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Abstract

Fuzzy co-clustering extends co-clustering by assigning membership functions to both the

objects and the features, and is helpful to improve clustering accurarcy of biomedical data.

In this paper, we introduce a new fuzzy co-clustering algorithm based on information bottle-

neck named ibFCC. The ibFCC formulates an objective function which includes a distance

function that employs information bottleneck theory to measure the distance between fea-

ture data point and the feature cluster centroid. Many experiments were conducted on five

biomedical datasets, and the ibFCC was compared with such prominent fuzzy (co-)cluster-

ing algorithms as FCM, FCCM, RFCC and FCCI. Experimental results showed that ibFCC

could yield high quality clusters and was better than all these methods in terms of accuracy.

Introduction

Nowadays, the amount of biomedical data grows rapidly, which makes it difficult for medical

workers and patients to find the information they need. The clustering technique can identify

the latent structure and knowledge behind large-scale biomedical data, and therefore play an

important role in reorganizing biomedical data and helping users find relevant information.

This technique tries to generate a set of clusters where intra-cluster similarity is maximized

and inter-cluster similarity is minimized, and is widely used for such applications as automatic

categorization of text, grouping gene expression data, and others [1,2].

In recent years many researchers have studied data mining and presented a number of clus-

tering algorithms [3–7]. These algorithms can be divided into hard and soft clustering algo-

rithms [8]. Hard clustering has been studied extensively and well accepted by the scientific

community. For example, Chen et al [9] studied hard clustering and proposed an automated

two-level variable weighting clustering algorithm for multiview data, which can simulta-

neously compute weights for views and individual variables. In hard clustering, each object

belongs to exactly one cluster, while soft clustering allows an object to belong to more than

one cluster. For example, nodular goiter can be put into two clusters, Thyroid Surgery and

Endocrinology. As another example, the atypical hyperplasia could be considered as normal

endometrium or abnormal endometrium by different doctors. Above examples tell us soft

clustering may be more reasonable than hard clustering, because many times we cannot put an

object into just one cluster.
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When mentioning soft clustering, we need to talk about fuzzy clustering, which is regarded

as the combination of clustering and fuzzy sets. Fuzzy clustering is relatively new. Its representa-

tive algorithm is the Fuzzy c-Means (FCM) algorithm, which is the fuzzy version of traditional

K-Means clustering algorithm. The main difference is that the K-Means is a hard algorithm,

while the FCM is a soft algorithm. In other words, K-Means represents the affiliation of objects

to clusters by memberships taking values 0 and 1, however, in FCM, the memberships take val-

ues in the real unit interval [0, 1] [10,11]. Therefore, the FCM is, indeed, the fuzzy version of the

K-Means. Conversely, the K-Means can be regarded as a special case of the FCM. Researchers

have developed FCM in recent years. Jiang et al [12] studied how to combine the clustering

result from each view and proposed a collaborative fuzzy c-means (Co-FCM) algorithm.

The FCM is a kind of one-dimensional clustering algorithm. That is to say, when grouping

a disease-symptom contingence table, the FCM assumes that there is no relationship between

the symptoms, and just classifies the diseases based on the symptoms. Actually, we are aware

that there may exist mutual influence between some diseases, for example, there is a close rela-

tion between increased pulse pressure and types of metabolic diseases. As this is the case, it is

unscientific to neglect the correlations between the symptoms. If the disease-symptom contin-

gence table is considered unrepresentative, we can discuss a more typical example, i.e. a docu-

ment-word matrix. In exactly the same way, if we analyze a document-word matrix, we had

better think highly of the correlations between words, because as is known to all, some words

are synonyms and some words are antonyms. Thus it can be seen, when we are analyzing an

object-feature contingence table for clustering, we should group both the object and feature

dimensions. Accordingly, the two-dimensional fuzzy clustering algorithms, called fuzzy co-

clustering algorithms, are better than the one-dimensional FCM, especially when there are

strong correlations between features.

Fuzzy co-clustering can simultaneously group objects and features based on the co-occur-

rence information [13–15]. As a result, more relationships between objects and features are

kept, and therefore we can get more interpretable clustering results. At the same time, because

the features are also partitioned into feature clusters, which means the feature dimensionality

is reduced significantly, the clustering process will be accelerated. So far, many fuzzy co-clus-

tering algorithms have been presented. The FCCM (Fuzzy Clustering for Categorical Multivar-

iate data) [14] is the best-known fuzzy co-clustering algorithm, which can be regarded as a

two-dimensional FCM. Other prominent fuzzy co-clustering algorithms include FCR (Fuzzy

co-Clustering with Ruspini’s condition) [16], FCCI (Fuzzy Co-Clustering algorithm for

Images) [17], PFCC (Possibilistic Fuzzy Co-Clustering) [18], RFCC (Robust Fuzzy Co-Cluster-

ing) [19] and SS-HFCR (Heuristic Semi-Supervised Fuzzy co-Clustering algorithm)[20], etc.

