 is mainly designed for analyzing the reduced repre-
sentation bisulfite sequencing (RRBS) profiling data [11–13];
together it can analyze data with the right formats from other
platforms, such as HumanMethylation 450K beadchip assay
[14–16]. META2 can implement intercellular interrogation of
DNA methylation status among multiple samples, perform
statistical analysis on methylated CpG loci and regions, and
yield integrative visualization for the analysis results.

We also validated the toolkit on the real RRBS data
retrieved from ENCODE consortium and demonstrated its
integrative analysis on the last section. Our developed toolkit
aims to provide a versatile analysis approach to the epigenetic
research fields, and we also deposited the toolkit on GitHub
for public convenient usage.

2. Structure and Function
Composed in META2

The toolkit META2 contains several major functional proce-
dures, namely, (i) DNAmethylation raw data acquisition and
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preprocess; (ii) statistical analysis and information retrieval;
and (iii) integrative analysis and visualization, as depicted in
Figure 1.

The first functional procedure of META2 is the acquisi-
tion and curation of raw DNAmethylation data, for example,
sequencing-based RRBS and array-based 450K platforms
[17, 18]. This procedure covers preprocessing the raw DNA
methylation information, from integration of sample list
(pairwise control versus treatment replicates) to genome-
wide identification of differentially methylated loci informa-
tion (chr1 to chr22, chrX, and chrY).

The second functional procedure is statistical analysis,
genomic annotation, and functional information retrieval
from the curated DNA methylation profiles, which outputs
the differentially methylated CpG (DMC) or region (DMR)
for pairwise samples and intercellular interrogation [19],
together with the statistical property analysis of those output
sources.

The last analysis procedure is the integration and visu-
alization, which provides insightful clues for statistical com-
parison and further experiment validation; it aims to identify
statistically significant DMRs with underlying biological
functions of interest and annotate those DMRs with genetic
transcript information, together with region-specific refer-
ence genome sequence information. Thus, such integrative
comparison can shed light on the vital regulatory processes
leading to carcinogenesis with a systematic approach.

In the following sections, we will demonstrate the major
analysis procedures and corresponding statistical compar-
isons and integrative visualization on the curated DNA
methylation data in RRBS format [17, 18], and we will identify
DMR and classify the hyper- and hypo-DMR candidates [19]
and implement function annotation formethylated CpG sites
and regions.

3. Comprehensive Analysis and Functional
Annotation in META2

Here we propose the functions and analysis procedure in
META2. As depicted in Figure 1, it mainly includes three
major procedures as DNA methylation data source prepro-
cess, information retrieval, and DNA methylation annota-
tion. Thus, the below analysis results contain the following
steps.

3.1. Statistics for Sequencing Read Coverage and Methyla-
tion Distribution. Firstly as for a high-throughput Next-
Generation Sequencing (NGS) experiment, such as ChIP-
seq or RRBS experiment, the necessary preprocess includes
data quality check and preliminary statistical interrogation;
thus biologists may gather the basic experiment quality
information for following interrogation.Thus, we performed
statistical calculation for the sequencing reads coverage
counts (Cs and Ts) for the 1,135,337 CpG sites across the T-
47D cell line.

Figure 2 illustrates the sequencing reads coverage infor-
mation and DNA methylation distribution of RRBS data
format for T-47D cell type. Figure 2 indicates that for both
conditions’ samples there exists the bimodal density pattern

DNA methylation
seq-based RRBS 

Intercellular 
epigenetics DB

META2

Major analysis procedures:
(1) Raw methyl data acquisition and preprocess;
(2) Statistical analysis and information retrieval;
(3) Integration and visualization.

(i) DNA methyl-profiling experiment design
(ii) GW differential methylated loci & region

(iii) Integrative analysis & visualization

Major outputs:
(1) Differential methylated CpG/region (DMC/R);
(2) GW identification of intercellular DMC/R;
(3) Statistical result comparison and visualization.

· · ·

array-based 450K

Figure 1: Schematic illustration forMETA2 structure and functions.
META2 performs three major functional procedures, namely, DNA
methylation raw data acquisition and preprocess (cell line cura-
tion and data format process), statistical analysis and information
retrieval (CpG annotation, differential methylated CpG loci, and
regions), and integration and results visualization (comparison and
validation), together with the corresponding outputs as depicted on
the bottom.

in the genome-wide methylation level with respect to the
positive and negative strands, respectively.

