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Abstract

A genome-wide association (GWA) study of treatment outcomes (response and remission) of 

selective serotonin reuptake inhibitors (SSRIs) was conducted using 529 subjects with major 

depressive disorder (MDD). While no SNP associations reached the genome-wide level of 

significance, 14 SNPs of interest were identified for functional analysis. The rs11144870 SNP in 

riboflavin kinase (RFK) gene on chromosome 9 was associated with eight week treatment 

response (OR = 0.42, p = 1.04×10−6). The rs915120 SNP in the G protein-coupled receptor kinase 

5 (GRK5) gene on chromosome 10 was associated with eight week remission (OR = 0.50, p = 

1.15×10−5). Both SNPs were shown to influence transcription by a reporter gene assay and to alter 

nuclear protein binding using an electrophoretic mobility shift assay. This report represents an 

example of joining functional genomics with traditional GWA study results derived from a GWA 
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analysis of SSRI treatment outcomes. The goal of this analytic strategy is to provide insights into 

the potential relevance of biologically plausible observed associations.
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Introduction

Major depressive disorder (MDD) is a serious and prevalent psychiatric illness.1 Selective 

serotonin reuptake inhibitors (SSRIs) are an effective treatment for MDD, but treatment 

response is highly variable.2 Consequently, the identification of pharmacogenetic predictors 

of variable drug response phenotypes has become a major objective of MDD research.3–5

Genome-wide association (GWA) studies provide an agnostic approach which can identify 

novel genetic variants that may contribute to variation in drug response phenotypes.6 Three 

GWA studies of SSRI antidepressant outcomes have been reported, but none have identified 

associations of SNPs with treatment outcomes that reached genome-wide statistical 

significance or were validated in a separate population.7–9 This failure to demonstrate 

genome-wide significance may be related to (1) insufficient statistical power to detect small 

effect sizes for associated variants, (2) inconsistently defined phenotypes, (3) confounding 

effects from non-genetic factors, or (4) inconsistencies in treatment protocols.10, 11 

However, the conduct of functional genomic studies of the SNPs identified by GWA 

analyses provides a novel strategy to identify genomic variants that may influence 

antidepressant treatment.

The present study is a report of GWA analyses of MDD patients who participated in a 

single-site pharmacogenomic study of SSRI therapy. Following the GWA analyses, a 

reporter gene assay and an electrophoretic mobility shift assay were performed to determine 

whether any identified candidate SNPs were associated with a change in function.

Materials/Subjects and Methods

Study Design and Samples

The Mayo Clinic Pharmacogenomic Research Network Antidepressant Medication 

Pharmacogenomic Study (PGRN-AMPS) was supported by the NIGMS-Pharmacogenomics 

Research Network (PGRN), which has been described elsewhere.12, 13 The PGRN-AMPS is 

an ongoing eight week outpatient SSRI clinical trial that was performed at the Mayo Clinic 

in Rochester, MN. Patients enrolled in the study met diagnostic criteria for MDD without 

psychosis or mania and had a 17-item Hamilton Depression Rating Scale (HAMD-17) score 

≥14. The study was designed with inclusion and exclusion criteria similar to those used in 

the Sequenced Treatment Alternatives to Relieve Depression study (STAR*D).14 Potential 

study subjects taking an antidepressant, antipsychotic or mood stabilizing medication were 

not eligible for enrollment. Patients with MDD initially received either 10 mg of 

escitalopram or 20 mg of citalopram. SSRI efficacy was determined using the 16-item Quick 
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Inventory of Depressive Symptomatology (QIDS-C16) scores after four weeks and then 

eight weeks of SSRI therapy. At four weeks after the initiation of treatment, the dose could 

be increased to 20 mg of escitalopram or 40 mg of citalopram after a clinical assessment of 

the subject. Unless there was a contraindication, dose was increased if the QIDS-C16 score 

at the follow-up visit was ≥9, and possibly following a clinical evaluation if the score was 

between 6 and 8. The dose could also be decreased, or treatment could be discontinued, if a 

patient developed persistent side effects. Blood samples were obtained at baseline for DNA 

extraction, and then again at weeks four and eight for assays of drug and metabolite levels. 

