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Abstract: Identifying the spatial range of mining disturbance on vegetation is of significant impor-
tance for the plan of environmental rehabilitation in mining areas. This paper proposes a method
to identify the spatial range of mining disturbance (SRMD). First, a non-linear and quantitative
relationship between driving factors and fractional vegetation cover (FVC) was constructed by geo-
graphically weighted artificial neural network (GWANN). The driving factors include precipitation,
temperature, topography, urban activities, and mining activities. Second, the contribution of mining
activities (Wmine) to FVC was quantified using the differential method. Third, the virtual contribution
of mining activities (V-Wmine) to FVC during the period without mining activity was calculated,
which was taken as the noise in the contribution of mining activities. Finally, the SRMD in 2020
was identified by the significance test based on the Wmine and noise. The results show that: (1) the
mean RMSE and MRE for the 11 years of the GWANN in the whole study area are 0.0526 and 0.1029,
which illustrates the successful construction of the relationship between driving factors and FVC;
(2) the noise in the contribution of mining activities obeys normal distribution, and the critical value
is 0.085 for the significance test; (3) most of the SRMD are inside the 3 km buffer with an average
disturbance distance of 2.25 km for the whole SRMD, and significant directional heterogeneity is
possessed by the SRMD. In conclusion, the usability of the proposed method for identifying SRMD
has been demonstrated, with the advantages of elimination of coupling impact, spatial continuity,
and threshold stability. This study can serve as an early environmental warning by identifying SRMD
and also provide scientific data for developing plans of environmental rehabilitation in mining areas.

Keywords: disturbance range; GWANN; fractional vegetation cover; mining area; environment

1. Introduction

Mining usually has a negative disturbance on the surrounding environment at different
degrees, which leads to a variety of environmental issues (e.g., vegetation reduction, land
degradation). Sustainable development and public health require essential environmental
remediation in mining areas. It is of vital importance for the plan of environmental
remediation to exactly identify the spatial range of mining disturbance (SRMD).

In the past decades, the impact of mining disturbance on the environment has been
investigated by scholars. First, the impact of mining on vegetation was analyzed by satel-
lite images and field surveys [1–3]. For example, the forest loss due to mining activities
was assessed by combining high-resolution satellite images [1]. Second, several investi-
gations improved the previous methods for assessing the impact of mining disturbances
or proposed new indicators to evaluate the environmental quality in mining areas [4–6].
For instance, the remote sensing ecological index (RSEI) was improved to form a moving
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window remote sensing ecological index (MW-RSEI) to evaluate the environment of min-
ing areas [6]. An indicator was constructed to evaluate the impacts on the environment
under different mining intensities [5]. Third, a part of investigations reconstructed the
disturbance history of vegetation in mining areas. For example, the duration of the mining
disturbance was analyzed using 28 years of Landsat images [7]. Although the impacts
of mining disturbances have been extensively investigated, these investigations have not
involved how to identify the SRMD.

In recent years, some scholars have started to explore the identification of SRMD, and
these publications can be divided into two categories. One category is to fit the trend of
vegetation indices using empirical modeling methods, and a threshold has to be determined
artificially at the stable asymptote to differentiate the area disturbed by mining activities
from that without disturbance. For example, the trend of temperature vegetation dryness
index (TVDI) was fitted using a linear model [8]. The trend of NDVI based on the coefficient
of variation (CV) [9–11] and the LandTrendr algorithm [12] was fitted. The other category
is to identify the SRMD based on a comparative area. For example, the comparison of the
trends of vegetation indices at different distances was conducted to identify the SRMD
based on the Seasonal-Trend decomposition procedure based on Loess (STL) and principal
component analysis [13].

