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Human gamma delta T  cells have extraordinary properties including the capacity for 
tumor cell killing. The major gamma delta T cell subset in human beings is designated 
Vγ9Vδ2 and is activated by intermediates of isoprenoid biosynthesis or aminobisphos-
phonate inhibitors of farnesyldiphosphate synthase. Activated cells are potent for killing 
a broad range of tumor cells and demonstrated the capacity for tumor reduction in 
murine xenotransplant tumor models. Translating these findings to the clinic produced 
promising initial results but greater potency is needed. Here, we review the literature on 
gamma delta T cells in cancer therapy with emphasis on the Vγ9Vδ2 T cell subset. Our 
goal was to examine obstacles preventing effective Vγ9Vδ2 T cell therapy and strategies 
for overcoming them. We focus on the potential for local activation of Vγ9Vδ2 T cells 
within the tumor environment to increase potency and achieve objective responses 
during cancer therapy. The gamma delta T cells and especially the Vγ9Vδ2 T cell subset, 
have the potential to overcome many problems in cancer therapy especially for tumors 
with no known treatment, lacking tumor-specific antigens for targeting by antibodies and 
CAR-T, or unresponsive to immune checkpoint inhibitors. Translation of amazing work 
from many laboratories studying gamma delta T cells is needed to fulfill the promise of 
effective and safe cancer immunotherapy.

Keywords: gamma delta, T cell, cancer, immuno-oncology, vdelta2 gamma delta T cells, targeted immunotherapy

iNTRODUCTiON

Human T cells expressing the Vγ9JγPVδ2 T cell receptor [also designated Vγ2Jγ1.2Vδ2 (1, 2)] com-
prise 1–5% of circulating lymphocytes in healthy adults. Treating peripheral blood mononuclear cells 
(PBMC) with phosphorylated intermediates from the isoprenoid biosynthesis pathway [isopentenyl- 
pyrophosphate (IPP) and (E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate (HMBPP)] (3–5) or 
aminobisphosphonate inhibitors of farnesyl diphosphate synthase (FDPS) (6) stimulate prolif-
eration, cytokine secretion, and cytotoxic effector function of Vγ9Vδ2 T cells. The Vγ9Vδ2 T cell 
response to phosphorylated compounds (phosphoantigens) or aminobisphosphonate is almost 
exclusive to Vδ2 cells with a JγP rearrangement and responding cells frequently use public Vγ9JγP 
sequences that are shared widely in the population [reviewed in Ref. (7)]. Because the Vγ9Vδ2 
T  cell response to phosphoantigen or aminobisphosphonate is ubiquitous in the healthy human 
population and the expanded cells have potent effector functions, many investigators are developing 
immunotherapies based on selective activation of the Vγ9Vδ2 T cell subset. Increasingly the focus of 
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γδ T cell research is on cancer immunotherapy. Here, we review 
oncology applications for this important component of natural 
tumor surveillance and discuss obstacles to clinical translation of 
our basic knowledge about γδ T cells.

Circulating Vγ9Vδ2 T  cells are diverse due to length and 
sequence variation in the CDR3 regions of both γ and δ chains 
but their uniform activation by phosphoantigen or aminobispho-
sphonate gives the appearance of an innate response. Similarly, the 
circulating adult Vγ9Vδ2 T cell repertoire is shaped by constant 
positive selection due to the presence of ubiquitous phospho-
antigens produced by host cells or resident microbes. Chronic 
positive selection increases the proportion of Vγ9Vδ2 T  cells 
in blood and reduces population diversity due to amplification 
of T cell clones mostly expressing public Vγ9JγP chains. With a 
TCR repertoire altered by chronic positive selection, human and 
non-human primates along with a few other species (8) maintain 
a pool of Vγ9Vδ2 T cells that is dominated by central and effector 
memory phenotype, contains 1 of every 40 memory T  cells in 
the body, and reacts to appropriate stimuli with the speed and 
uniformity of innate immunity. These features, particularly the 
uniform response to common stimuli without MHC restriction, 
make the Vγ9Vδ2 T cell subset especially attractive for a variety 
of therapeutic applications in man.