All patients provided written informed consent. The study protocol was approved by the 

Mayo Clinic Institutional Review Board.

Treatment Outcomes

The two primary outcome phenotypes in the GWA analyses were “response” (defined as 

≥50% reduction in QIDS-C16 score from baseline to the last visit) and “remission” (defined 

as a QIDS-C16 score of ≤5 at the last visit). For each of these two outcomes, analyses were 

performed using two strategies. The primary analyses included only subjects that were 

evaluated at the eight-week visit. The secondary analyses were performed with outcomes 

based on the final visit QIDS-C16 scores, referred to as the “last visit” assessment. These 

analyses included subjects who had completed the full eight-week study as well as those 

who dropped out of the study prior to the eight-week assessment.

Genotyping and QC

DNA from 529 patients was genotyped by the RIKEN Center for Genomic Medicine 

(Yokohama, Japan) using Illumina Human610-Quad BeadChips (Illumina, San Diego, CA). 

Taqman genotyping assays (Applied Biosystems, Foster City, CA) were used to perform 

genotyping for the replication study using STAR*D samples, and the Illumina Goldengate 

platform was used to genotype selected top SNPs identified in the published STAR*D 

GWAS 7 using Mayo PGRN-AMPS DNA samples.

Quality control assessments included overall genotype concordance rates based on duplicate 

sample genotyping and Mendelian inheritance checks based on genotyping of a CEPH trio 

of two parents and their child. For each SNP, the minor allele frequency, call rate, and 

departure from Hardy-Weinberg Equilibrium were evaluated. Observed call rates, total 

heterozygosity and inbreeding coefficients were assessed for each subject using PLINK.15 

Sex-checks based on X-chromosome heterozygosity were performed, and tests of identity-

by-descent were used to identify potentially related subjects.

More than 97% of study participants were of white non-Hispanic (WNH) ancestry. 

Consequently, genotype-phenotype association analyses were restricted to the WNH 

subjects. A subset of 4,855 independent SNPs with low local linkage disequilibrium (r2 < 

0.063) was used to verify self-reported ancestry of the subjects using the software 

STRUCTURE.16 In addition to the study population, 287 DNA samples from the “Human 

Variation Panel” of lymphoblastoid cell lines (sample sets HD100CAU, HD100AA and 

HD100CHI) obtained from the Coriell Institute (Camden, NJ) were included in this analysis. 

Probabilities of membership in each of three known ancestral groups of the cell lines were 
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calculated for each study subject. These analyses were used to verify self-reported race and 

to assign race to subjects with unknown race. 509 subjects identified themselves as WNH. A 

further five subjects who self-identified their race as “other” or “multiracial” were found to 

have >75% European ancestry based on the STRUCTURE analysis. Thus, 514 WNH 

subjects were included in subsequent analyses.

Statistical Analyses

Prior to genotype-phenotype association analyses, EigenStrat software was used to 

determine eigenvalues for the SNP correlation matrix.17 Eigenvalues that differed 

statistically from zero were determined based on Tracy-Widom test p-values, and the 

corresponding eigenvectors were used as covariates in the genetic analyses to account for 

differences in ancestry within the WNH set of subjects.

Of the 514 WNH subjects, 15 patients were found to have very low blood drug levels, 

suggesting non-adherence, and were excluded from analysis, resulting in 499 subjects who 

were included in the primary GWA analyses. Logistic regression was used to test for 

associations between the binary outcome variables, response and remission, and the 

genotype of each SNP. Genotypes were coded as the “dose” of the minor allele. These 

analyses assume log-additive allele effects on response or remission. All GWA analyses 

were adjusted for eigenvectors that captured population stratification. Gender and age 

(categorized into four quartiles) were also considered as covariates for the GWA analyses. 