In order to compare these algorithms, we first give the explanations on the mathematical nota-

tions used in this paper (as Table 1). With the mathematical notations, objective functions of

some popular fuzzy co-clustering algorithms mentioned above are provided in Table 2.

The FCCI algorithm is one of the most important fuzzy co-clustering algorithms. This

algorithm includes a multi-dimensional distance function as the dissimilarity measure and

entropy as the regularization term in its objective function. The FCCI emphasizes the impor-

tance of distance function, and its distance function equals the square of the Euclidean distance

between feature data point and the feature cluster centroid. However, we all know that there

are many similarity measures in the fields of data mining and pattern recognition[21]. The

previous work of ours as well as other researchers’ show that information bottleneck based

similarity measure is a more desirable choice because this similarity measure proves much bet-

ter and can achieve much higher accuracy than other measures in clustering[22–24]. In the

work of S. Noam and T. Naftali [23], the experimental results showed the average performance

over all datasets attained 0.55 accuracy, while the second best result was 0.47 accuracy. Ye et al.
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[25] presented a novel alternative clustering algorithm, named SmIB, which employed mutual

information to measure the information resided in data, and experimental results demon-

strated that the SmIB algorithm was superior to the existing state-of-the-art alternative cluster-

ing algorithms.

Above analysis motivates us to present a novel Fuzzy Co-Clustering algorithm based on

information bottleneck similarity measure, called ibFCC. This approach assigns membership

functions to both the objects and the features. Besides, because the biomedical data comes in a

variety of forms, it is difficult for us to select just one appropriate method to calculate the pair-

wise object similarity. We think the information bottleneck based similarity measure is much

more appropriate. In the ibFCC, an objective function is formulated, which includes a distance

function that employs information bottleneck theory to measure the similarity between feature

data point and the feature cluster centroid.

The remainder of this paper is organized as follows. We firstly introduce in details the

ibFCC, and then present our experimental results on five datasets, Ohsumed [26], Lung Cancer
[27], Breast Tissue [28], Cardiotocography [28] and Mice Protein Expression [28]. Finally, we

conclude our work.

Methods

The ibFCC algorithm

Since distance function is very necessary for fuzzy co-clustering to create richer co-clusters [17],

FCCI includes the Euclidean distance function of feature data points from the feature cluster

centroids in the co-clustering process. However, as we all know, there are so many other dis-

tance measures besides Euclidean distance function that it is difficult for users to choose an

appropriate one. Too often this is an arbitrary choice. In the study of clustering, information

bottleneck based distance measure proves much better. Therefore, the ibFCC algorithm we pro-

posed employs information bottleneck theory to measure distance between feature data points

and the feature cluster centroids. The overall clustering process is illustrated in Fig 1.

The goal of ibFCC is to minimize the objective function in Eq 1, subject to the following

constraints in Eqs 2 and 3.

JibFCC ¼
XC

c¼1

XN

i¼1

XK

j¼1

ucivcjdcij þ Tu

XC

c¼1

XN

i¼1

ucilnuci þ Tv

XC

c¼1

XK

j¼1

vcjlnvcj ð1Þ

XC

c¼1

uci ¼ 1; for i ¼ 1; 2 � � �N ð2Þ

Table 1. List of mathematical notations.

Notation Description

C, N, K Numbers of (co-)clusters, objects and features

uci Fuzzy object partitioning membership

vcj Fuzzy feature partitioning membership

dij Relatedness measure between an object and a feature

dcij Information bottleneck based distance between feature point dij and feature cluster centroid pcj

pcj Feature cluster centroid

Tu, Tv Co-clustering user-defined parameters

τ Number of iterations

τmax Maximum number of iterations parameter

ξ Convergence indicator

https://doi.org/10.1371/journal.pone.0176536.t001
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XK

j¼1

vcj ¼ 1; for c ¼ 1; 2 � � �C ð3Þ

The first term in Eq 1 is the degree of aggregation that should be minimized during co-clus-

tering, which intends to enable highly related objects-features to be co-clustered together. The

uci and vcj are two membership functions, indicating memberships of documents and features,

Table 2. Comparison of some popular fuzzy co-clustering algorithms.