In earlier studies of human γδ T cells it was discovered that 
several tumor cell lines directly stimulated the Vγ9Vδ2 subset 
without exogeneous phosphoantigen or aminobisphosphonate 
addition. A good example is the Daudi B cell line, which is a selec-
tive activator of Vγ9Vδ2 T cell proliferation and effector function 
(9). The Daudi cell line is unusual because it does not express 
β2-microglobulin, hence fails to MHC class I-related surface gly-
coproteins. However, other cell lines with MHC class I expression 
(10) are nonetheless capable of activating Vγ9Vδ2 T cells and of 
being targets for cytotoxicity. Using Daudi B  cells to stimulate 
PBMC lead to expansion of multiple Vγ9Vδ2 T cell clones from 
healthy individuals and the pattern of responses was similar to the 
pattern of clonal expansion after IPP stimulation (11).

Multiple agents can be combined to achieve potent stimulation 
of Vγ9Vδ2 T cells. The best-known examples of phosphoantigen, 
aminobisphosphonate, or stimulatory cell lines were described 
above. In those examples, elevated levels of cellular IPP were 
critical to cell stimulation and IPP levels must be elevated in a 
cell that also expresses butyrophilin 3A1 on its surface (12–16). 
The butyrophilin 3A1 is only one part of a complex regulator of 
VγVδ2 T cell activation and is found within heteromeric com-
plexes that control T cell activation (17). Evidence from physical 
studies supports a view that phosphoantigen binding to the 
cytoplasmic B30.2 domain of butyrophilin 3A1 induces a unique 
conformational change that propagates throughout the molecule 
(18–20). The idea that conformational change in butyrophilin 
3A1 governs recognition by Vγ9Vδ2 T  cells is consistent with 
positive selection of the Vγ9JγP rearrangement; JγP is the longest 
J segment and length seems to be crucial for TCR recognition  
(7, 11). The literature on butyrophilin and γδ T cell activation has 
been reviewed recently (18).

A requirement for the combination of IPP plus the human 
butyrophilin complex explains the lack of xenogeneic stimulation 
by non-human tumor cells despite their common production of 

IPP. Variations of this theme help to explain why cells infected 
with bacteria that are themselves capable of producing phospho-
antigens similar to IPP (21–23) will stimulate Vγ9Vδ2 T  cells. 
Combinations of T cell receptor cross-linking via antibody treat-
ment plus cytokine or toll-like receptor agonists also stimulate 
Vγ9Vδ2 T cell proliferation and cytokine production (24).

The signals required to maximize cytotoxic effector activity are 
less clear, though C-type lectin receptors are known to be impor-
tant. The NK receptor NKG2D is a potent activator of cytotoxic 
effector function and is expressed on the majority of stimulated 
Vγ9Vδ2 T  cells (25). A smaller sub-population expresses the 
inhibitory receptor NKG2A (26, 27), and both subsets may con-
tain activated Vγ9Vδ2 T cells expressing the CD16 low affinity 
Fc receptor, and are capable of being activated by IgG bound to 
target cells (28).

STRATeGieS FOR γδ T CeLLS iN 
iMMUNO-ONCOLOGY (i/O)

The challenges to developing a cancer therapy based on activat-
ing γδ T cells are exemplified in the history of intravesical Bacille 
Calmette–Guerin (BCG), a strain of Mycobacterium bovis used 
for treating bladder cancer. Epidemiology studies in the early 
twentieth century linked tuberculosis with lower cancer inci-
dence and lead to the introduction of BCG as a cancer vaccine 
in 1935 [reviewed in Ref. (29)]. By the 1970s BCG was becom-
ing accepted for bladder cancer therapy and remains in use for 
this disease. It  was reported that BCG is a potent stimulator 
for Vγ9Vδ2 T  cells (30) and activated cells kill bladder cancer 
cells in vitro (31). These findings suggested a direct relationship 
between Vγ9Vδ2 T cell activation by locally administered BCG 
and subsequent destruction of tumors by direct cytotoxicity. 
Around 40 years later we know that Vγ9Vδ2 T cells are found at 
higher levels in urine from bladder cancer patients treated with 
BCG (32) and successful treatment is associated with increased 
levels of intratumoral CD19 B cells along with CD4, CD8, and 
γδ T cells (33). Today, bladder cancer treatment is evolving with 
the introduction of new immunotherapies despite our poor 
understanding of immune response triggered by BCG in  situ, 
the extent to which γδ T cells are important for these responses, 
and the mechanisms of action for tumor reduction. Could we 
have a better therapy for non-invasive BCG based on a clearer 
understanding of the immune response? The answer is uncertain, 
but it is likely that such studies would produce more sophisticated 
biomarkers, better prognosis, and personalized treatment for 
bladder cancer. This review of γδ T cells and cancer therapy seeks 
to identify similar gaps in our current understanding of γδ T cell 
immunotherapy that may slow progress to the development of 
treatment strategies and clinical products.

