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Abstract: The objective was using the Essential Medicines List for children by the World Health
Organization (WHO) to create a pediatric biopharmaceutics classification system (pBCS) of the oral
drugs included in the Essential Medicines List by the World Health Organization and to compare our
results with the BCS for adults (aBCS). Several methods to estimate the oral drug dose in different
pediatric groups were used to calculate dose number (Do) and solubility (high/low). The estimation
of the gastrointestinal water volume was adapted to each pediatric group. Provisional permeability
classification was done by comparison of each drug lipophilicity versus metoprolol as the model
drug of high permeability. As a result, 24.5% of the included drugs moved from the favorable to
unfavorable class (i.e., from high to low solubility). Observed changes point out potential differences
in product performance in pediatrics compared to adults, due to changes in the limiting factors
for absorption. BCS Class Changes 1 to 2 or 3 to 4 are indicative of drugs that could be more
sensitive to the choice of appropriate excipient in the development process. Validating a pBCS for
each age group would provide a valuable tool to apply in specific pediatric formulation design by
reducing time and costs and avoiding unnecessary pediatric experiments restricted due to ethical
reasons. Additionally, pBCS could minimize the associated risks to the use of adult medicines or
pharmaceutical compound formulations.
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1. Introduction

The objective of this paper was using the Essential Medicines List for children by the World Health
Organization (WHO) to create a provisional pediatric biopharmaceutics classification system (pBCS)
for oral drugs and to compare our results with the BCS for adults (aBCS).

Since 2007, the WHO has provided the WHO Model List of Essential Medicines for Children [1]; a
core drug list for a basic health-care system. This resource list considers the safest, efficacious and
cost-effective drugs for priority pathologies in pediatrics up to 12 years old [1]. All immediate release
oral drugs from the sixth edition of this list were selected for this work.

The need for and importance of developing appropriate, safe and effective medicines for pediatrics
have now been recognized. Pediatrics have long been considered as a therapeutically disregarded
group [2]. This fact lies in the therapeutic gap that originates from formulation development (mainly
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focused on adults), low availability of commercial pediatric drugs for pediatric use and physiological
and anatomical differences relative to the adult population.

In younger pediatrics, neonates and infants, the therapeutic-risk benefits associated with drug
treatment may be different from those in adults. Developmental physiological differences (as the
composition of gastrointestinal fluids and the presence or activity of intestinal drug metabolizing
enzymes and efflux transporters) can markedly alter the bioavailability of drugs [3]. Age-related
changes in the characteristics of luminal fluids such as pH may lead to changes in drug solubility
and, therefore, in absorption since only the dissolved drug would be available for absorption [4,5].
Since fluctuations in pH may influence ionizable drugs and the relative amount of unionized available
drug, there could be changes in absorption during maturation [3]. The gastric pH of the newborn
is approximately neutral, and within the first 48 h of life, the gastrointestinal pH decreases to adult
values and then for the first month increases back to values close to neutrality. After the first month,
gastric pH decreases progressively to reach similar values as in adults by two years of age [4,6,7].

On the other hand, another determinant of bioavailability is ontogenic changes in the expression
of drug metabolizing enzymes and transporters [6,8], which would mark the first pass effect and
consequently would change the oral absorbed fraction. For example, the CYP3A4 isoenzyme increases
expression and activity with age [9]. CYP3A4 is practically undetectable in neonates, and its expression
increases with age, reaching a maximum level at two years of age [6,9]. Likewise, in these age
groups, there is immature intestinal activity of alkaline phosphatase, glucuronidation enzymes and
carboxylesterase-2. Conversely, there are no differences in p-glycoprotein expression, the most studied
intestinal efflux transporter [6] from the earliest stages of life to adults [6].

Many drugs are formulated as pharmaceutical forms that are often not appropriate for pediatrics,
such as tablets or capsules [10]. Children need different oral dosage formulations from adults mainly
due to their developmental capabilities in swallowing ability, palatability and dosage requirements.
Especially in pediatrics, palatability is closely related to acceptance and adherence. Consequently,
bitterness, trigeminal irritation and perceptible malodors must be minimized [11,12].

The increasing need for age-related medicines in pediatrics could be met by extemporaneous
formulations. The compounding of an extemporaneous formula is not allowed if an authorized
commercial pharmaceutical product (adequate for a particular age group) exists [13], but the reality in
the clinical setting is that for some age groups, that is not the case, while extemporaneous formulation
is still used as the only alternative to the therapeutic need [7,14]. Although solid products have higher
stability than liquid formulations [15], this practice can solve the problem of swallowing capability
and dose adjustments, but these manufactured preparations can be a risk to safety, efficacy and quality,
because there is little or no information for compatibility between the original medicine and additional
excipients or their effect in children [16]. The excipients used in formulations designed for children
should be appropriate for each age group [15] because, as is known, these are not inert substances [16]
and cannot be supposed to have the same effects in pediatrics as in adults. The most common example
is early stage children who are not able to metabolize or eliminate them as adults [17,18]. The ideal
situation in the development of pediatric formulations is the minimal use of added excipients, both in
number and quantity [8].