Name Objective function Description

FCM
JFCM ¼

XC

c¼1

XN

i¼1

umcikxi � vck
2

m�1, xi is the i-th object, vc is centroid of the c-th cluster

FCCM
JFCCM ¼

XC

c¼1

XN

i¼1

XK

j¼1

ucivcjdij � Tu
XC

c¼1

XN

i¼1

ucilnuci

� Tv
XC

c¼1

XK

j¼1

vcjlnvcj

FCR
JFCR ¼

XC

c¼1

XN

i¼1

XK

j¼1

ucivcjdij þ R � Tu
XC

c¼1

XN

i¼1

ucilnuci

� Tv
XC

c¼1

XK

j¼1

vcjlnvcj

R ¼ B�
XN

i¼1

XK

j¼1

dij

¼
NK �

XC

d¼1

XN

p¼1

XK

q¼1
udpvdp

NK
�
XN

i¼1

XK

j¼1

dij

FCCI
JFCCI ¼

XC

c¼1

XN

i¼1

XK

j¼1

ucivcjDcij þ Tu
XC

c¼1

XN

i¼1

ucilnuci

þ Tv
XC

c¼1

XK

j¼1

vcjlnvcj

Dcij = (dij−pcj)
2

PFCC

JPFCC ¼
XC

c¼1

XN

i¼1

XK

j¼1

uposci
XN

p¼1
uposcp

0

@

1

Aðvcj þwcjÞdij

� Tu
XC

c¼1

XN

i¼1

ðuposci Þ
2
� Tv

XC

c¼1

XK

j¼1

vcjlnvcj

� Tw
XC

c¼1

XK

j¼1

wcjlnwcj

upos ci is the document possibilistic membership, wcj is the word partitioning

membership, Tw is a user-defined parameter

RFCC
JRFCC ¼

XC

c¼1

XN

i¼1

XK

j¼1

ðuci þ xciÞvcjdij

� Tu
XC

c¼1

XN

i¼1

ucilnuci � Tv
XC

c¼1

XK

j¼1

vcjlnvcj

� Tx
XC

c¼1

XN

i¼1

xcilnxci

xci is a new additional and robust type of object membershp, Tx is a user-defined

parameter

SS-HFCR
JSS� HFCR ¼

XC

c¼1

XN

i¼1

XK

j¼1

ucivcjdij � Tu
XC

c¼1

XN

i¼1

ucilnuci

� Tv
XC

c¼1

XK

j¼1

vcjlnvcj

þ Tu � Td
X

ðxi ;xk Þ2ml

XC

c¼1

uciuck �
X

ðxi ;xk Þ2cnl

XC

c¼1

uciuck

0

@

1

A

xi is the i-th object, ml and cnl are the training sets which contain must-link and cannot-

link document pairs respectively, Td is the weighting factor of a constraint

https://doi.org/10.1371/journal.pone.0176536.t002
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respectively. The second and third terms are entropy regularization factors that combine all

uci’s and vcj’s separately. They control the degree of fuzziness in final clusters, where Tu and Tv

are weighting parameters.

The constrained optimization of ibFCC can be solved by applying the Lagrange multipliers

α, β to constraints in Eqs 2 and 3 respectively.

J 0ibFCC ¼
XC

c¼1

XN

i¼1

XK

j¼1

ucivcjdcij þ Tu

XC

c¼1

XN

i¼1

ucilnuci þ Tv

XC

c¼1

XK

j¼1

vcjlnvcj

þ
XN

i¼1

aið
XC

c¼1

uci � 1Þ þ
XC

c¼1

bcð
XK

j¼1

vcj � 1Þ

ð4Þ

Take the partial derivative of J’ ibFCC in Eq 4 with respect to U and V respectively and set

the gradient to zero, and then we have,

@J ;ibFCC

@U
¼
XK

j¼1

vcjdcij þ Tuð1þ lnuciÞ þ ai ¼ 0 ð5Þ

@J ;ibFCC

@V
¼
XN

i¼1

ucidcij þ Tvð1þ lnvcjÞ þ bc ¼ 0 ð6Þ

Solving above equations yields the formulae for uci, vcj as:

uci ¼
expf�

XK

j¼1
vcjdcij=Tug

XC

c¼1
expf�

XK

j¼1
vcjdcij=Tug

ð7Þ

vcj ¼
expf�

XN

i¼1
ucidcij=Tvg

XK

j¼1
expf�

XN

i¼1
ucidcij=Tvg

ð8Þ

Fig 1. The flowchart of the proposed algorithm.

https://doi.org/10.1371/journal.pone.0176536.g001
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Eqs 7 and 8 are the update equations for the document and feature memberships, where dcij

is distance between feature data point and the feature cluster centroid.