However, existing studies still have the following shortcomings. First, the identifica-
tion of SRMD was based on direct observations of vegetation indices, which attributed the
changes in vegetation exclusively to mining activities [9–14]. Nevertheless, the change of
vegetation in the real situation is the result of coupling multiple factors (e.g., temperature,
precipitation, topography, mining activities, etc.). Existing studies have not separated the
mining factor from other factors, which usually resulted in improperly taking the areas
impacted by other factors such as SRMD. In some areas, changes in vegetation cover may
be caused by topography or climate but not by mining. For example, the decrease in
vegetation cover was caused by the increase in topography but was incorrectly attributed
to mining. Second, the trend of the vegetation index is fitted in sample areas selected from
different directions or in buffers generated at different distances. The value of the stable
trend is determined as the threshold for extracting the SRMD [8–12]. However, errors have
been brought by the artificial determination of thresholds. Third, the spatial discontinuity
between the sample areas creates blind areas in the study (i.e., some areas could not be
covered for the disturbance analysis) [10,13]. Hence, the existing methods are still limited,
and it is necessary to propose new methods to make up for the above deficiencies and
provide more optional methods for the identification of SRMD.

In this paper, a method is proposed for identifying the SRMD by quantifying the
contribution of mining activities and separating out the mining factor from other factors in
the Shengli Mine and Xi-2 Mine in Inner Mongolia, China. First, a geographically weighted
artificial neural network (GWANN) is used to construct the relationship between fractional
vegetation cover (FVC) and driving factors (i.e., precipitation, temperature, topography,
urban activities, and mining activities). Second, the contribution of mining activities to
FVC is quantified using the differential method. Third, the noise in the contribution of
mining activities is quantified in the period without mining activity (1992–2003), and
the virtual contribution is taken as this noise. Finally, the SRMD in 2020 is identified
using a significance test and the contribution of mining activities in 2020. To the best
of our knowledge, this paper is the first to identify the SRMD based on quantifying
the contribution of the mining factor, which avoids the coupling impacts from multiple
factors. In addition, the artificial determination of a threshold is also avoided by using a
significance test, and the SRMD identified by the proposed method has the advantage of
spatial continuity.
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2. Study Area and Datasets
2.1. Study Area

The study area (115◦48′ E~116◦06′ E, 43◦30′ N~44◦50′ N) is in Xilinhot, Inner Mongolia,
China, covering the Shengli Mine and Xi-2 Mine, as shown in Figure 1. It belongs to the
mid-temperate semi-arid continental monsoon climate. The land-use types in the study
area mainly include grassland, woodland, bare land, cultivated land, mining areas, and
impervious surface. The grassland types include meadow grassland, typical grassland, and
dune sand grassland. With the temporal evolution, the area of mining areas and impervious
surface has been increasing, and their direct occupation of the grasslands has resulted in a
decrease in grassland area. In addition, there are large areas of well-grown woodland to
the northeast of the study area.
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Figure 1. Location of the study area.

In the past 20 years, the annual average temperature has been 3.25 ◦C, and the annual
average precipitation has been 275.00 mm, mainly concentrated from June to August. The
elevation of the study area ranges from 939 m to 1319 m, and the average elevation is
1129 m. In addition, the topography of the study area shows a high west and low east.

As the largest lignite field in China, the coal resources of Shengli Mine and Xi-2 Mine
have enormous potential value [15], and the mining activities in the study area started in
2004. In addition to the direct destruction inside the mining area, mining activities also
have an indirect impact on the vegetation around the mining area.

2.2. Datasets

Landsat images, precipitation data, temperature data, topography data, urban activi-
ties data, and mining activities data are utilized in this study.

Landsat images from 1992 to 2020, including Landsat 5 Thematic Mapper (TM), Land-
sat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager
(OLI), were obtained for this study. The surface reflectance (SR) dataset with the spatial
resolution of 30 m was used in this study, which was produced by the National Aeronautics
and Space Administration (NASA) and United States Geological Survey (USGS) [16] and
was available on Google Earth Engine (GEE) [17]. In particular, the SR dataset is the surface
reflectance data after essential pre-processing (i.e., radiometric calibration and atmospheric
correction). The years 1993 and 1994 were excluded due to the poor quality of the images.
The band information of Landsat images is shown in Table 1.
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Table 1. List of band information for Landsat images.