Most studies on human γδ T cells have concentrated on the 
Vγ9Vδ2 T  cell subset from peripheral blood. This reflects in 
part, the ease of obtaining primary cells for laboratory studies 
and the ability to grow large numbers of Vγ9Vδ2 T cells from 
human PBMC. More importantly, this choice reflects the biology 
of Vγ9Vδ2 T cells where the TCR repertoire is shaped by strong, 
positive selection pressure that maintains a circulating, innate-like 
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T cell population. Collective efforts in many laboratories created 
a detailed picture of the effector activities for Vγ9Vδ2 cells and 
outlined the road map for clinical applications.

Unique properties of circulating Vδ1 cells are less defined, 
although they have been studied for treatment of some neo-
plastic diseases (34, 35). The majority of Vδ1 cells comprise the 
intraepithelial lymphocyte population of mucosal epithelia where 
they react to signals of stress by producing abundant cytokines 
and chemokines that influence mononuclear cell infiltration into 
damaged, infected, or malignant epithelium (36–38). Recent 
progress in expanding Vδ1 cells from blood (39, 40) will undoubt-
edly increase our knowledge about this subset. The capacity for 
CD30+ Vδ1 T cells to produce IL-17A and create inflammatory 
microenvironment (41) suggests this T cell subset may promote 
or inhibit cancer progression depending on the cell type, location, 
state of disease, and other factors. Consequently, the role for Vδ1 
cells remains unclear, especially in solid tumors, but these cells 
hold promise for treating a select group of malignancies including 
leukemia (35).

The Vδ3+ subset has also been considered for therapeutic use 
but less is known about stimulatory antigens or properties of these 
cells. The Vδ3+ subset has been implicated in the response to her-
pesvirus infections including cytomegalovirus and Epstein–Barr 
virus (42–44). Clinical studies correlated elevated baseline Vδ3 
levels with fewer herpesvirus outbreaks after iatrogenic immune 
suppression such as that employed in the transplant setting (45). 
However, Vδ3 cells are relatively rare in blood and conditions for 
expanding these cells ex vivo are poorly defined. Cellular recogni-
tion of EBV- or CMV-infected cells has also been documented for 
Vδ1 or Vδ2 cells (42, 46) and in rare cases, the Vδ5+ subset also 
recognized herpesvirus-infected cells (44).

Our ability to define an I/O strategy based on the biology 
of γδ T cells is impacted by many factors including the limited 
information about how these cells participate in natural tumor 
surveillance. It is critical to decide whether a focus on the well-
known Vγ9Vδ2 T cell subset offers more advantages compared 
to exploring tumor-infiltrating lymphocyte populations, and 
how can we balance the pro-tumor and anti-tumor roles for Vδ1 
cells (47). Can we find unique properties of Vδ3 or other minor 
subsets that are compelling for cancer therapy? Finally, should 
we be looking for platform approaches to γδ T cell I/O or create 
unique approaches for each type of malignancy? Answers to these 
questions will help to define pathways for clinical development of 
γδ T cell immunotherapies.

iS THeRe A ROLe FOR vγ9vδ2  
T CeLLS iN i/O?