Let c1 and c2 be two clusters, and the distance between c1 and c2 is measured by information

loss due to the merging of c1 and c2 based on Eq 9 as follows,

dðc1; c2Þ ¼ IðCbefore;YÞ � IðCafter;YÞ

¼
X

y;i2f1;2g

pðci; yÞlog
pðyjciÞ

pðyjc1 [ c2Þ

¼
X

y;i2f1;2g

pðciÞpðyjciÞlog
pðyjciÞ

pðyjc1 [ c2Þ

¼
X

i2f1;2g

pðciÞ
X

y

pðyjciÞlog
pðyjciÞ

pðyjc1 [ c2Þ

ð9Þ

where I(Cbefore, Y) and I(Cafter, Y) are the mutual information before and after the two clusters,

c1 and c2, are merged together, Cbefore and Cafter are the clusters before and after the mergence,

Y is the feature space, and y is one feature.

Let the ith document be a singleton cluster sci, xij denotes the jth feature value of the ith docu-

ment, P = {pcj} be the set of feature cluster centroids. Thus, Eq 9 can be rewritten to calculate

the distance between this cluster sci and the cth cluster, as

dðsci; cÞ ¼
jscij

N

XK

j¼1

xijlog
xij

tcij
þ
jcj
N

XK

j¼1

pcjlog
pcj

tcij
ð10Þ

where |sci| = 1 because this cluster has only one object. The dcij is the j-th component product

of d(sci, c), and we can get,

dcij ¼
1

N
xijlogðxij=tcijÞ þ

jcj
N

pcjlogðpcj=tcijÞ ð11Þ

where tcij = (xij+|c|�pcj)/(1+|c|), |c| is the number of documents in the cth cluster. It is a little

more complicated to define the value of |c| in fuzzy clustering than in hard clustering, because

we need to perform defuzzification operation on the fuzzy membership matrix. After defuzzifi-

cation, we can get the value of |c| as easily as in hard clustering.

Note that in our ibFCC, it is difficult to get the value of pcj explicitly. Even if the value of

pcj may be calculated as uci and vcj theoretically, the process may suffer from high computa-

tional complexity mathematically. Thus we choose an alternative approach which employs a

weighted averaging method. In fuzzy clustering, the centroid of a cluster is the mean of all

points, weighted by their degree of belonging to the cluster. And then we have the normalized

update equation of pcj,

pcj ¼

XN

i¼1
ucixij

XN

i¼1
uci

ð12Þ

Through Eqs 7 and 8, the solution of the constrained optimization problem in Eq 4 can be

approximated by Picard iteration. The proof of convergence of the ibFCC algorithm is given

in the Appendix section of this paper. The pseudocode of ibFCC is given in Algorithm 1.
Algorithm1. ibFCCalgorithm.
1: Set valuesof parametersC, Tu, Tv maximumerrorlimitξ and the maximumnum-
ber of iterationsparameterτmax
2: Set τ = 1
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3: Initializemembershipsuci and vcj randomly
4: REPEAT
5: Calculatethe valueof pcj usingEq 12
6: Calculatethe informationbottleneckdistancedcij using Eq 11
7: Updatemembershipvcj usingEq 8
8: Updatemembershipuci usingEq 7
9: Set τ ++
10: UNTIL max(|uci(τ)-uci(τ-1)|)�ξor τ = τmax

The pseudo-code of ibFCC shows that the time complexity of ibFCC is O(CNKτ), where τ
denotes the number of iterations. Its time complexity is equivalent to such fuzzy co-clustering

algorithms as FCCM and FCCI with O(CNKτ).

Algorithm effectiveness tests

In order to test the effectiveness of ibFCC, we carried out a set of experiments. The experimen-

tal results are also compared with four well received approaches in the literature, FCM, FCCM,

RFCC and FCCI. Of the four algorithms, FCM is a standard fuzzy clustering algorithm, and

the others are fuzzy co-clustering algorithms.

Experimental setup. We employed five datasets to evaluate the performance of ibFCC in

categorizing real-world data, Ohsumed, Lung Cancer, Breast Tissue, Cardiotocography and Mice
Protein Expression.

1) The Ohsumed corpus is the collection consisting of the first 20,000 documents from the

50,216 medical abstracts of the year 1991. The classification scheme consists of the 23 Medical

Subject Headings (MeSH) diseases categories. Based on the Ohsumed corpus, we constructed

two subsets, Oh1 and Oh2, which are introduced in Table 3. In our experiments on the

Ohsumed corpora, we selected top 500 features, that is, K = 500.