The Biopharmaceutics Classification System (BCS) has been established as the predictor of drug
absorption in pharmaceutical development, simplifying approval and drug development processes [19].
BCS considers the fundamental parameters controlling the absorption of any drug administered
orally [20], drug solubility and drug permeability, and it classifies the drugs into four groups (Class 1:
high permeability, high solubility; Class 2: high permeability, low solubility; Class 3: low permeability,
high solubility; and Class 4: low permeability, low solubility). The BCS class in combination with the
drug product dissolution rate determines the feasibility of granting biowaivers, i.e., the possibility of
demonstrating bioequivalence with in vitro dissolution studies [21,22]. A drug is considered highly
permeable when the amount of drug absorbed is greater than 85–90% of the total administered
dose [21,22]. High solubility drugs are those in which the highest strength (FDA) or highest single dose
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(EMA) is soluble in 250 mL of aqueous media (pH range 1–6.8) derived from typical bioequivalence
study protocols [23].

Children’s idiosyncrasies and physiological differences from adults justify the need for a specific
pediatric Biopharmaceutics Classification System (pBCS), preferably by age group. The main reasons
for the need for a pediatric BCS are to promote pediatric-fitted formulations’ development and to
try to assess the risk of the inadequacy of an adult formulation to pediatrics [24]. Furthermore, a
pediatric pBCS could help to identify the risks associated with extemporaneous formulation as low
solubility drugs would be in particular sensitive to formulation differences, highlighting the relevance
of standardized formulations across health institutions to ensure consistent performance.

For all the above mentioned reasons, the development of a pediatric BCS could improve pediatric
drug product development. Moreover, this classification system endeavor will be more complicated
than an adult BCS due to the complexity of pediatric groups. In the present work, we attempted a
provisional pBCS classification to explore how many drugs could potentially present challenges in
some pediatric groups and thus being candidates for harmonized extemporaneous formulations in the
hospital setting and to further develop age appropriate oral formulations.

2. Materials and Methods

2.1. Pediatric Solubility Classification

Pediatric drug solubility classification was determined via dimensionless pediatric dose number
calculation with the following equation [25]:

D0p = (M0p/V0p)/Cs

where M0p is the pediatric highest dose (in milligrams), V0p is the pediatric reference volume (predicted
water volume in milliliters taken with a dose) and Cs is the solubility of the drug in water in milligrams
per milliliter.

Highly soluble drugs were considered those with calculated dose number ≤ 1.
Unlike the adult classification, there would not be a single pBCS classification. Each subgroup

used would provide a different dose number because dose and pediatric reference volume are
age-related factors.

Three different pediatric subgroups were considered [24,26,27]: neonate (0–1 month), infant (1–24
months) and child (2–12 years). For each group, the volume was estimated based on the volume of
gastric fluids in fasted children, approximately 0.56 mL/kg [28–30], relative to the gastric volume of a
70 kg fasted adult (37.1 mL) [29,30] and BCS adult volume of 250 mL. A 0.56 mL/kg value was applied
to all the studied groups as a conservative estimation. This estimation could be improved in the future
when better estimations of fluid intestinal content become available. Subgroup V0 was estimated from:

V0 (mL) = [[0.56 mL/kg ×weight (kg)]/37.1 mL]/250 mL

where weight was taken to be the 50th percentile of boy values in the WHO growth charts [31] for
neonates (mean age: 0.5 months) and infants (mean age: 12.5 months) and the Center of Disease
Control and Prevention Charts [32] for children (mean age: 7 years).

Referenced M0p for each age group was obtained from the British National Formulary of
Children [33], WHO Model Formulary for Children [34], WHO Model Prescribing Information: Drugs
Used in Parasitic Diseases [35] and, conversely, via common clinical equations [36]: Fried’s Rule (FR)
(in neonates), Clark’s Rule (CR) (in infants and children) and Body Surface Area method (BSA) (in all
groups).

Fried’s Rule: [age (months)/150] × adult dose
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Clark’s Rule: [weight (pounds)/150] × adult dose

BSA method: [BSA patient (m2)/1.73 m2] × adult dose

For dose calculation with the BSA method and for referenced doses expressed in mg/kg, the
same resources were used as for calculating the reference volume [31,32]. The referenced dose was
considered as the gold standard because it is based on clinical use. Alternative dosages were included
since some drugs do not have an associated dose in the selected literature.

Drug solubility values (milligrams per milliliter) were obtained from The International
Pharmacopoeia [37] and Merck Index [38]. The most conservative values were applied. The estimated
lower solubility limit of the values range defined in USP [39] according to Table 1 were necessary in
drugs with an unavailable solubility specific value.

Table 1. Solubility definitions [36,39,40].