Age was not significantly associated with response or remission (p > 0.10 for both 

outcomes). Gender was not associated with response (p > 0.10 for both 8-week and final-

visit response), but was marginally associated with remission (p = 0.057 for 8-week 

remission, p = 0.036 for final-visit remission). We therefore performed response and 

remission GWA analyses both with and without gender as a covariate. As the results were 

nearly identical, we report only findings from the analyses not adjusted for gender.

Analyses were performed in R (http://www.R-project.org), SAS (SAS Institute Inc.) and 

PLINK.15 Odds ratios (ORs), 95% confidence intervals (CIs), and p-values were calculated 

based on the logistic regression models. P-values < 10−7 were considered statistically 

significant at the genome-wide level.

Prior to performing the GWA analyses, the power to detect SNP effects was estimated, 

assuming 500 subjects with 30% failing to achieve remission. It was determined that with a 

type 1 error rate of 10−7, the data would provide >80% power to detect ORs of at least 1.8 

for common alleles (MAF 0.10–0.20).

Functional Genomics

On review of the GWA analyses, 14 candidate SNPs were selected based on having some 

evidence of an association (p < 9.0 × 10−5) and being located within or near a candidate 

gene. SNPs in locations that could potentially influence gene transcription were 

preferentially selected. Reporter gene assays were used to demonstrate the effects of these 

SNPs on transcription and electrophoretic mobility shift (EMS) assays were used to assess 

DNA-protein binding.
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For the reporter gene assays, 200 to 300 bp DNA sequences that included a candidate SNP 

were cloned into a pGL3-promoter luciferase reporter vector that contained an SV40 

promoter upstream of the luciferase gene (Promega Corporation, Fitchburg, WI). One 

microgram of each reporter gene construct was co-transfected with 20 ng of the pRL-TK 

renilla luciferase vector as a control for transfection efficiency into a human neuroblastoma 

cell line, SK-N-BE(2) and two human glioblastoma cell lines, U-87 MG and U251 

(American Type Culture Collection, ATCC, Manassas, VA), followed by dual-luciferase 

assays performed 24 hrs after transfection (Promega). Two independent transfections were 

performed for each reporter gene construct, with triplicate transfections for each construct in 

each experiment. Values for relative activity were expressed as percentages of the pGL3-

promoter activity for vector without an insert. Comparisons were then made between pGL3 

reporter gene constructs containing wild type and variant nucleotide for each candidate SNP. 

DNA samples that were used to amplify SNP regions were selected from the Coriell 

“Human Variation Panel” DNA samples (Camden, NJ).18 Sequences of primers used to 

amplify genomic regions containing the selected SNPs are listed in Supplemental Table 1.

EMS assays were used to determine whether a nucleotide change altered the ability of 

oligonucleotides to bind nuclear proteins. Nuclear extracts were prepared from SK-N-BE(2), 

U87 MG and U251 cells using the Nuclear Extract Kit (Active Motif, Carlsbad, CA). Biotin-

labeled and unlabeled oligonucleotides were synthesized by IDT Integrated DNA 

Technologies (Coralville, IA). EMS assays were performed using the LightShift® 

Chemiluminescent EMSA Kit (PIERCE, Rockford, IL). Oligonucleotide sequences used to 

perform the EMS assays are listed in Supplemental Table 2.

Replication

The 14 candidate SNPs included in the functional genomic experiments were genotyped in 

the STAR*D DNA samples. In addition, the 25 SNPs reported in the STAR*D GWA study7 

to have the greatest likelihood of being associated with treatment outcomes were genotyped 

in the PGRN-AMPS samples. The results of these analyses are described in the 

Supplemental Materials.

Results

Demographic and Clinical Characteristics of the Study Subjects

Of the 529 participants in the Mayo PGRN-AMPS study, 15 subjects who were not 

identified as white and non-Hispanic and 15 non-adherent subjects were excluded, resulting 

in 499 WNH subjects for the secondary “last visit” GWA analyses. The primary “eight 

week” GWA analyses were conducted using a subset of 398 WNH subjects who were 

protocol adherent. Demographic information, baseline clinical characteristics and treatment 

outcomes for both the eight week and the last visit cohorts are summarized in Table 1.