And we also perform the genome-wide correlation anal-
ysis on the RRBS DNA methylation profile, and we find
that there exists high correlation by pairwise comparison on
control and treatment samples, with correlation coefficient
from 0.94 to 0.96; see Figure 3(a).

Furthermore, we implement the region-specific analysis
on those 1,135,337 CpG loci, and we find that genomic
promoter and exon regions host more hypermethylated loci
(≥25%) than hypomethylated loci (≤25% of methylation
difference), which indicates that it is generally with hyper-
methylated status for most genes in T-47D cell. Together we
also find that hypermethylated loci occur in CpG islands
(59%) much more than hypomethylated loci (43%), which
is basically consistent with the previous results; while CpG
shores host 15% hypermethylated and 11% hypomethylated
loci, respectively; see Figure 3(b).

Thus, based on the preprocess results, we perform the
differential methylation analysis on those 1,135,337 CpG loci,
and we get 3,651 statistically significant differentially methy-
lated CpG loci (DMC), namely, absolute methylation differ-
ence ≥25% and its adjusted 𝑞-value ≤ 0.01. Those statistically
significant DMCs provide meaningful clues for underlying
genetic regulatory process when they are interrogated with
further annotation and in silico deep analysis.

Thus, in the subsequent section, we will carry out differ-
ential methylated region (DMR) analysis on those identified
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Figure 2: Schematic panel of statistical analysis on the raw RRBS data, that is, control (DS) versus treatment (E2) replicates with respect to
positive and negative strands. (a) indicates the statistics for RRBS read coverage per base and (b) for the DNA methylation distribution for
both control and treatment replicates.

DMCs, together with integrative analysis of genomic annota-
tion.

3.2. Statistical Identification andAnalysis of the Length-Specific
DMRs. For consistence, we map genome-wide methylated
CpG loci on each single chromosome (chr1 to chr22, chrX
and chrY); see Figure 4, where each dot represents the
differential CpG methylation level (in percentage, %) at the

corresponding genomic position, and the line illustrates the
general trend of differential methylation level across the
whole chromosome.

We can see that chromosomes 1 and 2 host the longest dif-
ferential methylation ranges, where the differentially methy-
lated loci on chromosome 1 account for the most percentage
(8.745%, 99,280 loci); the loci on chromosomes 17 and 19 also
account for 6.506% (73,863 loci) and 6.959% (79,005 loci),
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Figure 3: Schematic illustration of statistical correlation andmethylation loci/region annotation analysis. (a) Correlation analysis for replicate
methylation level (in percentage) from RRBS profiling technology; (b) genomic distribution for the differential methylated loci with respect
to hyper- and hypomethylation status.
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Figure 4: Genome-wide illustration for the identified differentially methylated CpG loci for T-47D cell type. Each black dot denotes the
differentially methylated loci in base pair, and each curve depicts the general differential methylation trend for each chromosome.
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ranking as the second and third, respectively, and those on
chromosome 2 account for 6.351% (72,107 loci) of the total
loci count (1,135,337).

Then we may question whether there exists any under-
lying biological function with those differential methylated
loci, especially those with statistical significance and whether
or not those loci have any clinical impact, and by which
means? With those questions, META2 incorporates our self-
compiled functions to interrogate the key points; firstly,
META2 aims to uncover the differential methylation regions
(DMRs) based on the statistically significantDMCs identified
in the previous section.

We utilize a sliding window with a 10 bp length in scan-
ning the whole genome to identify all DMR candidates. We
predefine the DMR candidates that should cover more than
two distinct but statistically significant DMCs to ensure the
underlying biological meanings and also preset the generic
DMR length up to 20,000 bp to interrogate the association
between DMC count and DMR count with respect to DMR
length.

Here we define two statistic indexes for measuring differ-
ential methylation level across multiple genomic loci and
regions, namely, DMV.Sig for the highest differential methy-
lation level of a significant DMC in a specific DMR and
DMV.Avg for the averaged differential methylation level for
all DMCs in a specific DMR. The index, DMV.Sig, aims to
quantitatively identify the DMR candidates with significant
methylation status across a specified range; DMV.Avg is for
measuring the averaged methylation level within the DMR
length under investigation.

Based on the change trends ofDMV.Sig andDMV.Avg,we
further utilize the information-theoretic measures, Pearson
correlation and mutual information, for interrogating the
region-specificmethylation level; both of themeasures intend
to capture the statistical properties of dynamic variation in
differential methylation profile.