Descriptive Term
(Solubility Definition)

Parts of Solvent
Required for One Part

of Solute

Solubility Range
(mg/mL)

Solubility Assigned
(mg/mL)

Very soluble (vs) <1 >1000 1000
Freely soluble (fs) from 1 to 10 100–1000 100

Soluble (s) from 10 to 30 33–100 33
Sparingly soluble (sps) from 30 to 100 10–33 10

Slightly soluble (ss) from 100 to 1000 1–10 1
Very slightly soluble (vss) from 1000 to 10000 0.1–1 0.1
Practically insoluble (pi) >10000 <0.1 0.01

2.2. Permeability Classification

For permeability value assignment, passive transcellular diffusion was considered as the
single transport mechanism across biological membranes, dismissing the possible carrier-mediated
mechanisms [41]. Therefore, permeability classification was based on partition coefficient, logP
(n-octanol/water partition coefficient) and its relationship with human intestinal permeability. LogP
values were obtained from the Chemicalize platform [42].

Metoprolol was selected as the benchmark between low or high permeable drug (logP
1.76) [40,43,44]. LogP values lower than 1.76 were associated with low permeability, and logP
values larger than or equal to 1.76 were associated with high permeability.

3. Results

3.1. Classification of Drug Solubility

The common estimated parameters for all included drugs to calculate the solubility are displayed
in Table 2.

Table 2. Shared parameters to obtain the pediatric biopharmaceutics classification system (pBCS)
classification. BSA, body surface area.

Parameters Neonate
(0.5 months)

Infant
(12.5 months)

Child
(7 years)

P50th Weight (kg) [31,32] 3.7 9.8 23
P50th Length (cm) [31,32] 52.5 77 122

BSA (m2) 0.23 0.46 0.88
Normalized V0p (mL) 13.96 36.98 86.79
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Figure 1 shows the percentage of drugs with respect to the total that resulted in being highly soluble.Pharmaceutics 2019, 11, x 5 of 22 
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Figure 1. Distribution of high solubility drugs for each age group (FR: Fried’s Rule, CR: Clark’s Rule).

3.2. Classification of Drug Permeability

Similar to other studies [40,43,44], the classification was based on the relationship between logP
values and human intestinal permeability. Since drugs with estimated logP values greater than or
equal to 1.76 were rated as high permeability drugs, 59 of the drugs selected (41.3%) were assigned to
this group. The remaining 84 drugs (58.7%) were classified as low permeability class.

3.3. Provisional Pediatric Biopharmaceutics Classification System (pBCS) Classification of the WHO Essential
Oral Medicines for Children

The sixth version of the WHO Essential Oral Medicines for Children provides 143 drugs for oral
administration. All these drugs were classified according to a provisional pBCS. Figures 2–4 show the
provisional pBCS distribution for each pediatric subgroup, according to each dosage method.
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Table A1 found in Appendix A summarizes our provisional pBCS classification of the orally
administered Essential Medicines for Children according to their logP and the calculated D0p using the
pediatric reference volume for each subgroup and different dosages.

3.4. Comparing Provisional Pediatric Biopharmaceutics Classification System (pBCS) with BCS in Adults

Table 3 shows drugs with unfavorable changes to BCS adults, and Table 4 shows favorable changes.
Unfavorable changes were defined as those changes that involve a switch to a low solubility class (1 to
2 or 3 to 4) from adult BCS (aBCS) to pBCS. Inversely, class switches to a high solubility class (2 to 1 or
4 to 3) from aBCS to pBCS were defined as favorable changes.
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Table 3. Provisional pBCS classification of drugs with unfavorable changes with respect to adult BCS
(aBCS). Drugs with unfavorable changes with the referenced dose dosage in all age stages are given in
bold. Drugs in italics indicate changes in pBCS classification with the referenced dose not in all of the
age stages. Abbreviations: BSA-R, body surface dosage; Fr-R, Fried’s Rule dosage; Cr-R, Clark’s Rule
dosage; Ref, referenced dosage; aBCS, adult BCS.

Drugs

Provisional pBCS

Provisional
aBCS

Neonate
(0.5 months)

Infant
(12.5 months)

Child
(7 years)

BSA-R Fr-R Ref BSA-R Fr-R Ref BSA-R Cr-R Ref

Acetylsalicylic acid 4 4 4 4 4 4 4 4 4 3
Acyclovir 4 3 4 4 4 4 4 4 4 3

Amodiaquine 2 2 - 2 2 2 2 2 2 1
Amoxicillin 4 3 4 4 4 4 4 4 4 3

Benznidazole 4 4 4 4 4 4 4 4 4 3
Calcium gluconate 4 3 4 4 3 4 4 4 4 3

Cephalexin 4 3 4 4 4 4 4 4 4 1
Chloramphenicol 4 3 4 4 3 4 4 4 4 3

Ciprofloxacin 4 4 4 4 4 4 4 4 4 3
Clindamycin 3 3 3 3 3 3 3 3 3 1

Dexamethasone 4 3 - 4 4 4 4 4 4 3
Digoxin 1 1 2 1 1 2 1 1 1 1
Enalapril 3 3 3 3 3 3 3 3 3 1

Ethambutol 4 3 3 3 3 3 3 3 3 3
Fluconazole 4 3 4 4 3 4 4 4 4 3
Flucytosine 4 3 4 4 3 4 4 3 4 3