2) The Lung Cancer (LC) dataset is used by Hong and Young to illustrate the power of the

optimal discriminant plane even in ill-posed settings. It contains 27 instances and 56 attributes.

We used the existing classification as our baseline on how the dataset should be clustered.

3) The Breast Tissue (BT) corpus can be used for predicting the classification of either the

original 6 classes or of 4 classes by merging together the fibro-adenoma, mastopathy and glan-

dular classes whose discrimination is not important (they cannot be accurately discriminated

anyway). It contains 106 instances and 9 attributes.

4) In the Cardiotocography (Card) dataset, 2126 fetal cardiotocograms (CTGs) were auto-

matically processed and the respective diagnostic features were measured. The CTGs were also

classified by three expert obstetricians with a consensus classification label assigned to each of

them.

5) This Mice Protein Expression (MPE) dataset contains a total of 1076 measurements per

protein. Each measurement can be considered as an independent sample/mouse. The eight

classes of mice are described based on features such as genotype, behavior and treatment.

Table 3. Dataset details.

Dataset #Categories #Samples #Features

Oh1 5 1000 500

Oh2 10 1000 500

LC 3 27 56

BT 6 106 9

Card 10 2126 21

MPE 8 1076 68

https://doi.org/10.1371/journal.pone.0176536.t003
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Evaluation criteria. There are several ways for numerically scoring the cluster quality,

such as Entropy, F-Measure and Overall Similarity. We choose F-Measure, Entropy and p-

value as the criteria to evaluate the performance of ibFCC.

F-Measure is the weighted harmonic mean of precision and recall. In terms of evaluating

clustering accuracy, the higher the value of F-Measure is, the better the clustering quality is.

And the F-Measure value of is given by:

Fði; jÞ ¼
2� precisionði; jÞ� recallði; jÞ
precisionði; jÞ þ recallði; jÞ

ð13Þ

where precision(i,j) and recall(i,j) are computed using the following equations respectively:

recallði; jÞ ¼ nij=ni ð14Þ

precisionði; jÞ ¼ nij=nj ð15Þ

where nij is the number of members of class i in cluster j, nj is the number of members of clus-

ter j, and ni is the number of members of class i. The overall value for the F-Measure is given

by the following:

Fc ¼
X

i

ni

n
�maxfFði; jÞg ð16Þ

where n is the total number of documents.

The Entropy can also be used to evaluate cluster distribution during clustering in informa-

tion theory. The expression for Entropy of clustering result is listed as follows:

Ecs ¼
Xm

j¼1

njEj

n
ð17Þ

where Ecs is the whole Entropy value, nj is the number of documents in cluster j, n is the num-

ber of all the documents, m is the number of clusters and Ej is the Entropy value of cluster j,
which is calculated using the following formula:

Ej ¼ �
X

i

pij log pij ð18Þ

where pij is the probability that one document belonging to class i could be put into cluster j
during the partition. It should be noted that the lower the value of Entropy, the higher the clus-

tering quality will be.

In research of GO (Gene Ontology) whose objective is to provide controlled vocabularies

for the description of the biological process, molecular function, and cellular component of

gene products, the p-value is often used to calculate the statistical significance of a group of

proteins that shares a GO term [29]. In the dataset, given N proteins where M of them have the

same annotation, the probability of observing m or more proteins that are annotated with the

same GO term out of n proteins is,

p � value ¼
Xn

i¼m

ð
M
i Þð

N� M
n� i Þ

ð
N
n Þ

ð19Þ

A cluster with a smaller p-value is usually more significant than one with a higher p-value.

After getting the p-value of each single cluster, the quality of overall clusters could be measured
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by the CS (clustering score) function, which is calculated as follows.

CS ¼

Xns

i¼1
minðpiÞ þ ðnl�cutoff Þ

nsþ nl
ð20Þ

where ns and nl is the number of significant and insignificant clusters, respectively. The cutoff
denotes the α level (0.05), and if a group of proteins are associated with a p-value less than the

cutoff, they are considered significant, and vice versa. The min(pi) is the smallest p-value of the

significant cluster i.

Results

We firstly compared the performances of FCM, FCCM, RFCC, FCCI and ibFCC on the six

subsets. All the five algorithms were initialized randomly and run for ten times to reduce the

impact of local optimizations.