Band Name
Landsat 5 TM Landsat 7 ETM+ Landsat 8 OLI

Band Number Bandwidth (µm) Band Number Bandwidth (µm) Band Number Bandwidth (µm)

Coastal – – – – Band 1 0.43–0.45
Blue Band 1 0.45–0.52 Band 1 0.45–0.52 Band 2 0.45–0.51

Green Band 2 0.52–0.60 Band 2 0.52–0.60 Band 3 0.53–0.59
Red Band 3 0.63–0.69 Band 3 0.63–0.69 Band 4 0.64–0.67
NIR Band 4 0.76–0.90 Band 4 0.77–0.90 Band 5 0.85–0.88

SWIR-1 Band 5 1.55–1.75 Band 5 1.55–1.75 Band 6 1.57–1.65
TIR Band 6 10.40–12.50 Band 6 10.40–12.50 –

SWIR-2 Band 7 2.08–2.35 Band 7 2.09–2.35 Band 7 2.11–2.29
Pan – – Band 8 0.52–0.90 Band 8 0.50–0.68

Cirrus – – – – Band 9 1.36–1.38

The precipitation and temperature datasets were obtained from the website of China
Meteorological Data (http://data.cma.cn (accessed on 2 February 2021)). The datasets
include monthly accumulated precipitation (unit: mm) and monthly mean temperature
(unit: ◦C) for Xilinhot station (station number 54,102) from 1992 to 2003 (except 1993 and
1994) and 2020.

The data for the topography were obtained from the digital elevation model (DEM).
The DEM used in this study was the Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer Global DEM (ASTER GDEM) dataset provided by NASA [18,19]. The
coverage of the ASTER GDEM extends from 83◦ N to 83◦ S, covering almost all the land on
the Earth, which has been widely used in the analysis of vegetation change [20]. For this
dataset, the horizontal accuracy is 30 m, while the vertical accuracy is 20 m [21]. The DEM
used in this study is shown in Figure 2.
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Table 2. Information for each dataset.

Data Data Sources Resolution

Landsat images Google Earth Engine (GEE) 30 m

Precipitation The website of China Meteorological Data
(http://data.cma.cn (accessed on 2 February 2021)) Station

Temperature The website of China Meteorological Data
(http://data.cma.cn (accessed on 2 February 2021)) Station

Topography ASTER GDEM 30 m

Urban activities Administrative boundary and Xilinhot
statistical yearbook

At the scale of town and village in Xilinhot and
the total population of each year

Mining activities Mining companies Annual coal production at each mine

3. Methods
3.1. Inversion of FVC

FVC refers to the ratio of the area of vegetation (including leaves, stems, branches, etc.)
vertically projected on the ground in each pixel to the total area of the pixel [22,23]. The
value of FVC can objectively and accurately reflect the spatial distribution of vegetation in
the study area. The steps for obtaining FVC were described as follows.

Landsat images from July 1 to September 30 each year were used to calculate NDVI
(Equation (1)) when the vegetation was growing most vigorously in the study area. The
maximum NDVI at each pixel from July to September for each year was calculated using
the maximum algorithm in GEE.

NDVI =
ρNIR − ρRed
ρNIR+ρRed

(1)

where ρNIR is the surface reflectance in the near-infrared band and ρRed is the surface
reflectance in the red band.

The correlations of the NDVI between different sensors (TM and ETM+, ETM+ and
OLI) were established using the least-squares fitting method proposed by [24] based on
overlapped images. ETM+ was used as an intermediate sensor to establish the correlation
of NDVI between TM and OLI, as there was no overlapped operating time between Landsat
5 and Landsat 8. Then, the NDVI of both TM and ETM+ were corrected to OLI based on
the established correlations to eliminate the systematic bias caused by different sensors.
The above method has been widely used in many publications [25–27].

In this study, FVC was calculated by NDVI using the pixel dichotomy model, as shown
in Equation (2). The pixel dichotomy model is one of the most widely used methods to
calculate FVC [28,29].

FVC =
NDVI−NDVImin

NDVImax −NDVImin
(2)

where NDVI is the NDVI of the pixel, NDVImin is the NDVI of pure soil, and NDVImax is
the NDVI of pure vegetation.