Fludrocortisone 3 3 4 3 3 4 3 3 4 3
Folic acid 3 3 4 3 3 4 3 3 3 3

Haloperidol 2 1 - 2 1 - 2 1 2 2
Hydrochlorothiazide 4 3 4 4 4 4 4 4 4 3

Hydrocortisone 4 3 4 4 3 3 4 3 3 1
Mefloquine 2 2 - 2 2 2 2 2 2 1

Mercaptopurine 4 4 - 4 4 - 4 4 - 2
Methotrexate 4 4 - 4 4 - 4 4 - 3
Neostigmine 3 3 3 3 3 3 3 3 3 1
Nifurtimox 4 4 4 4 4 4 4 4 4 3

Nystatin 4 3 4 4 4 4 4 4 4 3
Omeprazole 2 1 2 1 1 2 1 1 2 1

Phenobarbital 4 3 4 3 3 4 3 3 4 3
Prednisolone 4 3 - 4 4 4 4 4 4 1

Proguanil 2 1 2 2 1 2 2 2 2 1
Propylthiouracil 4 3 4 4 4 4 4 4 4 3

Pyrazinamide 4 3 - 4 4 4 4 4 4 3
Quinine sulfate 2 1 - 2 2 - 2 2 2 1

Riboflavin 4 3 4 4 3 4 3 3 4 3
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Table 4. Provisional pBCS classification of drugs with favorable changes with respect to aBCS. Drugs
with favorable changes with the referenced dose dosage in all age stages are given in bold. Drugs in
italics indicate changes in pBCS classification with the referenced dosage not in all of the age stages.
Abbreviations: BSA-R, body surface dosage; Fr-R, Fried’s Rule dosage; Cr-R, Clark’s Rule dosage; Ref,
referenced dosage; aBCS, adult BCS.

Drugs

Provisional pBCS

Provisional
aBCS

Neonate
(0.5 months)

Infant
(12.5 months)

Child
(7 years)

BSA-R Fr-R Ref BSA-R Fr-R Ref BSA-R Cr-R Ref

Acetylcysteine 4 3 4 4 4 4 4 4 4 4
Allopurinol 4 3 - 4 4 4 4 4 4 4
Artesunate 2 1 - 2 2 2 2 2 2 2
Azithromycin 2 1 2 2 2 2 2 2 2 2
Cefixime 4 3 - 4 4 4 4 4 4 4
Clarithromycin 2 1 2 2 2 2 2 2 2 2
Dapsone 4 3 - 4 4 4 4 4 4 4
Diazepam 2 1 2 2 2 2 2 2 2 2
Diloxanide 2 1 - 2 1 1 2 1 1 2
Doxycycline 4 3 - 4 4 - 4 4 4 4
Fluoxetine 1 1 1 1 1 1 2 2 2 2
Furosemide 4 3 4 4 4 4 4 4 4 4
Ivermectin 2 1 - 2 2 - 2 2 2 2
Levofloxacin 4 3 - 4 4 - 4 4 3 4
Linezolid 4 3 4 4 3 4 4 4 4 4
Loratadine 2 1 - 2 2 2 2 2 2 2
Morphine 4 3 3 4 4 3 4 4 3 4
Moxifloxacin 4 3 - 4 4 - 4 4 - 4
Phytomenadione 2 1 2 2 2 1 2 2 1 2
Pyrimethamine 2 1 2 2 2 2 2 2 2 4
Retinol 2 1 2 2 2 2 2 2 2 2
Tioguanine 4 3 - 4 3 - 4 3 - 4
Trimethoprim 4 3 4 4 3 4 4 4 4 4
Voriconazole 2 1 - 2 2 - 2 2 2 2

4. Discussion

4.1. Drug Solubility Classification

Drug solubility, highest dose and volume are parameters that vary among all pediatric groups
and as a consequence may change the solubility classification [45].

It is important to note that the BCS is based on adult fasted states, and these conditions are difficult
to achieve in neonates and the youngest infants due to breastfeeding frequency or formula meals [45].
Instead, Hens et al. [46] found in their study that the youngest children preferred liquid formulations
as solutions or suspensions, which do not require extra liquid for swallowing. In this case, the available
liquid for drug dissolution would be the volume provided by the liquid formulation plus the one
available in fasted or fed stomach [45,46].

Solubility is a critical factor since the dissolved drug is the one that is available for absorption
and would determine bioavailability. It is important to note that solubility widely increases with
temperature. Solubility data used in this study correspond to calculations performed at 25 ◦C; body
temperature may increase drug solubility, and for that reason, this classification could be considered
on the conservative side.

In addition, gastrointestinal fluid composition may lead to changes in drug properties like
solubility [47], affecting directly poorly soluble drugs (BCS Class 2 and 4 drugs). Compared to adults,
neonates are the pediatric subgroup with more important composition differences such as pH, presence
of milk/formula or bile salt concentration [47].