There are compelling arguments for I/O strategies based on acti-
vating Vγ9Vδ2 T cells. This subset is abundant in blood and cells 
can be expanded ex vivo with simple protocols. Cytotoxic killing 
of many tumor types is well documented for Vγ9Vδ2 T cells and 
the range of targets is broad. Furthermore, activation of Vγ9Vδ2 
T cells can be accomplished ex vivo or in vivo through stimulation 
with mammalian or microbial phosphoantigens, one of several 
widely used aminobisphosphonate drugs, TCR-cross linking 
monoclonal antibodies, butyrophilin cross-linking antibodies, 

or exposure to stimulatory tumor cells. This highly flexible 
system provides many opportunities for matching Vγ9Vδ2 T cell 
stimulation with a specific tumor target and allows for realistic 
consideration of both passive immunotherapy with ex vivo 
expanded cells, and in vivo therapy using direct activation of the 
Vγ9Vδ2 T cell subset.

By contrast, the list of tumor cell targets for Vδ1 or Vδ3 cells 
are narrow, but may be expanded in the future, and there is a 
concern regarding the pro-inflammatory nature of Vδ1 cells 
because of their propensity to express the cytokines IL-17 or 
IL-4. For an immediate, near-term I/O program we and others 
[reviewed in Ref. (48–51)] tend toward focusing on the natural 
tumor surveillance activities of Vγ9Vδ2 T cells.

Despite our enthusiasm for tumor immunotherapy involving 
Vγ9Vδ2 T cells, there is always doubt regarding their practical 
utility for clinical cancer care. We might (and should) ask: if 
natural tumor immunity is important and potentially useful for 
oncologic medicine, why does this surveillance system fail to catch 
and prevent malignant disease in the first place? In other words, 
do tumors escape immune surveillance or is the demonstrated 
tumor cytotoxicity of γδ, NK, NKT, MAIT, and other innate-like 
cells an in vitro property with little relevance to practical problems 
in cancer care? We will overcome these concerns by demonstrat-
ing consistent potency, clearly defined mechanisms of action, and 
objective clinical responses to γδ T cell immunotherapy.

TUMOR MeCHANiSMS FOR iMMUNe 
evASiON

Multiple mechanisms have emerged to explain tumor evasion of 
MHC-restricted responses. The conventional paradigm argues 
that innate immune activation precedes activation of antigen-
specific T  cells, especially CD8+ subsets, and in turn leads to 
recruitment of effector T cells capable of destroying the tumor 
[reviewed in Ref. (52)]. Multiple mechanisms at each step may 
result in tumor escape from T cell surveillance. Tumors may have 
an immunosuppressive microenvironment that fails to activate 
innate responses. Tumors may have reduced immunogenicity 
due to lack of tumor-specific antigens or downregulation of MHC 
molecules. Tumors may also inhibit the activation of T cell effec-
tor mechanisms through overexpression of ligands for immune 
inhibitory costimulatory molecules (checkpoints). The latter area 
has received much attention lately due to licensure of therapeutic 
monoclonal antibodies that prevent receptor:ligand engagement 
of inhibitory costimulatory receptors and their ligands resulting 
in activation of tumor-specific T cell responses.

Clinical studies with antibodies that block inhibitory costimu-
lation documented a substantial impact on specific subsets of 
malignant diseases. For example, Merck’s Keytruda product 
(monoclonal antibody against PD-1) for metastatic melanoma,  
non-small cell lung cancer, and tumors with high expression 
of PD-L1 has been highly successful in several clinical settings 
[reviewed in Ref. (53)]. Success with inhibiting PD-1/PD-L1 
interactions by blocking PD-1 (Keytruda and Nivolumab) or 
PD-L1 (Atezolizumab, Avelumab, and Duvalumab), and blocking 
of CTLA-4 (Ipilimumab) has stimulated interest in blocking sev-
eral other receptor/ligand interactions with similar mechanisms 
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of action. The continuing development of new checkpoint inhibi-
tors is especially important because tumor escape from anti-PD-
L1 has already been observed and involved upregulation of other 
inhibitory costimulation molecules (54). Clinical experiences 
will elucidate mechanisms for escape from checkpoint inhibitor 
antibody effects and drive the development of new monoclonal 
antibody drugs alone or in combination with other antibodies or 
alternate therapeutic modalities.