NDVImin and NDVImax were determined as follows. The pixels of completely bare
soil were selected, and the NDVI was calculated from 1992 to 2003 (except 1993 and 1994)
and 2020. To avoid extreme anomalous values due to noise, these NDVI were sorted in
ascending order, and the pixel value corresponding to a cumulative percentage of 5 was
used as the NDVImin. Then, the pixels of completely vegetation cover were selected, and the
NDVI was calculated from 1992 to 2003 (except 1993 and 1994) and 2020. These NDVI were
sorted in ascending order, and the pixel value corresponding to a cumulative percentage of
95 was used as the NDVImax. In this study, the NDVImin was determined as 0.08, while the
NDVImax was 0.7, as shown in Figure 3. The FVC is shown in Figure 4.

http://data.cma.cn
http://data.cma.cn
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3.2. Spatialization of Driving Factors

The change of vegetation cover in mining areas depends on natural factors [20,30,31]
and artificial factors [32]. In this study area, the natural factors include precipitation, tem-
perature, and topography, and the artificial factors include urban activities and mining
activities. The accuracy of the model demonstrates the effectiveness of the selected driving
factors. For this study, precipitation, temperature, topography, urban activities, and mining
activities were selected as driving factors. Correlation analysis was conducted between
FVC and meteorological data (monthly accumulated precipitation and monthly mean tem-
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perature, respectively). The Pearson’s correlation coefficients are shown in Table 3. In terms
of precipitation, FVC shows the highest correlation with the accumulated precipitation
from June to August. In terms of temperature, FVC shows the highest correlation with
the mean temperature from July to September. Hence, the accumulated precipitation from
June to August and the mean temperature from July to September were used as the driving
factors in this study, as shown in Figure 5.

Table 3. The Pearson’s correlation coefficients of FVC with the accumulated precipitation and the
mean temperature.

Precipitation (mm)

Month Pearson’s correlation
coefficient

Temperature (◦C)

Month Pearson’s correlation
coefficient

January 0.267 January 0.276

February 0.125 February −0.023

March 0.047 March 0.475

April −0.020 April 0.088

May −0.156 May −0.224

June 0.319 June −0.165

July 0.625 * July −0.407

August 0.255 August −0.308

September −0.018 September −0.354

October −0.361 October 0.097

November 0.110 November 0.402

December 0.110 December 0.402

June–August 0.660 ** June–August −0.500

July–September 0.497 July–September −0.616 *

July–August 0.554 * July–August −0.533 *

* At the 0.05 level; ** at the 0.01 level. Significant correlation.
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The DEM of the study area was cropped from the ASTER GDEM dataset and used as
the driving factor representing topography.



Int. J. Environ. Res. Public Health 2022, 19, 5176 8 of 21

The urban activities and mining activities were quantified with Equations (3) and (4),
respectively. There was no mining activity from 1992 to 2003, and mining activities were
quantified from 2011 to 2020.

xurban =
Ppop

DU+1
(3)

where xurban is the quantified result of urban activities of a pixel, Ppop is the population of Xil-
inhot, and DU is the shortest Euclidean distance between the pixel and the urban boundary.

xmine =
MIm

DM+1
(4)

where xmine is the quantified result of mining activities of a pixel, MIm is the coal production,
and DM is the shortest Euclidean distance between the pixel and the mining boundary.

The quantified results of all driving factors were normalized using Equation (5).

Xi =
xi − xmin

xmax − xmin
(5)

where Xi is the normalized data (i.e., Xpre, Xtemp, Xdem, Xurban, and Xmine represent the
driving factors for precipitation, temperature, topography, urban activities, and mining
activities, respectively), xi is the quantified data of each driving factor, xmin is the minimum
of the quantified data for the driving factor for each year in the study area, and xmax is the
maximum of the quantified data for the driving factor for each year in the study area.