In this study, as well as for adults, dose number was used to estimate solubility class, but varying
the volume according to age ranges. Since the permeability classification in the adult and pediatric
subjects has been compared in relation to the partition coefficient logP, the determinant factor of a
change in the pBCS in the present study is the estimated dose number. It has been suggested that using
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reduced volumes and reduced doses in pediatrics compared to adult values, the effect on the BCS
classification is minimal [30,48]; therefore, it should not be affected in most drugs. In the present study,
24.5% of drugs showed an unfavorable change in BCS class, which is not a negligible percentage.

In regard to solubility between age groups (Figure 1), in infants (12.5 months) and children (seven
years), there was more homogeneity among dosages than in neonates (0.5 months). In neonates, dosage
via Fried’s rule provided lower doses compared to BSA dosage or the reference dose, identifying
drugs as highly soluble and, perhaps, providing sub-therapeutic treatment. Additionally, this dose
underestimation caused the majority of favorable changes in pBCS relative to aBCS. Low calculated
doses resulted in a low D0p, and therefore, a pBCS group changes to another with a favorable
solubility classification.

If dosage by Fried’s rule in neonates is not taken into account, all percentages are around 40–50%
of highly soluble drugs (Figure 1). This percentage could be the potential drug products that may
profit from the biowaiver approach, i.e., demonstrating bioequivalence with in vitro dissolution
bioequivalence tests. If those drugs are candidates for a waiver of in vivo bioequivalence testing, the
development process is facilitated much more in pediatrics in which the ethical implications of any
clinical study are a great concern. Unfortunately, this percentage was lower than that the estimated for
adults (40–50% vs. 67% [40]) by Kasim et al. [40].

A relevant limitation of this study related to BCS classification in children is the lack of consensus
about the reference volumes of each pediatric subgroup and the volume of liquid taken with
medicines [29]. Furthermore, the water amount taken is a conservative factor because: (1) it is an
estimate of the fluid volume available in the gastrointestinal tract under the fasted state condition [27];
and (2) neonates and the youngest children are in a fed state most of the time due to the higher
frequency of food intake according to breastfeeding [45,47].

There are currently three methods to calculate the reference volume in the bibliography: (1) using
a fixed value of 25 mL for all age groups [8], (2) using a related volume to BSA [24,36] and (3) using
fasted gastric volumes linked to body weight [4,30], this latter method having been used in the present
study due to it being the most conservative. This fact emphasizes the need for additional research on
gastrointestinal pediatric fluid volumes.

Drugs with unfavorable changes in solubility classification are those that originated the changes
in the pBCS classification (Table 3), as the permeability classification was considered equal in adult
BCS. This aspect is also a limitation of this study as eventually, intestinal permeability may also change
with maturation. For example, molecules that undergo a change from 3 to 4 in all stages and with
dosing by the referenced dose method are acetylsalicylic acid, amoxicillin or nystatin. Mefloquine and
omeprazole experienced a change from 1 to 2.

Furthermore, additional consideration for pBCS should be given to the fact that there are pediatric
subgroups with a wide range of age. The estimation of doses and volumes with the means of the age
of each subgroup was considered as a limitation of the present study because these calculations might
not represent the entire group.

4.2. Drug Permeability Classification

There is limited biopharmaceutical and pharmacokinetic information on drug permeability
in pediatrics [30,45], especially in early ages, which is an under researched area [49]. Due to
this deficiency, alternative methods are needed, as for instance to correlate permeability with
physicochemical parameters such as logP to allow for a provisional estimation and physiologically
based pharmacokinetics (PBPK) modelling [45].

It is generally accepted that the greatest differences between adults and children are found in
children less than two years of age [30,50]. During development, permeability changes progressively
from birth to two years of age, when it is considered equivalent to the permeability data in adults [4].
Younger children have a great component of paracellular absorption [30], and this mechanism has
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been ignored in the present study as stated above, so we consider this fact as a limitation. Most of the
selected drugs (58.7%) were classified as low permeability drugs with the used method based on logP.

Currently, pharmaceutical companies use biopharmaceutics to predict in vivo performance in
medicines’ development. This design method by biopharmaceutical tools is extensively explored
for adults, but not for pediatrics [51]. As explained above, pediatric subjects are not small adults.
Age related physiological and anatomical changes affect drug absorption distribution, metabolism
and excretion [52], so it is essential to characterize those changes to get accurate pharmacokinetic
predictions in all age groups.

Three main biopharmaceutical tools are presently recognized as essential elements for drug
development and part of regulatory submissions: PBPK models (in silico), dissolution tests of the
formulation (in vitro) and BCS classification. Extrapolating of aBCS is not a straightforward task, and
the predictive capability of PBPK for pediatrics is still in its initial stages of development, although it
is fortunately rapidly evolving [50,52] since realistic levels of variability within each age group are
incorporated into the tool [53]. The main reason for the low predictive capability is mainly due to a
lack of validated pediatric PBPK models for oral drug absorption and disposition [50,54]. Despite this,
developing drug formulations by these models will undoubtedly play a critical role.