Whether PD-1 or other checkpoint inhibitors enable tumors to 
escape Vγ9Vδ2 T cell surveillance is an open question. Expression 
of PD-1 was increased after Vγ9Vδ2 T cell stimulation but pre-
treatment of PD-L1 Daudi tumor cells with zoledronic acid was 
sufficient to render them susceptible to Vγ9Vδ2 T  cell killing 
irrespective of PD-L expression (55). Cytotoxicity was less potent 
when PD-L was present on tumor cells; some studies noted that 
tumor cell killing was reduced by up to fivefold in the presence 
of PD-L (56). Pennington’s group (57) identified a CD24−/
CD28−/CD16+ subset of Vγ9Vδ2 T  cells, representing about 
10% of total Vγ9Vδ2 T cells in blood from healthy donors, that 
expressed CD57 and had the highest proportion of PD-1 cells 
(14%) among all Vγ9Vδ2 T cell subsets. Both CD57 and PD-1 are 
presumed markers of inactivated or “senescent” T cells that have 
lost the potential for proliferation (58). When double-positive 
cells accumulated at the tumor site, it was usually taken as a 
sign of failed tumor immunity (59). However, recent literature 
suggests that effector function and capacity for proliferation may 
be differentiated on the basis of CD57 expression. In both CD4 
T cells (60) and NK cells (61), CD57 expression identified cells 
that are potent for cytotoxicity but lack the capacity for expressing 
immune-suppressing cytokines including IL-10 or IL-21 and will 
not proliferate in response to stimulation (60). If Vγ9Vδ2 or other 
γδ T  cells also become potently cytotoxic without producing 
regulatory cytokines, PD-1 and possibly CD57 may be markers for 
tumor effector activity and not signs of a failed immune response.

As noted above, expression of PD-1 increased after phospho-
antigen or aminobisphosphonate stimulation of Vγ9Vδ2 T cells 
(55) and we might infer from studies of NK and CD4 cytotoxic 
T  cells that PD-1 and CD57 identify non-proliferating but 
potently cytotoxic cells that do not express suppressive cytokines. 
It is important to define the conditions for generating such cells, 
to determine their life span in tumors and to understand whether 
they contribute meaningfully to tumor reduction. Such studies 
may also guide decisions about future clinical trials proposing 
combinations of Vγ9Vδ2-based treatment and checkpoint 
inhibitor antibodies.

Because the population of Vγ9Vδ2 T  cells responds almost 
uniformly to phosphoantigen or aminobisphosphonate stimula-
tion, there will be rapid proliferation of stimulated cells and con-
tinuing production of the PD-1+/CD57+ subset. The majority 
of Vγ9Vδ2 cells will have little or no expression of PD-1 result-
ing in tumor killing that is not abrogated by PD-L1 or PD-L2 
ligands (56). While the impact of PD-1 on Vγ9Vδ2 T cells is still 
being evaluated, we can make a provisional conclusion that this 
immune checkpoint is not an obstacle to Vγ9Vδ2 T cell tumor 
therapy although it may impact potency. Whether other immune 
checkpoint molecules may be more important is still under study. 
At this time, it appears that Vγ9Vδ2 cell therapy may differ from 

αβ T  cell effector mechanisms in the extent to which they are 
impacted by immune checkpoints. If this view holds true, it will 
become an important argument for the uniqueness of Vγ9Vδ2 
T cell immunotherapy.