In this study, precipitation and temperature data were used for the Xilinhot station.
The topography of the study area did not change significantly during the investigated
years, so the same data were used. The normalized results of driving factors in all of the
investigated years are shown in Figures 6–9.
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3.3. GWANN

GWANN is a network for constructing the non-linear and quantitative relationship
between the independent variables and the dependent variable [33]. GWANN combines
geographical weighting with artificial neural networks. Hence, it can consider the spatial
heterogeneity among the driving factors. This network includes the following structure:
input layer (driving factors), hidden layer, and output layer (FVC), as shown in Figure 10.
The training dataset in this paper includes the pixel location, driving factors (Xpre, Xtemp,
Xdem, Xurban, and Xmine), and the FVC (Y0) calculated by the pixel dichotomy model.
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The driving factors are passed from the input layer into the hidden layer based on
Equations (6) and (7). In neurons, the activation function is a non-linear hyperbolic tangent
function, as shown in Equation (8). Each neuron is passed to the neurons at the next layer
when Equations (6)–(8) are repeated until reaching the output layer.

Layerj = ∑
i∈Sj

wij pi (6)

pi = φ(Layer i) (7)

φ(x) =
ex − e−x

ex + e−x (8)

where wij is the weight of the connection between neuron i and neuron j, pi is the output
of neuron I, Sj is the set of neurons connected to neuron j, Layeri is the input to the
neuron I, Layerj is the input to the neuron j, pi is the output of neuron i, and ϕ(x) is the
activation function.

The error signal is calculated using the backpropagation, as shown in Equation (9) [34].
The error signal depends on the error function, as shown in Equation (10).

δj =

 φ′
(

Layerj

)
Dj
(

pj − rj
)

I f j is an output neuron

φ′
(

Layerj

)
∑
k

δkwjk else
(9)

E =
1
2 ∑n

i=1 Di (r i − pi)
2 (10)

where δj is the error signal of neuron j, pj is the output of neuron j, rj is the Y0 corresponding
to neuron j, wjk is the weight of the connection between neuron j and k, δk is the error signal
of neuron k, E is the error function, Dj is the geographically weighted distance between
the location of the predicted FVC (Y) and the output neuron j, ϕ′(x) is the derivative of the
activation function, ri is the Y0 corresponding to neuron i, pi is the output of neuron i, and
n is the number of all the pixels (i.e., all the output neurons) in the study area.

The weights of connection are adjusted using Equation (11).

∆wij = −η
∂E

∂wij
= −ηδj pi (11)

where η is the learning rate.
Finally, the value of FVC (Y) was predicted by the trained network.

3.4. Differential Method

The contribution of the mining activities (denoted as Wmine) on FVC was quantified by
the differential method [35].

First, the value of a driving factor Xi was multiplied by 0.001 as the bias ∆Xi [35].
When a driving factor was added with a bias, other driving factors remained unchanged.
The combination of ∆Xi and the driving factor constructed a new independent variable
(Xi + ∆Xi), which formed a set with the remaining independent variables. This set served
as the new input layer of the already trained GWANN. Meanwhile, the YXi was obtained
by the GWANN. An example of the Xmine is shown in Figure 11.

Second, the partial derivatives of each driving factor were calculated separately, as
shown in Equation (12).

Ci =
YXi −Y

∆Xi
(12)

where Ci is the partial derivative of Xi (CPre, CTemp, CDEM, CUrban, and CMine); ∆Xi is the
bias added by Xi (∆XPre, ∆XTemp, ∆XDEM, ∆XUrban, and ∆XMine), respectively; YXi is the
predicted value after adding bias to Xi; and Y is the predicted value by the original Xi.



Int. J. Environ. Res. Public Health 2022, 19, 5176 12 of 21

Finally, the contribution of mining activities was calculated using Equation (13).

Wmine =
Cmine

∑N
i=1 Ci

(13)

where Wmine is the contribution of the mining activities to FVC and N is five (the number of
independent variables). Similarly, the contributions of other driving factors to FVC can be
obtained (WPre, WTemp, WDEM, and WUrban).
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3.5. Quantifying the Noise in the Contribution of Mining Activities

In principle, a pixel should be identified within the spatial range of mining disturbance
if the corresponding contribution of mining activities is more than zero. However, noise is
inevitable brought by the differential method.

In the study area, there was no mining activity from 1992 to 2003. In order to quantify
the noise in the contribution of mining activities, we assumed the presence of mining
activities during this period and calculated the contribution of mining activities, which is
a “virtual contribution”. Since there was no mining activity between 1992 and 2003, this
“virtual contribution” was taken as the noise in the contribution of mining activities by the
differential method.