The clustering performance comparisons of the five algorithms are illustrated in Fig 2. On

the six subsets (Oh1, Oh2, LC, BT, Card, MPE), the accuracy of ibFCC is much better, which is

calculated to be 0.36, 0.21, 0.76, 0.56, 0.36 and 0.40 respectively in terms of F-Measure, and

0.65, 0.93, 0.23, 0.40, 0.60 and 0.62 respectively in terms of Entropy. Besides ibFCC, FCCI val-

ues 0.33, 0.18, 0.62, 0.50, 0.33 and 0.34 in terms of F-Measure, and 0.70, 0.99, 0.32, 0.46, 0.64

and 0.68 in terms of Entropy, whose performance is relatively better than FCM, FCCM and

RFCC. At the same time, we observed that the F-Measure values of these algorithms are higher,

and the Entropy values are lower, when the value of C is small. As the value of C increases, the

F-Measure and Entropy values show that the performances of these clustering algorithms

reduce, however, the clustering accuracy of the ibFCC is still the highest.

In addition to F-Measure and Entropy, we chose clustering score and p-value to further

evaluate the performances of the ibFCC. The experimental results in terms of clustering score

are illustrated as Fig 3, which shows the comparison of the five algorithms. On the six subsets,

the clustering score values of the ibFCC are much lower, and thus this algorithm achieves a sig-

nificant improvement than the counterparts. However, on the BT and MPE dataset, the clus-

tering score value of ibFCC is only slightly less than FCCI, which shows that the clustering

accuracy of these two algorithm is similar. To be sure, the experimental results illustrated in

Fig 2 are average values of 10-times clustering experiments, but Fig 3 only lists the results of a

single clustering experiment, in order to calculate the values of clustering score and p-value.

And therefore, in Fig 3, stochastic fluctuation of the experimental results is strong. In addition,

in clustering results of FCCI and FCM, there are often some empty clusters, which will easily

bring a higher clustering accuracy (higher F-Measure value and lower Entropy value) because

the number of C is lower.

The following experiments illustrate the significance of our clustering results in terms of

p-value. Experimental results on the six subsets are listed as Fig 4A, 4B, 4C, 4D, 4E and 4F,

respectively. In Fig 4A, the p-values of the best clusters of the five algorithms are 8.0E-09,

0.045, 1.1E-10, 0.031 and 3.6E-30, respectively. And similarly, our algorithm has or approaches

(only on the Card subset in Fig 4E) the lowest p-value. Results of this set of experiments show

that biomedical data can be grouped into more meaningful clusters, and our algorithm could

provide more significant clusters.

The corresponding document cluster distributions are shown in Fig 5. Clustering results of

LC, Oh1 and BT are illustrated as Fig 5A, 5B and 5C. Because the number of clusters is large on

Oh2, Card and MPE datasets, it is difficult for clustering results to be illustrated in figures. And

the experiments on the Oh2, Card and MPE datasets are not discussed here. It can be seen

from Fig 5 that ibFCC can generate clusters better than other algorithms. Fig 5 shows that
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ibFCC well generates C1 on LC, C3 and C4 on Oh1, C1, C3 and C4 on BT. Clustering perfor-

mances of FCCM and RFCC are similar, and it is difficult for these two algorithms to capture

categories properly. FCM and FCCI perform well on a part of datasets such as the LC subset.

Discussion

In our experiments, some clusters have few documents, such as some clusters generated by

FCCI. We gave some analysis on the problem and concluded that when datasets were sparse

and high-dimensional, all the objects could be assigned to a single cluster in FCM-type cluster-

ing [30]. The six subsets are exactly sparse, and thus in clustering results of such fuzzy co-clus-

tering algorithms as FCCM, RFCC and FCCI, some clusters have no objects (as Fig 5), which

will significantly reduce clustering performance.

Fig 2. Clustering performance comparisons of FCM, FCCM, RFCC, FCCI and ibFCC in terms of

F-Measure and entropy on the six subsets. (a) F-Measure values of FCM, FCCM, RFCC, FCCI and ibFCC

(b) Entropy values of FCM, FCCM, RFCC, FCCI and ibFCC.

https://doi.org/10.1371/journal.pone.0176536.g002
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To avoid the problem, Mei et al. [30] proposed a method to normalize all the centroids to

unit norm after each iteration

d
0

c ¼ dc=kdck ð21Þ

where δc is the centroid of the c-th cluster, and

kdck ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

j
ð
X

i
um

ci widijÞ
2

r

=
X

i
um

ci wi ð22Þ

where m is a constant, wi controls the weights of objects, and δ’ c is the normalized centroid.