Quality Control

Quality control analyses were performed for 592,236 genotyped SNPs. The genotypes had 

very high concordance rates in duplicate samples (> 99.99%) and very low rates of 

Mendelian inheritance errors (< 0.01%). 30,700 SNPs failed genotyping. Another 28,610 
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SNPs had allele frequencies below the preset threshold of 0.01 and, consequently, were 

excluded from analysis due to low power. An additional 49 SNPs were excluded due to 

significant departures from Hardy-Weinberg Equilibrium (p < 10−6). The remaining SNPs (n 

= 532,877) had call rates exceeding 98%. One person who was reported to be female 

appeared to be genetically male based on no heterozygosity of X-chromosome SNPs. 

Identity-by-descent analysis revealed several pairs of subjects that appear to be related (two 

likely parent-child pairs, one possible pair of siblings, and three pairs that may be more 

distant relatives). Genome-wide heterozygosity was within the expected range.

Genetic Association Analysis of SSRI Treatment Outcomes

Separate GWA analyses based on the two primary outcomes of response and remission were 

conducted for both the eight week protocol adherent sample (n = 398) and the last visit 

sample (n = 499). Four eigenvectors identified through EigenStrat analysis were used as 

adjusting covariates in the analyses. While none of these analyses demonstrated genome 

wide significance (p < 10−7), the 25 SNPs with the most significant associations with the 

four outcome phenotypes are listed in Table 2. Manhattan plots of p-values from the 

analyses for eight week outcomes are shown in Figure 1. Manhattan plots for last visit 

outcomes are included in Figure S1.

Eight Week Response Analyses

GWA analysis of the eight week response outcome identified a region on chromosome 9 

containing three interesting SNPs with p-values < 8.0 × 10−6. The rs11144870 SNP is 

located in intron 2 of the riboflavin kinase(RFK) gene. The rs11144905 and rs785916 SNPs 

were mapped to introns in the adjacent glucosaminyl N-acetyl transferase 1 (GCNT1) gene 

and were in linkage disequilibrium with rs11144870 (r2 = 0.78 and 0.73, respectively).

Eight Week Remission Analyses

Three SNPs, rs1379887, rs7738598 and rs898040, that were located in the 5′ UTR region of 

the 5-hydroxytryptamine serotonin receptor 1B gene (HTR1B) were associated with eight 

week remission at the p < 2 × 10−5 level. The rs915120 and rs12116187 SNPs in the G 

protein-coupled receptor (GPCR) kinase gene 5 (GRK5) on chromosome 10 were also 

identified as candidate SNPs of interest.

Analysis of Secondary Outcomes: Last Visit Response and Remission

The most significant association in the last visit response analysis was obtained for 

rs2248399, which is located in an intergenic region on chromosome 13 (p = 1.0 × 10−5). 

This SNP is located approximately 500 kb from the D-amino acid oxidase activator gene 

(DAOA). The three SNPs near the 5-hydroxytryptamine (serotonin) receptor 1B gene 

(HTR1B), rs1379887, rs7738598 and rs898040, that were associated with remission in the 

eight week analysis, were also identified in the last visit remission analysis (p-values = 7.9 × 

10−6, 1.7 × 10−5 and 1.8 × 10−5, respectively). The last visit remission analysis also 

identified the rs7439567 (p = 3.1 × 10−6) and the rs9761827 (p = 2.3 × 10−5) SNPs in the 

protocadherin-18 gene (PCDH18) on chromosome 4.
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Functional Genomics

As described previously, 14 candidate SNPs were chosen for functional studies based on the 

significance level of their association with treatment outcomes and their location within or 

near a candidate gene of interest (Figure 2A). The reporter gene assays identified significant 

differences in the function of WT and variant SNP sequences for five of these SNPs based 

on differences in relative luciferase activity between pGL3 constructs that contained the 

sequences in all three CNS-derived cell lines (Figure 2B). When cloned into the pGL3-