First, the assumed mining activities were quantified in 1992–2003 (except 1993 and
1994), as shown in Equation (14). Since there was no mining activity from 1992 to 2003, the
mining data were provided from 2011 to 2020.

vxmine =
MIu

DVM+1
(14)

where vxmine is the quantified result of the assumed mining activities, MIu is the assumed
coal production (i.e., the coal production from 2011 to 2020), and DVM is the shortest
Euclidean distance between the pixel and the assumed mining boundary (i.e., the mining
boundary from 2011 to 2020).

Second, precipitation, temperature, topography, and urban activities were quantified
from 1992 to 2003 (except 1993 and 1994), using the method in Section 3.2. All driving
factors were normalized (denoted as Xpre, Xtemp, Xdem, Xurban, and VXmine). In other words,
VXmine is the normalized vxmine.

Finally, the set of driving factors for the period without mining activity was con-
structed, as shown in Figure 12.
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Since the contribution could be calculated by simply inputting the quantified data on
mining activities in the differential method, the virtual contribution of the mining activities
(V-Wmine) could also be calculated from 1992 to 2003 (except 1993 and 1994) using the
method in the Sections 3.3 and 3.4. The process is illustrated in Figure 13.
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3.6. Significance Test

After repeated experiments and investigations, V-Wmine (i.e., noise in the contribution
of mining activities) shows a normal distribution. To judge if the Wmine of a pixel in 2020
belonged to noise or not, a one-sided (right) significance test was applied to the normal
distribution of V-Wmine [36]. In this study, when a significance test was performed on the
Wmine of a single pixel in 2020, this pixel was called the “tested pixel”. A significance test
was used to determine if the tested pixel was significantly disturbed by mining activities
as follows.
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In general, statistical significance cannot be claimed if there is more than a 5% chance
for the occurrence of the event [37]. In other words, in terms of the principle of a signifi-
cance test, an event with less than a 5% chance of occurrence is usually referred to as an
“unlikely event”, and the null hypothesis should be rejected under this condition, while the
alternative hypothesis should be accepted. The significance level α was set to be 0.05 in
this study.

The null hypothesis (H0) and the alternative hypothesis (H1) were listed as follows.

H0: The pixel was not disturbed by mining activities, i.e., Wmine ≤ V0.95.

H1: The pixel was disturbed by mining activities, i.e., Wmine > V0.95.

V0.95 is the critical value. The critical value (V0.95) was defined as the value where the
cumulative frequency reached 95% on the histogram. When Wmine was in the region where
H0 was rejected (i.e., H1 was accepted), this region was called the critical region, as shown
in Figure 14. If the Wmine of the tested pixel was more than V0.95, it was identified as the
region disturbed by mining activities. Then, all the pixels disturbed by mining activities in
the study area were acquired, and these pixels constituted the SRMD.
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4. Results
4.1. Accuracy of GWANN

The root mean square error (RMSE) and mean relative error (MRE) are widely used
to evaluate the accuracy of geospatial modeling [38], so these two indicators are used to
evaluate the GWANN in this paper, as shown in Equations (15) and (16). The results of the
two indicators are shown in Table 4, and the mean RMSE for the 11 years of GWANN in
the whole study area is 0.0526, while the mean MRE is 0.1029.

RMSE =

√
1
n

n

∑
i=1

(FVC traini
− FVCtruei

)2
(15)

MRE =
1
n

n

∑
i=1
|
FVCtraini − FVCtruei

FVCtruei

| (16)

where n is the number of pixels in the study area, FVCtraini is the FVC of pixel i predicted
by GWANN, and FVCtruei is the FVC of pixel i calculated by the pixel dichotomy model.
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Table 4. Accuracy of the GWANN.