Beyond immune checkpoint regulation, there are complex 
interactions among T cells, NK cells, dendritic cells, mesenchy-
mal cells, myeloid-derived suppressor cells, and even neutrophils 
that dictate the tumor microenvironment and benefit or inhibit 
the capacity for effective tumor immunity. Recent comprehensive 
reviews addressed many of the key mechanisms for immune 
suppression including the functions for regulatory γδ T cells and 
effects of their cytokines on tumor killing; we refer the reader to 
these excellent publications (62–66). In addition to the immu-
nosuppressive cytokines, pro-inflammatory cytokines including 
IL-17A often promote tumor growth and may be produced at 
higher levels when intratumoral T  cells are dominated by the 
Vδ1 subset (41, 67). Normally, Vδ2 T cells dominate peripheral 
blood in healthy individuals and are >2-fold more abundant 
than circulating Vδ1 cells. A study including more than 200 
melanoma patients treated with the checkpoint inhibitor anti-
body ipilimumab (targeting CTLA-4) showed that individuals 
with an inverted ratio of blood γδ cell subsets (Vδ1 > Vδ2) had 
lower overall survival, and poorer outcomes were significantly 
associated with decreasing Vδ2 T cell levels during ipilimumab 
therapy (68). A similar relationship between Vδ2 and Vδ1 cells 
was noted for rectal carcinoma (67).

Inversion of the Vδ2  ÷  Vδ1 T  cell ratio in blood was also 
observed in HIV disease [reviewed in Ref. (69)], where inversion 
is due to quantitative depletion of Vδ2 cells and expansion of the 
Vδ1 subset, similar to the melanoma case cited above. In HIV 
disease, Vδ2 T cell depletion is due to multiple factors includ-
ing direct toxicity of the viral envelope glycoprotein (70) and 
inadequate levels of IL-18 (71). Expansion of the Vδ1 subset was 
linked to damage of the intestinal epithelium and translocation of 
stimulatory bacterial products into blood (72, 73). It is of interest 
that the melanoma study, which included ipilimumab therapy 
(68) and HIV disease are both characterized by rising Vδ1 cells 
plus falling Vδ2 T cell levels. Notably, cancer is an important co-
morbidity of HIV disease with rates greatly exceeding the general 
population along with increased susceptibility to a broad range of 
cancer types (74, 75). In future, we hope to apply knowledge from 
γδ T cell clinical cancer trials, to understanding and mitigating 
the increased cancer risk in HIV disease.

We do not yet understand why increased levels of Vδ1 T cells 
in blood is a risk factor for melanoma or HIV-associated cancer. 
This is due partly to the complex nature of the Vδ1 T cell subset. 
While Vδ1 from peripheral blood were cytotoxic for colon cancer 
cells (40), an IL-17A-producing subset of Vδ1 cells promoted 
tumor growth (76). Studies using peripheral blood may not 
reflect the properties of mucosal Vδ1 T cells. Overall, we will need 
to understand how to expand Vδ1 T cells in vivo or ex vivo, and 
to enrich beneficial cells while reducing the growth of regulatory 
or inflammatory subsets. These strategies must be refined for each 
tumor target because the tumor response to inflammation is not 
uniform across tumor types.

We know that many, but not all tumors have the capacity for 
activating Vγ9Vδ2 T  cells. Perhaps the best-studied example 
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is the Daudi Burkitt’s lymphoma cell. The Vγ9Vδ2 T  cells are 
stimulated by contact with Daudi B cells (9) but not by the related 
Raji cells (10). Activated Vγ9Vδ2 T cells killed Daudi, Raji, and 
four other Burkitt’s lines including HH514, DG75, Ramos, and 
Wilson, along with freshly isolated primary tumor cells (10). 
Subsequently, oligodendrocytes, fetal astrocytes, and glial cells 
were shown to induce Vγ9Vδ2 T cell activation and proliferation 
(77), and this activity was correlated with cell surface expression 
of heat shock proteins. An earlier report had noted the stimula-
tory properties of Daudi cells expressing a GROEL homolog of 
heat shock protein (9).