For example, Khalil et al. [54] studied the use of PBPK models with sotalol in all pediatric stage
groups by applying two different models: Simcyp® (Simcyp Ltd., Sheffield, U.K.) and PK-SIM®

(Bayer Technology Services GmbH, Leverkusen, Germany). They concluded that the lower predictive
performance was seen in neonates; in contrast with the other pediatric groups with good model
predictability. In this respect, the youngest groups are in general the most disadvantaged due to their
bigger and still not well characterized physiological and anatomical differences. Developing this line
of biopharmaceutical research would help the development process of specific pediatric formulations.

PBPK would be the optimal tool for permeability prediction in pediatric patients. In addition, a
validated pBCS system would facilitate formulation development, as the rate limiting factors would
be identified thus the adequate pharmaceutical technology that could be used to overcome them. In
parallel formulation comparison would be made with the adequate tool either in in vivo bioequivalence
trials or in in vitro dissolution studies.

4.3. Provisional pBCS Classification

Considering drug solubility, permeability based on the logP method and highest doses
administered, all 143 WHO Essential Oral Drugs for pediatrics were classified into a provisional pBCS.

The distribution of BCS classes in the 143 studied drugs according to the reference dosage method
(Figures 2–4) was 12.9%/14.3%/16.1% (neonates/infants/children) for Class 1, 20.0%/26.8%/32.1% for
Class 2, 30.0%/26.8%/31.3% for Class 3 and 37.1%/32.1%/33.0% for Class 4. Homogeneity in BCS class
according to all considered dosages was found (Table 4), except for Fried’s rule dosage in neonates. In
this case, higher percentages of high solubility classes (Classes 1 and 3) were found due to possible
underdosing mentioned above.

Considering unfavorable changes (Table 3), 24.5% of classified drugs modified their class between
aBCS and pBCS to an unfavorable class. Furthermore, 77.1% of these drugs with unfavorable changes
showed a switch in reference dose in all stage groups.

When an extemporaneous formulation for pediatrics in the hospital setting is unavoidable due to
the lack of an adequate commercial authorized one, excipients could affect formulation performance
for Class 2 and 4 drugs for which solubility and dissolution are the limiting factors affecting fraction
absorbed. In those cases, different formulations in different hospitals may have different rates
and extents of absorption. The clinical relevance of such differences will depend on the particular
drug, but this potential risk could be avoided with the harmonization of the compound formulas
across institutions.

Observed changes point out also potential differences in product performance in pediatrics
compared to adults, due to the change in the limiting factors for absorption. As mentioned, the BCS
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class changes from 1 to 2 or 3 to 4 are indicative of drugs that could be more sensitive to the choice
of appropriate excipient in the development process. Validating a pBCS for each age group would
provide a valuable tool to apply in specific pediatric formulation design by reducing time and costs
and avoiding unnecessary pediatric experiments restricted by ethical reasons. With a validated pBCS,
the biowaiver approach, i.e., the demonstration of formulations’ bioequivalence by in vitro dissolution
studies, would be of application, as it is currently used in medicines for adults. Additionally, pBCS
could minimize the associated risks to the use of adult medicines on pharmaceutical compound
formulations for children.

5. Conclusions

On average, 24.5% of the 143 drugs evaluated in the present study modified their class between
aBCS and the proposed pBCS to an unfavorable class (i.e., from high to low solubility). Even if the
proposed pBCS would need further refinement, this percentage is not negligible.

Research in neonates and younger infants needs to be prioritized because there is less certainty of
our knowledge about their gastrointestinal physiological factors affecting oral absorption. The great
physiological differences between adults and youngest children place this group in a weaker position
where predictive modelling from adults is still inadequate and the access to clinical research is limited
due to ethical barriers. Pediatric biopharmaceutics and a validated pBCS can be risk-assessment tools
in the necessary optimization tasks for developing age appropriate oral medicines. Due to the potential
changes found in the present study regarding adults, developing a validated pBCS would help to
improve the safety of pediatric therapeutics.
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Appendix A

Table A1. Provisional pBCS classification of oral drugs from the WHO Model List of Essential Medicines
for Children. Abbreviations: BSA-R, body surface dosage; Fr-R, Fried’s rule dosage; Cr-R, Clark’s rule
dosage; Ref, referenced dosage; aBCS, adult BCS.

Drugs

Provisional pBCS

Provisional
aBCS

Neonate
(0.5 months)

Infant
(12.5 months)

Child
(7 years)

BSA-R Fr-R Ref BSA-R Fr-R Ref BSA-R Cr-R Ref

Drugs with unfavorable changes between aBCS and pBCS

Acetylsalicylic acid 4 4 4 4 4 4 4 4 4 3
Acyclovir 4 3 4 4 4 4 4 4 4 3

Amodiaquine 2 2 - 2 2 2 2 2 2 1
Amoxicillin 4 3 4 4 4 4 4 4 4 3

Benznidazole 4 4 4 4 4 4 4 4 4 3
Calcium gluconate 4 3 4 4 3 4 4 4 4 3

Cephalexin 4 3 4 4 4 4 4 4 4 1
Chloramphenicol 4 3 4 4 3 4 4 4 4 3

Ciprofloxacin 4 4 4 4 4 4 4 4 4 3
Clindamycin 3 3 3 3 3 3 3 3 3 1

Dexamethasone 4 3 - 4 4 4 4 4 4 3
Digoxin 1 1 2 1 1 2 1 1 1 1
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Table A1. Cont.