Year 1992 1995 1996 1997 1998 1999

RMSE 0.0117 0.0191 0.0468 0.0043 0.0261 0.0422
MRE 0.0254 0.0420 0.1193 0.0105 0.0554 0.1026

Year 2000 2001 2002 2003 2020

RMSE 0.0261 0.0806 0.0658 0.1015 0.1546
MRE 0.0561 0.1521 0.1275 0.1895 0.2518

4.2. The Noise in Contribution of Mining Activities

The histogram distribution of V-Wmine is shown in Figure 15. The V-Wmine has been
fitted to the curve using a Gaussian function, which showed a significant feature of normal
distribution. The mean and standard deviation (SD) of V-Wmine were calculated, which
were 0.054 and 0.017, respectively. By calculating the cumulative frequency, the critical
value (V0.95) was found to be 0.085 (Figure 15).
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4.3. Results of the Identified SRMD

The pixels disturbed by mining activities were selected by a significance test, and the
identified SRMD in 2020 is shown in Figure 16. Distance measurements were performed
on the map displayed in Figure 16. The shortest Euclidean distance between the pixel on
the boundary of SRMD and the boundary of the mining area was calculated and defined
as the “disturbance distance”. The conceptual illustration of the disturbance distance is
shown in Figure 17. The statistics of the disturbance distance are shown in Figure 18.

A buffer of 3 km beyond the boundary of each mining area in 2020 was gener-
ated (Figure 16). Figure 16 suggests that most of the SRMD are inside the 3 km buffer
from the boundary of the mining area. The average and median disturbance distance is
2.25 km and 2.63 km, respectively, while the middle of the distance values is distributed in
1.17 km~3.12 km (i.e., 25~75%) (Figure 18). The area of the SRMD that exceeds the 3 km
buffer is the area adjacent to both the Xi-2 Mine and Shengli Mine (Figure 16). In this
area, the longest disturbance distance in the whole SRMD was present, which was 3.63 km
(Figure 13). The area of the SRMD that did not exceed the 3 km buffer was mainly located
to the southeast and northeast of the Shengli Mine (Figure 16). The shortest distance was
0 km (Figure 16), located in the area where the Shengli Mine borders the urban area.
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The disturbance distance in different directions is shown in Figure 19. The SRMD
was divided into eight regions according to different directions (directions 1–8, Figure 19).
The disturbance distance in direction 8 was between 2.8 km and 3.63 km, which was
significantly higher than that in other directions. The disturbance distance in direction 2
and direction 3 were between 0 and 1.2 km, which was significantly lower than that in the
other directions. In addition, the disturbance distance in direction 1 was between 0.4 km
and 2.8 km. The disturbance distance in other directions (4–7) was between 1.6 km and
3.2 km.
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5. Discussion

In this study, the coupling of multiple factors was considered, and the mining factor
was separated from other factors to identify the SRMD by significance test. Since the
contribution of the mining factor was quantified, the separate impact of mining activities
on the environment can be understood more clearly and visually. Meanwhile, some results
need further explanation and discussion.

The GWANN was used to construct the relationship between FVC and five driving
factors, and the differential method was used to quantify the contribution of mining
activities to FVC. The mean RMSE and MRE for the 11 years were used to evaluate the
accuracy, which was 0.0526 and 0.1029 in the study area, respectively. The low values
of the two error indicators suggest that GWANN and the differential method have been
successfully applied to quantify the contribution of mining activities in this study.
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Figure 15 demonstrates that the histogram of V-Wmine obeys normal distribution. In
particular, the V-Wmine is between 0 and 0.085 with a 95% probability. In other words,
there is a very low virtual contribution of mining activities and its normal distribution
during the period without mining activities. These results are highly consistent with our
assumption that the calculated virtual contribution (V-Wmine) is the noise in the contribution
of mining activities brought by the differential method. What’s more, this high consistency
with our assumption suggests the feasibility and effectiveness of the proposed method for
identifying the SRMD based on contribution quantification and significance test.