The list of tumors killed by Vγ9Vδ2 T cells is longer than the 
list of tumors capable of activating Vγ9Vδ2 T cells. Perhaps this 
is telling us that poor activation in situ is a mechanism for tumors 
to evade Vγ9Vδ2 T cell surveillance. Discrepancies in the litera-
ture, wherein in vitro-activated Vγ9Vδ2 cells kill tumors even if 
they express PD-1 ligands, may reveal that activation by direct 
exposure to tumor cells during normal immune surveillance 
is not strong enough to drive Vγ9Vδ2 T cell eradication of the 
tumor or to overcome inhibitory costimulation. When Vγ9Vδ2 
T cells are activated by phosphoantigen or aminobisphosphonate 
and the culture medium includes IL-2, IL-15, or other cytokines, 
the resulting cells demonstrate potent tumor cell cytotoxicity. 
To date, we have only limited knowledge about Vγ9Vδ2 T cell 
activation in vivo, with or without stimulatory compounds and 
cytokines. We also know that some tumors may upregulate 
expression of FDPS, the enzyme responsible for converting IPP to 
farnesol (78). Such tumors may have smaller pools of IPP hence 
lesser capacity for directly activating Vγ9Vδ2 T  cells. Tumors 
with upregulated FDPS are also insensitive to cytostatic effects 
of aminobisphosphonates because excess enzyme overcomes the 
drug’s competitive inhibition of FDPS (79).

Importantly, tumors may not always be immunogenic in the 
conventional sense of activating naïve αβ T cells but may still be 
targets for Vγ9Vδ2 T cells. Downregulation of MHC is unlikely 
to affect Vγ9Vδ2 T cell recognition either for activation or as 
a target for cytolysis and might make tumors more sensitive 
to killing. Daudi, for example, is a potent activator of Vγ9Vδ2 
T cells and a sensitive target despite having no detectable MHC 
class I expression due to a deletion in the beta2-microglobulin 
gene (9).

We also note the potential for modulating tumor immunity 
through specific costimulation of Vγ9Vδ2 T  cells. We initially 
discovered the important role for costimulatory Vγ9Vδ2 T cells 
in activating tumor cytotoxicity by NK  cells (80). Transient 
expression of 4-1BB (CD137) after phosphoantigen or aminobi-
sphosphonate stimulation of blood Vγ9Vδ2 T cells upregulated 
this costimulatory molecule, increased NKG2D expression on 
NK cells, and increased NK tumor effector function. Subsequently, 
we discovered that Vγ9Vδ2 T cells also signal NK cells through an 
ICOS:ICOS-L interaction resulting in increased CD69 and 4-1BB 
expression on NK cells and increased levels of interferon-γ, TNF-α, 
MIP-1β, 1-309, RANTES, and soluble FasL in the culture. Perhaps 
most importantly, NK cells “educated” through the ICOS:ICOS-L 
pathway by Vγ9Vδ2 T  cells gained the capacity to kill mature 
dendritic cells (81). Removing these dendritic cells would alter 
the tumor microenvironment by reducing inflammation. We also 

know that NK cells are normally responsible for “licensing” the 
dendritic cell population primarily by killing immature dendritic 
cells [reviewed in Ref. (82, 83)]. Both NK and Vγ9Vδ2 T cells 
interact reciprocally with dendritic cells (84–86) and examples 
cited earlier (81) showed that activated Vγ9Vδ2 T cells educate 
NK, which then destroy mature dendritic cells that would nor-
mally promote inflammation and tumor growth. Dendritic cells 
infected by Brucella melitensis are substantially impaired in their 
capacity for antigen presentation but the defect was corrected 
through a contact-dependent interaction with Vγ9Vδ2 T  cells 
(87). This triangle of Vγ9Vδ2 T cells:NK cells:dendritic cells is 
part of a regulatory network affecting tumor cell cytotoxicity and 
regulating inflammation in the tumor microenvironment. We 
might imagine that mesenchymal stem cells, tissue macrophages, 
myeloid-derived suppressor cells, and potentially neutrophils or 
other inflammatory cells have similarly complex interactions that 
balance the requirement for activating protective immunity with 
a mechanism to limit destructive inflammation. Understanding 
these subtle interactions and finding ways to manipulate the 
regulatory networks may be one key to potent tumor immuno-
therapies focused on γδ T cells.