Their algorithm is an incremental clustering method, and thus does not appear in our

experiments.

In ibFCC, centroids and objects are assigned different weights in calculating information

bottleneck based similarity, as Eq 11, which is equivalent to the normalization process of Mei

et al. Therefore, in experimental results of ibFCC, there are less empty clusters, and clustering

performance is much better. Fig 6 illustrates the average number of empty clusters in our

experiments on the six subsets. In Fig 6, there are some empty clusters in the results of FCM,

FCCM and RFCC. The average numbers of empty clusters of the RFCC are 0.4, 0.1, 4.8, 1.8

and 1.9 on the Oh2, LC, BT, Card and MPE, respectively. If there are more than one empty

clusters in clustering results, the clustering quality will be significantly reduced, although the

value of F-Measure is higher and the value of Entropy is lower. The ibFCC generates almost

Fig 3. Clustering performance comparisons of FCM, FCCM, RFCC, FCCI and ibFCC in terms of clustering score on the six subsets.

https://doi.org/10.1371/journal.pone.0176536.g003
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zero empty clusters in the results, and therefore, this algorithm outperforms the counterparts.

The FCCI algorithm has the second best clustering results, with only 0.1, 0.5, 0.1 empty clusters

on Oh1, Oh2 and LC subsets respectively.

Fig 4. Comparisons of the five approaches on the 6 subsets in terms of p-value. (a) Oh1(b) Oh2(c) LC(d) BT(e) Card(f) MPE.

https://doi.org/10.1371/journal.pone.0176536.g004
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Fig 5. Document clusters distribution for three subsets with less clusters. (a) LC(b) Oh1(c) BT.

https://doi.org/10.1371/journal.pone.0176536.g005
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In addition to the number of empty result clusters, running time is also an important issue.

As indicated earlier, the time complexity of ibFCC is O(CNKτ), which is equivalent to such

fuzzy co-clustering algorithms as FCCM, RFCC and FCCI. Even if the FCM algorithm imple-

ments fuzzy clustering rather than fuzzy co-clustering, its time complexity is also O(CNKτ).

However, time complexity merely manifests the conclusion of theoretical analysis. In order to

thoroughly compare these algorithms, we carried out additional experiments to record cluster-

ing time. The running time required by every algorithms to complete oncethrough clustering

on each dataset is listed as Table 4. The comparison indicates that, on the six datasets, the

FCM algorithm is the most time-consuming. The main reason lies in that this algorithm is sen-

sitive to noise, which reduces significantly the convergence speed. Although other four fuzzy

co-clustering algorithms seem to be more complex, they group objects as well as features,

which could help to significantly reduce feature dimension and improve clustering efficiency.

Thus it can be justified again that the fuzzy co-clustering algorithms are better than fuzzy

Fig 6. Comparison of our approaches and counterpart algorithms in terms of empty cluster number.

https://doi.org/10.1371/journal.pone.0176536.g006

Table 4. Comparison of our approach and counterpart algorithms in terms of running time (s).

Datasets FCM FCCM RFCC FCCI ibFCC

Oh1 1.606 0.115 0.210 0.412 0.863

Oh2 3.203 0.223 0.363 0.730 1.670

LC 0.007 0.002 0.002 0.002 0.007

BT 0.007 0.002 0.001 0.003 0.007

Card 0.289 0.016 0.029 0.061 0.216

MPE 0.573 0.015 0.048 0.105 0.419

https://doi.org/10.1371/journal.pone.0176536.t004
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clustering algorithms. The comparisons of the four fuzzy co-clustering algorithms in terms of

running time show that the FCCM performs the best, and the ibFCC takes longer time. The for-

mer is because computational procedure of the FCCM is very easy, and the latter is because of

the complex similarity measure based on information bottleneck of ibFCC. The similarity mea-

sure of FCCI is more complex than FCCM and RFCC, which makes FCCI needs more time to

complete clustering. Similarly, the information bottleneck based measure of ibFCC is more time-

consuming than FCCI, and therefore, the running time of ibFCC is longer than FCCI. Even so,

the ibFCC is still more efficient than FCM. In conclusion, the ibFCC achieves high clustering

accuracy while encountering more actual running time because of the calculation process of sim-

ilarity measure, although its theoretical time complexity does not increase. Therefore, it will be a

study emphasis in our further research how to further improve actual running efficiency.

Conclusion

Recently, several fuzzy co-clustering algorithms have been proposed. Keeping the advantages

of co-clustering and fuzzy clustering, these algorithms improve the representation of overlap-

ping clusters by using fuzzy membership function, and greatly facilitate the reorganization of

large biomedical data.