Most of the SRMD are distributed in the buffer of 3 km (Figure 16) with an average
disturbance distance of 2.25 km (Figure 18). The results in Figures 16 and 18 have described
the characteristics of the spatial range of mining disturbance on FVC. In particular, the
longest disturbance distance is present in the area adjacent to both the Xi-2 Mine and
Shengli Mine, which indicates that the superimposed impact from the two mines led to
the larger spatial range of mining disturbance. The superimposed disturbance may be the
reason why the high values of disturbance are present in direction 8 (Figure 19). However,
in direction 4, also adjacent to both two mines, the distance is significantly less than that
in direction 8 (Figure 19). In fact, the distance in directions 2–4 is generally shorter than
that in other directions; even the shortest disturbance is present in direction 2. Moreover,
the urban area is adjacent to the mining area in directions 2–4. Hence, it can be inferred
that the disturbances in directions 2–4 are mainly from the urban activities and the mining
disturbance is not significant. Although the regions in directions 2–4 are adjacent to the
urban area, the disturbance distance is higher in direction 4 than that in the other two
directions (Figure 19), which also indicates the superimposed impact from the two mines.
In direction 1, there are river valleys and woodlands where the quality of the background
environment is relatively higher than that in other areas, which may be the reason why
a short disturbance distance is present in this direction. Figure 19 demonstrates that the
spatial range of mining disturbance in the study area possessed significant directional
heterogeneity. Overall, the results in this paper provide important data for understanding
the indirect impact of mining activities on the surrounding environment in the study area
and are useful for the plan of environmental rehabilitation.

This paper makes up for some deficiencies in existing publications. Here, several
advantages of this study are discussed as follows.

(1) Elimination of coupling impact. Compared to direct observations of vegetation
indices (e.g., [9–14]), the quantified contribution of the mining factor eliminates the impact
of other factors. The vegetation in the study area is impacted by the coupling of multiple
factors, so it is more rational to obtain the results of SRMD in 2020 with this study method.

(2) Spatial continuity. Sample areas selected from different directions or buffers
generated at different distances were investigated by some methods (e.g., [10,13]), and the
spatial discontinuity between sample areas creates blind areas in the study. In contrast, the
contributions of the driving factors to FVC of this study method are calculated at the pixel
scale. In other words, the contribution of each driving factor is spatially continuous. Hence,
the SRMD obtained is also spatially continuous.

(3) Threshold stability. It is more scientific and effective to calculate the critical value
by significance test than to determine the threshold artificially (e.g., [8–12]). Moreover, the
significance test avoids the instability brought by the artificial determination of a threshold.

However, we recognize that there are still some shortcomings that should be improved
in the future. The SRMD in 2020 is identified in this paper. Subsequently, the change of
SRMD in long time series can be investigated, and the pattern in temporal changing is
possible to be discovered. In terms of data, five driving factors (precipitation, temperature,
topography, urban activities, and mining activities) are selected to construct GWANN in this
paper, and more driving factors can be considered for analysis in subsequent investigations.
There are different driving factors in different conditions of natural geography, and the
appropriate driving factors should be selected. The method of this study may be applied
when the appropriate driving factors are selected under different conditions of natural
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geography. The proposed method is subject to further verification of adaptation in other
mining areas.

6. Conclusions

In this study, GWANN was used to construct a non-linear and quantitative relationship
between FVC and five driving factors. The differential method was used to quantify the
contribution of mining activities to FVC. The noise in the contribution of mining activities
(i.e., the virtual contribution V-Wmine) was calculated during the period without mining
activities (1992–2003, except 1993 and 1994). The SRMD in 2020 was identified utilizing the
significance test. Some conclusions were reached as follows.

(1) The accuracy of GWANN demonstrates the effectiveness of GWANN and that the
differential method can be used to quantify the contribution of mining activities in this
study area.

(2) The noise in the contribution of mining activities to FVC obeys normal distribution,
and the value of noise was relatively low. The normal distribution of noise with low values
demonstrates the usability of the significance test for judging if a region is disturbed by
mining activities.

(3) In the study area, most of the SRMD are inside the 3 km buffer with an average
disturbance distance of 2.25 km for the whole SRMD. The longest disturbance distance is
present in the area of superimposed impact from the two mines, and the shortest distur-
bance distance is in the area adjacent to the urban. Significant directional heterogeneity is
possessed by the SRMD.

In this study, the SRMD in 2020 was identified with the way of unmixing the coupling
impact, spatial continuity, and determining threshold by significance test (not artificial
determination). The pattern of SRMD in long time series and more driving factors should
be investigated in the future.
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