Promoter vector, sequences containing the SNPs of interest appeared to function as either an 

enhancer element that significantly increased promoter activity when compared with activity 

for the pGL3-Promoter construct alone (p-values < 0.05 in both cell lines) or a silencer 

element depending on the cell line used. Results for the neuroblastoma SK-N-BE(2) cells 

are shown in Figure 2b, and results for U-87 MG and U251 cell lines in Figure S2a. The 

patterns of differences in luciferase activity between WT and variant alleles were consistent 

for SNPs rs11144870 (RFK), rs11144905 (GCNT1), rs2248399 (DAOA), rs915120 (GRK5) 

and rs12254134 (GRK5) in all 3 cell lines tested (p-values < 0.01).

EMS assays identified seven SNPs that altered the ability of these sequences to bind nuclear 

proteins in SK-N-BE(2) cells. Figure 2c shows the results for EMS assays for these seven 

SNPs, including rs11144870, rs785916 (GCNT1), rs2248399, rs2248714, rs1998560 

(DAOA), rs915120 and rs12254134. All of these SNPs showed significant differences in 

nuclear protein binding patterns between WT and variant sequence oligonucleotides in SK-

N-BE(2) cells. Similar patterns were observed for all of these SNPs in U-87 MG and U251 

cells (Figure S2b). HTR1B SNP rs7738598 displayed altered DNA-protein binding only in 

the two glioblastoma cells (Figure S2b), but not in the neuroblastoma cells.

Four candidate SNPs, rs11144870 (RFK), rs915120 (GRK5), rs12254134 (GRK5) and 

rs2248399 (DAOA) showed differences between WT and variant SNP sequences in both 

reporter gene and EMS assays performed with all three cell lines.

Replication

The SNPs selected for functional studies based on GWA analyses of the PGRN-AMPS 

outcomes data were also genotyped using DNA from the STAR*D study. Association 

analyses were performed for the same four treatment outcomes with 12 of the 14 SNPs, as 

two SNPs failed genotyping, using DNA from WNH STAR*D subjects who had HAMD-17 

scores ≥14 prior to SSRI therapy. None of the associations for these SNPs were statistically 

significant in the STAR*D samples (Supplemental Table S7). The top 25 SNPs reported for 

the STAR*D GWA analyses7 were also evaluated for possible association with treatment 

response in the PGRN-AMPS samples. None of these associations were statistically 

significant (Supplemental Table S8).

Discussion

Four GWA studies of antidepressant treatment outcomes have been conducted including the 

PGRN-AMPS study.7–9 None of these GWA analyses was able to identify associations that 

reached genome-wide statistical significance. Furthermore, no specific SNPs or genes have 
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been associated with outcomes across any two of these studies. Given that replication has 

not been reported, functional validation studies provide an alternative strategy to take the 

next step toward deciphering the underlying biology of candidate SNPs that might influence 

antidepressant response.

The association of SNP rs11144870 in RFK with SSRI outcomes is intriguing as riboflavin 

kinase is an essential enzyme that catalyzes the phosphorylation of riboflavin (vitamin B2) 

to form flavin mononucleotide (FMN). This is a critical step for both vitamin B2 metabolism 

and flavin cofactor synthesis. Riboflavin and its flavin cofactors influence the folate and 

methionine cycles since riboflavin functions as a cofactor for methylene tetrahydrofolate 

reductase (MTHFR). MTHFR is the enzyme that converts 5,10-methylenetetrahydrofolate to 

5-methyltetrahydrofolate.19 Previous studies have suggested that components of the folate 

and methionine cycles may be involved in increasing the risk for developing MDD and 

might influence treatment outcomes.20–24 Since insufficient dietary B vitamins, including 

riboflavin, have been associated with depressive symptoms,25 an alternation in the 

transcription of RFK might result in elevated levels of RFK protein which might indirectly 

influence the intensity of depressive symptoms and the effects of SSRI therapy.