In existing prominent fuzzy co-clustering algorithms, Euclidean distance function is the

most frequently used. However, information bottleneck based distance measure proves much

better in many clustering algorithms. Therefore, in this paper we propose a novel fuzzy co-

clustering algorithm, named ibFCC, whose objective function includes an information bottle-

neck based distance function to measure distance between feature data points and the feature

cluster centroids. We implement experiments on five biomedical datasets, Ohsumed, Lung
Cancer, Breast Tissue, Cardiotocography and Mice Protein Expression, to evaluate the perfor-

mance of ibFCC. Our algorithm is also compared with some popular fuzzy (co-)clustering

algorithms and proves to outperform them.

It is challenging to determine the number of clusters in the literature. In our study, the

value of C is still specified by users manually, which determines that ibFCC is not unsupervised

absolutely. In the future, we intend to incorporate techniques evaluating the number of clus-

ters to optimize our approach.

Appendix

The proof of convergence of our algorithm is shown below:

Based on the bounded monotonic principle, we know that a monotone bounded function is co-

nvergent. Therefore, in order to prove the convergence of ibFCC, we need to prove that the value

of JibFCC never increases when we update Eqs 12, 11, 8 and 7, and JibFCC is a bounded function.

Theorem 1

In every iteration, the updated value of uci given by Eq 7 never increases the value of the objec-

tive function JibFCC in Eq 1.

Proof

We consider the objective function of JibFCC as a function of a single variable uci, denoted by J
(U):

JðUÞ ¼
XC

c¼1

XN

i¼1

XK

j¼1

ucivcjdcij þ Tu

XC

c¼1

XN

i¼1

ucilnuci þ constant ð23Þ
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where

constant ¼ Tv

XC

c¼1

XK

j¼1
vcjlnvcj ð24Þ

Similarly, the variables vcj and dcij may be considered as two constants. And then theorem 1

can be proven by showing that the u� (i.e., the updated value of uci given by Eq 7) is the local

minima of the objective function J(U) by Lagrange multiplier method. For this we need to

prove that the Hessian matrix42J(u
�

) is positive definite.

D
2JðuÞ ¼

@2JðuÞ
@u11@u11

� � �
@2JðuÞ
@u11@uCN

..

. . .
. ..

.

@2JðuÞ
@uCN@u11

� � �
@2JðuÞ

@uCN@uCN

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼

Tu

u11

� � � 0

..

. . .
. ..

.

0 � � �
Tu

uCN

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð25Þ

At u
�

, uci�0 and Tu is always assigned with a positive value. Therefore the Hessian matrix

42J(u
�

) is positive definite. In summary, u� is the objective function of stationary point ((@J
(uci)/@uci) = 0) and Hessian matrix42J(u

�

) is positive definite. By sufficient and necessary con-

dition for the existence of extreme value of multivariate function knows that the updated uci is

indeed a local minima of J(U) and it never increases the objective function value.

Theorem 2

At every iteration, the updated values of vcj given by Eq 8 never increase the objective function

JibFCC in Eq 1.

Proof

Theorem 2 can be proven in a similar fashion as Theorem 1.

Theorem 3

The objective function of JibFCC in Eq 1 is bounded. In other words, there is a constant M,

which makes the JibFCC more than M all the way (i.e., JibFCC�M).

Proof

Since the minimum value of uci and vcj is 0, and dcij�0, we know that the first term of JibFCC is

greater than or equal to 0, that is,

XC

c¼1

XN

i¼1

XK

j¼1

ucivcjdcij� � 0 ð26Þ

The second and third terms of JibFCC in Eq 1 are all entropy regularization terms, and when

uci = 1/C, and vcj = 1/K, the minimum value of the function will be achieved.

JibFCC � Tu�N�log
1

C
þ Tv�C�log

1

K
ð27Þ

Because Tu, N, C, Tv and K are all constants, we can get that JibFCC�M, when M = Tu
�N�log

(1/C)+Tv
�C�log(1/K). In summary, the objective function JibFCC is bounded.
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Corollary 1

The ibFCC algorithm converges to a local minimum of the optimization, with the update for-

mulae given in Eqs 12, 11, 8 and 7.

Proof

This corollary is a direct consequence of the above three theorems. Theorems 1 and 2 indicate

that the procedure of membership updating never increases the value of the ibFCC objective

function. Theorem 3 states that there is a limit to how much this objective function can be

decreased. So eventually the procedure should stop somewhere before or when it reaches this

limit.
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