Thus we calculate and illustrate the statistical association
between DMR length and DMC/DMR count in Figure 5(a);
Figure 5(b) depicts the statistical characteristics between
mutual information and correlation analysis onDMV.Sig and
DMV.Avg along with the DMR length.

In Figure 5(a), we find that along with DMR length up
to 20,000 bp, DMC and DMR counts continue to increase
(DMC count with a relatively sharper slope than DMR
count), and for the region methylation indexes, DMV.Sig
remains comparatively more stable (within the ranges 37.34%
and 38.46%) than DMV.Avg, which decreases fleetly from
33.9% to 18.14%.

The analysis results above basically validate the hypothe-
sis thatDMRcount statistically depends less thanDMCcount
on the preset DMR length; meanwhile DMV.Avg depends
more greatly than DMV.Sig on the preset DMR length, which
indicates that the index DMV.Sig remains approximately
the same for each DMR candidate regardless of the DMR
length, while DMV.Avg decreases due to more and more low
methylation loci covered by the subsequent DMR candidate.

Furthermore, from the results on the right panel (Fig-
ure 5), we find that both statistical curves undergo three
critical transitions, that is, the shade zones A, B, and C. Zone

A (DMR length at 1,500 bp) manifests the first transition at
zero point for both mutual information and correlation coef-
ficient, where DMV.Sig and DMV.Avg begin to take negative
correlation; Zone B (DMR length at 5,000 bp) shows the sec-
ond transition, where both mutual information and correla-
tion for both indexes have evident inflections; Zone C (DMR
length at 8,500 bp) indicates the third transition, where
the negative correlation of both indexes begins to increase
and their mutual information also rises up after a stretch
of equilibrium. When the DMR length exceeds 12,500 bp,
there is no apparent spinodal where both curves sustain the
increase and decrease trends.

Based on those transition zone information, we can
further annotate and decipher the underlying regulatory
functions and biological meanings hereinafter.

3.3. Genomic Annotation and Identification of Genes Inter-
acting with DMRs. Based on the three identified transition
zones, we further implement genomic annotation and statis-
tical analysis on the DMR candidates. For interrogating the
inherent biology function, we emphasize the first transition
zone; thus hereinafter we consider a specific class of DMRs
with the maximum length less than 1,000 bp.

Figure 6 depicts those DMRs with relatively more differ-
entially methylated loci; for illustration, we select nine typical
DMRs from chromosomes 1 to 5.

From all the nine DMR distribution curves, we find
that those DMRs mostly contain both hypermethylation
and hypomethylation loci, while the former’s count and
differential methylation level are relatively more than the
latter’s count, which means those DMRs are generally with
hypermethylation status. Subplot (g) is a good case in point,
with nearly all loci being above the methylation level of 40%.

Meanwhile we further annotate the DMR candidate in
subplot (b) with relatively more methylated loci than other
DMRcandidates. Figure 7 gives genomic annotation and ana-
lysis for the DMR in Figure 6(b), which is hosted in chro-
mosome 1 and covers a 747 bp range from 197,743,880 to
197,744,626 bp. We acquire this DMR’s methylation informa-
tion and reference genome sequences from UCSC (hg19),
together with protein-coding gene information.

From top to bottom panel, Figure 7 depicts this hyper-
/hypomixture DMR genomic location in chromosome 1, as
indicated in red line. The second panel depicts the DMR plot
with 88 distinct methylation loci converged within the DMR,
where those methylation loci constitute a hyper-/hypomix-
turemethylation landscape directly impacting the underlying
transcription regulatory processes for the targeted genes.

The third panel gives the reference genome sequence
density within the exact DMR range; we can see that C/G
content is comparatively higher than A/T in this DMR,
which accords with the hypothesis that quite a few CpG sites
cover the region. The bottom panel illustrated the five anno-
tated transcripts for DENND1B at 1q31.3 (chr1:197,504,748–
197,782,175), where the five transcripts generally maintain
the hypermethylation status due to its range covering most
hypermethylation loci with its differential methylation level
up to 45%, together with a few hypomethylation loci around
10%.
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Figure 5: Statistical association analysis for DMC/R count, methylation level with respect to DMR length (a), and dynamic properties of
mutual information (MI) and correlation coefficient (CC) with respect to DMR length (b).
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Figure 6: Schematic illustration for typical DMR candidates in chromosomes 1 to 5. The black dots denote the differential methylation
value for each loci, and the blue lines represent the fitted DMR curves at each specific region. (a–i) subplots; (a) and (b) depict DMRs for
chromosome 1, (c) for chromosome 2, (d) for chromosome 3, (e) and (f) for chromosome 4, and (g), (h), and (i) for chromosome 5.
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4. Materials and Methods