Drugs

Provisional pBCS

Provisional
aBCS

Neonate
(0.5 months)

Infant
(12.5 months)

Child
(7 years)

BSA-R Fr-R Ref BSA-R Fr-R Ref BSA-R Cr-R Ref

Enalapril 3 3 3 3 3 3 3 3 3 1
Ethambutol 4 3 3 3 3 3 3 3 3 3
Fluconazole 4 3 4 4 3 4 4 4 4 3
Flucytosine 4 3 4 4 3 4 4 3 4 3

Fludrocortisone 3 3 4 3 3 4 3 3 4 3
Folic acid 3 3 4 3 3 4 3 3 3 3

Haloperidol 2 1 - 2 1 - 2 1 2 2
Hydrochlorothiazide 4 3 4 4 4 4 4 4 4 3

Hydrocortisone 4 3 4 4 3 3 4 3 3 1
Mefloquine 2 2 - 2 2 2 2 2 2 1

Mercaptopurine 4 4 - 4 4 - 4 4 - 2
Methotrexate 4 4 - 4 4 - 4 4 - 3
Neostigmine 3 3 3 3 3 3 3 3 3 1
Nifurtimox 4 4 4 4 4 4 4 4 4 3

Nystatin 4 3 4 4 4 4 4 4 4 3
Omeprazole 2 1 2 1 1 2 1 1 2 1

Phenobarbital 4 3 4 3 3 4 3 3 4 3
Prednisolone 4 3 - 4 4 4 4 4 4 1

Proguanil 2 1 2 2 1 2 2 2 2 1
Propylthiouracil 4 3 4 4 4 4 4 4 4 3

Pyrazinamide 4 3 - 4 4 4 4 4 4 3
Quinine sulfate 2 1 - 2 2 - 2 2 2 1

Riboflavin 4 3 4 4 3 4 3 3 4 3

Drugs with favorable changes between aBCS and pBCS

Acetylcysteine 4 3 4 4 4 4 4 4 4 4
Allopurinol 4 3 - 4 4 4 4 4 4 4
Artesunate 2 1 - 2 2 2 2 2 2 2

Azithromycin 2 1 2 2 2 2 2 2 2 2
Cefixime 4 3 - 4 4 4 4 4 4 4

Clarithromycin 2 1 2 2 2 2 2 2 2 2
Dapsone 4 3 - 4 4 4 4 4 4 4

Diazepam 2 1 2 2 2 2 2 2 2 2
Diloxanide 2 1 - 2 1 1 2 1 1 2

Doxycycline 4 3 - 4 4 - 4 4 4 4
Fluoxetine 1 1 1 1 1 1 2 2 2 2

Furosemide 4 3 4 4 4 4 4 4 4 4
Ivermectin 2 1 - 2 2 - 2 2 2 2

Levofloxacin 4 3 - 4 4 - 4 4 3 4
Linezolid 4 3 4 4 3 4 4 4 4 4

Loratadine 2 1 - 2 2 2 2 2 2 2
Morphine 4 3 3 4 4 3 4 4 3 4

Moxifloxacin 4 3 - 4 4 - 4 4 - 4
Phytomenadione 2 1 2 2 2 1 2 2 1 2
Pyrimethamine 2 1 2 2 2 2 2 2 2 4

Retinol 2 1 2 2 2 2 2 2 2 2
Tioguanine 4 3 - 4 3 - 4 3 - 4

Trimethoprim 4 3 4 4 3 4 4 4 4 4
Voriconazole 2 1 - 2 2 - 2 2 2 2

Drugs with no changes between aBCS and pBCS

Abacavir 3 3 - 3 3 3 3 3 3 3
Albendazole 2 2 2 2 2 2 2 2 2 2
Amitriptyline 1 1 - 1 1 - 1 1 1 1
Ascorbic acid 3 3 - 3 3 3 3 3 3 3

Atazanavir 2 2 - 2 2 - 2 2 2 2
Azathioprine 4 4 - 4 4 4 4 4 4 4

Caffeine citrate - - 3 - - - - - - 3
Calcium folinate 3 3 3 3 3 3 3 3 3 3
Carbamazepine 2 2 - 2 2 2 2 2 2 2

Chloroquine 1 1 1 1 1 1 1 1 1 1
Chlorpromazine 1 1 - 1 1 1 1 1 1 1
Cholecalciferol 1 1 1 1 1 1 1 1 1 1
Cyclosporin A 2 2 - 2 2 2 2 2 2 2
Clavulanic acid 3 3 3 3 3 3 3 3 3 3

Clofazimine 2 2 - 2 2 2 2 2 2 2
Cloxacillin 1 1 1 1 1 1 1 1 1 1
Cyclizine 4 4 - 4 4 4 4 4 4 4

Cyclophosphamide 3 3 - 3 3 3 3 3 3 3
Cycloserine 3 3 - 3 3 - 3 3 3 3
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Table A1. Cont.