The GCNT1 gene is a member of the beta-1,6-N-acetylglucosaminyltransferase gene family 

that has not previously been shown to be associated with MDD treatment outcomes. 

However, GCNT1 is highly expressed in brain, and further research focusing on variants in 

GCNT1 would be of interest (see the Nervous System database, http://www.itb.cnr.it/

gncdb/).

A SNP in an intergenic region near the DAOA gene (rs2248399) was identified by these 

analyses and may be potentially functionally significant based on the reporter gene assay. 

This SNP and two other DAOA SNPs were also shown to have the potential to affect the 

binding of nuclear proteins. None of these SNPs have been included in previous candidate 

gene studies of DAOA for schizophrenia or bipolar disease.26–31

Six SNPs that mapped to an intergenic region ~150 to 500 kb distant from the HTR1B gene 

were associated with eight-week and last visit remission (see Table 2 and Supplemental 

Tables S5 and S6). The HTR1B gene has been reported to be associated with psychiatric 

phenotypes as well as response to SSRI treatment.32–35 EMS assays were performed with 

these three SNPs and with rs7738598 were found to display a difference between WT and 

variant sequences in nuclear protein binding in the two glioblastoma cells that were tested.

Two of the intronic SNPs in GRK5 (rs915120 and rs12254134) that were associated with 

remission also altered function. A different member of the G protein-coupled receptor kinase 

family, GRK2, has been found to be upregulated during antidepressant treatment36 and 

GRK5 has been shown to regulate GPCR receptors such as the β1-adrenergic receptor37 and 

the dopamine D1A receptor.38 GRK5 is highly expressed in many tissues, including human 

heart and brain.39, 40 A single functional GRK5 polymorphism, rs17098707, that results in a 

Gln41Leu change in amino acid sequence has been reported to regulate cardiac 

function.41, 42 The intronic SNPs identified in this GWA study are not in linkage 

disequilibrium with the Gln41Leu polymorphism, suggesting that these novel GRK5 SNPs 
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might function independently from the Gln41Leu polymorphism. Since more than 90% of 

GPCRs are expressed in the brain, the identification of functional GRK5 SNPs may provide 

novel directions for future studies of variation in antidepressant response.

In the present study, the selection of the SNPs for functional assessment was limited to those 

identified during our GWA analyses. While other experimental approaches are available to 

assess the functional consequences of genetic variants, the application of these two 

commonly used in vitro functional assays has highlighted nine candidate SNPs that may be 

worthy of further mechanistic pursuit using alternative methods. While many GWA studies 

have been performed with psychiatric phenotypes, few have identified genomic loci that 

were replicated and could successfully be used as robust “biomarkers” in clinical psychiatric 

practice. A lack of reliable model systems for functional genomic studies of the biological 

mechanism underlying the association is among the factors that have prevented the 

translation of genomic research to psychiatric practices. The use of pluripotent stem (iPS) 

cells represents a novel and promising tool for functional validation and mechanistic studies 

of genomic loci identified through GWA studies.43

Limitations of our study also include the fact that detailed information on certain clinical 

factors, such as comorbid psychiatric diagnoses, was not available. In addition, the influence 

of potentially important covariates such as drug dose and blood levels has not yet been fully 

explored. However, important associations between genetic variants and clinical outcomes 

can be missed by adjusting for covariates such as blood drug levels that serve as 

intermediate factors. Subsequent analyses will be focused on blood drug levels and their 

association with genetic variation and treatment outcomes. Our top findings were not 

replicated by an analysis of samples from the STAR*D study and we also failed to replicate 

the best association findings from the STAR*D GWA analyses. Similarly, the PGRN-AMPS 

analyses did not replicate the rs1126757 in the IL11 gene that was reported to have some 

association with escitalopram response in the GENDEP project.9 Finally, the association of 

the rs6989467 SNP reported for the MARS GWA study8 was not replicated in the PGRN-

AMPs analyses. Several important differences between the studies may have contributed to 

the lack of replication, including differences in baseline clinical characteristics of 

participants in the two studies.