4.1. Reduced Representation Bisulfite Sequencing (RRBS).
Reduced representation bisulfite sequencing, or RRBS, is a
large-scale random approach for analyzing and comparing
genomic methylation patterns. BglII restriction fragments of
500–600 bp sized selected, together with adapters assembled,
were further treated with bisulfite, PCR amplification, and
clone and finally sequenced to target methylated CpG sites.
From the converted and unconverted read counts at each
CpG, the sample coverage and methylation level (in percent-
age) can be acquired [11–13].

4.2. Annotation for the Significant Differentially Methylated
CpG Sites (DMC). Here we selected one cell line (T-47D,
control versus treatment) as the benchmark cell line, and
the annotation results are further filtered based on the lifted
methylation difference threshold (at least 25% methylation
difference for the paired groups).

4.3. Statistical Analysis for the Differentially Methylated
Regions. We identified 16,277 DMR candidates from all the
DMCs, with the adjusted 𝑞-value ≤ 0.01, CpG base methyla-
tion difference cutoff, 25, and DMRmeanmethylation differ-
ence cutoff, 20.Within those candidates, 8,936 entries present
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hypermethylated and 7,341 hypomethylated status. With the
lifted thresholds, namely, adjusted 𝑞-value ≤ 0.001 and differ-
entially methylated CpG base count ≥ 5, we further detected
7,537 significant DMRs (Sig-DMRs), where 3,512 entries
are significantly hypermethylated-DMRs (Sig-Hyper-DMRs)
and 4,025 significantly hypomethylated-DMRs (Sig-Hypo-
DMRs).

4.4. Tools Used in the Raw RRBS Curation and Statistical
Analysis. Bowtie2 [20] was used to align sequencing reads;
SAMtools [21] and BAMtools [22] were used to process the
aligned sequencing reads, and methylKit [23] and META2
package were used to analyze the raw RRBS data; limma and
DEseq were used in differential analysis of DNAmethylation
loci [24].

4.5. Generalized Mutual Information. Given two discrete
random variables𝑋 and𝑌, the mutual information is defined
as

MI (𝑋, 𝑌) = 𝐻 (𝑋) + 𝐻 (𝑌) − 𝐻 (𝑋, 𝑌) , (1)

where𝐻(𝑋) and𝐻(𝑌) are the entropy measures for𝑋 and 𝑌
and𝐻(𝑋, 𝑌) is the joint entropy between variables 𝑋 and 𝑌,
respectively. The mutual information measure is adopted for
association identification within the analysis section.

5. Conclusion

Here we present a developed toolkit, META2, for DNAmeth-
ylation annotation and analysis, which aims to implement
the intercellular analysis on differentially methylated loci and
regions. META2 contains multiple versatile functions for
annotating and analyzing DNAmethylation, such as the pro-
filing data by RRBS and other high-throughput technology.

By utilizing the toolkit on the real RRBS data from
ENCODE, we performed statistical correlation and genomic
loci/region annotation for all the identified differentially
methylated CpGs, or DMC candidates; we further imple-
mented statistical association analysis for DMC/R count and
methylation level with respect to the preset DMR length
and revealed the dynamic properties of mutual information
and correlation coefficient with respect to DMR length; thus
we detected three major transition zones, which provide
statistical clues for further biological function investigation.

Ourwork provides a versatile and comprehensive analysis
toolkit for epigenetic research and clinical study, especially
for the genome-wide biomedical analysts, to interrogate and
validate their hypothesis in an efficient and uniform way.

Further anticipated improvements including statistical
annotation and analysis functions concerning cell or tissue-
specific and pancancer analysis functionswill be consolidated
into the toolkit; thus it constitutes a versatile and evolving
toolkit for biologists to easily adopt in their research.

Additional Points

Availability. RRBS profiling data for T47D is available at
ENCODE; META2 and its corresponding test data and man-
ual were deposited at https://github.com/gladex/META2.
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