Drugs

Provisional pBCS

Provisional
aBCS

Neonate
(0.5 months)

Infant
(12.5 months)

Child
(7 years)

BSA-R Fr-R Ref BSA-R Fr-R Ref BSA-R Cr-R Ref

Darunavir 2 2 - 2 2 - 2 2 2 2
Delamanid 2 2 - 2 2 - 2 2 - 2

Diethylcarbamazine 3 3 - 3 3 3 3 3 3 3
Docusate sodium 1 1 - 1 1 1 1 1 1 1

Efavirenz 2 2 - 2 2 2 2 2 2 2
Entecavir 3 3 - 3 3 - 3 3 - 3

Ethionamide 4 4 - 4 4 - 4 4 4 4
Ethosuximide 3 3 - 3 3 3 3 3 3 3

Etoposide 4 4 - 4 4 4 4 4 4 4
Griseofulvin 2 2 - 2 2 2 2 2 2 2

Hydroxycarbamide 3 3 - 3 3 - 3 3 3 3
Hydroxychloroquine 1 1 - 1 1 1 1 1 1 1

Ibuprofen 2 2 - 2 2 2 2 2 2 2
Isoniazid 3 3 3 3 3 3 3 3 3 3

Itraconazole 2 2 - 2 2 2 2 2 2 2
Lactulose 3 3 - 3 3 3 3 3 3 3

Lamivudine 3 3 3 3 3 3 3 3 3 3
Lamotrigine 1 1 - 1 1 - 1 1 1 1
Levamisole 1 1 - 1 1 1 1 1 1 1

Levothyroxine 1 1 1 1 1 1 1 1 1 1
Lopinavir 2 2 - 2 2 2 2 2 2 2

Mebendazole 2 2 - 2 2 2 2 2 2 2
Mesna 3 3 - 3 3 - 3 3 - 3

Metformin 3 3 - 3 3 - 3 3 - 3
Methadone 1 1 1 1 1 - 1 1 - 1

Methylprednisolone 4 4 - 4 4 4 4 4 4 4
Metoclopramide 3 3 3 3 3 3 3 3 3 3
Metronidazole 3 3 3 3 3 3 3 3 3 3

Midazolam 1 1 - 1 1 1 1 1 1 1
Miltefosine 2 2 - 2 2 - 2 2 - 2
Nevirapine 2 2 2 2 2 2 2 2 2 2

Niclosamide 2 2 - 2 2 2 2 2 2 2
Nitrofurantoin 4 4 - 4 4 4 4 4 4 4
Ondansetron 1 1 - 1 1 1 1 1 1 1
Oseltamivir 3 3 3 3 3 3 3 3 3 3

Oxamniquine 3 3 3 3 3 3 3 3 3 3
P-amino salicylic acid 3 3 - 3 3 - 3 3 3 3

Paracetamol 4 4 4 4 4 4 4 4 4 4
Phenoxymethylpenicillin

potassium 3 3 - 3 3 3 3 3 3 3

Phenytoin sodium 1 1 1 1 1 1 1 1 1 1
Potassium iodide 3 3 3 3 3 3 3 3 3 3

Praziquantel 2 2 - 2 2 2 2 2 2 2
Primaquine 3 3 3 3 3 3 3 3 3 3
Propranolol 1 1 1 1 1 1 1 1 1 1

Pyrantel 2 2 - 2 2 2 2 2 2 2
Pyridostigmine 3 3 3 3 3 3 3 3 3 3

Pyridoxine 3 3 3 3 3 3 3 3 3 3
Pyronaridine

tetraphosphate 3 3 - 3 3 - 3 3 - 3

Raltegravir 4 4 - 4 4 - 4 4 - 4
Ranitidine 3 3 3 3 3 3 3 3 3 3
Ribavirin 3 3 - 3 3 3 3 3 3 3

Rifampicin 2 2 2 2 2 2 2 2 2 2
Rifapentine 2 2 - 2 2 - 2 2 - 2
Ritonavir 2 2 - 2 2 2 2 2 2 2

Spironolactone 2 2 2 2 2 2 2 2 2 2
Stavudine 3 3 - 3 3 3 3 3 3 3
Succimer 3 3 - 3 3 - 3 3 - 3

Sulfadiazine 4 4 4 4 4 4 4 4 4 4
Sulfamethoxazole 4 4 4 4 4 4 4 4 4 4

Thiamine 3 3 3 3 3 3 3 3 3 3
Triclabendazole 2 2 - 2 2 - 2 2 2 2
Valganciclovir 3 3 - 3 3 - 3 3 - 3
Valproic acid 2 1 2 2 2 2 2 2 2 3

Warfarin 1 1 1 1 1 1 1 1 1 1
Zidovudine 3 3 3 3 3 3 3 3 3 3
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