GWA studies have been shown to be a powerful approach for the identification of novel 

genomic markers for disease risk and pharmacogenomic phenotypes.44–46 However, GWA 

studies have not been as informative when applied to psychiatric phenotypes of disease risk 

or drug response. There have now been four GWA studies conducted for antidepressant 

outcomes in MDD patients. None of them has demonstrated genome-wide significant 

associations nor have these studies replicated each other. The PGRN-AMPS is unique in that 

it is the only analysis that used blood drug assays to evaluate treatment adherence and is the 

only study that analyzed the functional significance of identified SNPs of interest. Given the 

underlying phenotypic heterogeneity (which is typical of studies of psychiatric illnesses) it is 

particularly challenging to identify homogenous treatment samples. A possible solution is to 

subclassify patients using biomarkers such as pharmacometabolomic characteristics to 

identify more biologically similar patients.12
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Manhattan plots of −log10(p-values) from logistic regression adjusted for eigenvectors 

versus chromosomal position of SNPs. (a) Manhattan plot of −log10(p-values) for GWA 

analysis of eight-week SSRI response outcome. (b) Manhattan plot of −log10(p-values) for 

GWA analysis of eight-week SSRI remission outcome. Red dots represent SNPs with p-

values ≤ 10−5 and blue dots represent SNPs with p-values ≤ 10−4.
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Figure 2. 
Functional genomics of candidate SNPs. (a) A table to summarize the 14 SNPs that were 

selected for functional genomic studies. (b) Results of dual-luciferase reporter gene assays 

for SNPs rs11144870, rs11144905, rs2248399, rs915120 and rs12254134, performed in the 

neuroblastoma SK-N-BE(2) cell line. Each bar represents the average of relative luciferase 

activity reported as a % of the pGL3-Promoter construct activity obtained during 6 

independent transfections (mean ± S.E.M). ** represents p-values < 0.01 compared to 

values for pGL3-WT activity. (b) Electrophoretic mobility shift (EMS) assays for SNPs 

rs11144870, rs785916 (GCNT1), rs2248399 (DAOA), rs2248174 (DAOA), rs1998560 

(DAOA), rs915120 (GRK5) and rs12254134 (GRK5) with nuclear extract prepared from SK-

N-BE(2) cells.
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Table 1

Baseline clinical and demographic characteristics and outcomes for medication-adherent white non-Hispanic 

subjects included in the last-visit and eight-week analyses

Characteristic and Measure Last visit (N = 499) Eight weeks (N = 398)

Demographics

Age 39.91 (±13.8) 40.64 (±13.5)

Education (years) 14.68 (±2.4) 14.91 (±2.3)

Female gender 312 (62.5%) 255 (64.1%)

Clinical Characteristics

QIDS-C Baseline 15.08 (±3.47) 14.99 (±3.31)

QIDS-C Week Four 8.46 (±4.41) 8.34 (±4.41)

QIDS-C Week Eight 6.24 (±4.05) 6.24 (±4.05)

Age at Onset of First Episode of Depression 24.05 (±13.82) 24.70 (±14.11)

Recurrent Depression (>1 episode) 483 (96.8%) 386 (96.9%)

Baseline Medication

Citalopram 155 (31.2%) 124 (31.2%)

Escitalopram 342 (68.8%) 274 (68.8%)

Last known dose (mg)

Citalopram 28.10 (±10.02) 30.28 (±9.76)

Escitalopram 14.56 (±5.06) 15.75 (±4.96)

Outcomes

Remitter (QIDS ≤5) 206 (41.3%) 198 (49.7%)

Response (% reduction QIDS ≥50%) 287 (57.5%) 274 (68.8%)

a
Values are mean (± 1 standard deviation) or number of subjects, N (%).
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