The Vγ9Vδ2 subset of γδ T cells is uniquely adapted for tumor 
immunity through: non-reliance on MHC expression, relative 
insensitivity to PD-1 inhibition, potent and broad tumor cyto-
toxicity, low contribution to IL-17A production, activation of NK 
cytotoxicity, and costimulation of NK for killing of mature (inflam-
matory) dendritic cells. Several of these mechanisms are unique 
to Vγ9Vδ2 T cells and fill critical gaps in tumor immunotherapy 
that are not approached through CAR-T  cell therapy or use of 
checkpoint inhibitor antibodies. By careful selection of appropri-
ate tumor types and understanding the critical markers signaling 
a healthy versus unhealthy balance of γδ T  cell subsets, we can 
exploit the natural properties of γδ T cells and overcome several 
well-known mechanisms for tumor evasion of host immunity.

PReCLiNiCAL AND CLiNiCAL STUDieS 
OF vγ9vδ2 T CeLL THeRAPY

Activated Vγ9Vδ2 T cells kill a broad range of tumor cell lines, 
often with spectacular potency. Investigators have even observed 
potent killing with effector to target cell ratios below 1, mean-
ing the effector cells recycle without being killed themselves or 
soluble death ligands are important contributors to cytotoxicity. 
Several preclinical and clinical studies have tested whether this 
level of potency translates to potent therapeutic effects in vivo.

The SCID mouse model was used to test the tumor surveil-
lance capacity of Vγ9Vδ2 T cells. Mice were injected with Daudi 
cells followed by injecting PBMC from healthy adult donors. The 
Daudi cells were sufficient to stimulate Vγ9Vδ2 T cells, resulting 
in proliferation and transition to effector memory phenotype, 
along with suppression of tumor growth and survival of the 
mice (88). Subsequently, tumor killing by Vγ9Vδ2 T  cells was 
demonstrated in several types of immune-deficient mice and with 
a variety of tumors including prostate cancer (89), melanoma 
(90), breast cancer (91, 92), ovarian cancer (93), and lymphoma  
(56, 94, 95) to name a few examples from this growing list.
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Mouse xenograft studies demonstrated the potency of Vγ9Vδ2 
therapy in vivo and the range of tumors that might be treated. 
In general, treatments were most successful when Vγ9Vδ2 cells 
were expanded ex vivo prior to injection, when cell treatments 
coincided with tumor cell implantation or occurred when tumors 
were first deemed “palpable” (meaning < 100 mm3 volume) and 
required repeated administration of phosphoantigen or amino-
bisphosphonate drugs plus cytokine (usually IL-2). The mouse 
xenograft studies provided some assurance that Vγ9Vδ2 cell 
therapy might be successful, but solid proof-of-concept data will 
be difficult to obtain in this system and safety studies needed for 
regulatory approval will be challenging. Because human Vγ9Vδ2 
T cells are exquisitely species-restricted, normal mouse tissues are 
not recognized and off-target effects may be obscured. The mouse 
studies mimic a treatment approach based on adoptive cell therapy 
but are less useful for studying primary Vγ9Vδ2 tumor responses. 
In this regard, it is important to note that most clinical studies 
were completed without serious adverse events.

Mouse model studies raised intriguing issues related to 
Vγ9Vδ2 T cell trafficking and tumor localization. Knowing that 
the circulating pool of Vγ9Vδ2 T  cells contains both central 
and effector memory cells, it seems reasonable that at least the 
effector memory subset would be actively attacking tumors. 
Injecting Vγ9Vδ2 T  cells without additional treatment failed 
to demonstrate tumor-infiltrating cells and failed to reduce 
tumor volume. Treating myeloma patients with zoledronic acid 
increased Vγ9Vδ2 T cell migration into the tumor and infiltra-
tion depended on IPP secretion (96). An earlier study on mouse 
Vγ9Vδ2 T  cell migration into murine tumors used antibody 
blocking to show a requirement for T cell receptor in chemot-
axis and tumor infiltration (91). By a mechanism that is not yet 
established, elevated IPP levels and T  cell receptor-dependent 
mechanisms are associated with Vγ9Vδ2 T cell infiltration into 
tumors, which is exaggerated by aminobisphosphonate treatment 
and the resulting increases in IPP levels. Such observations are 
important, but mechanistic insight into tumor infiltration by 
phosphoantigen-specific Vγ9Vδ2 T cells is still lacking. It is very 
important to understand γδ T cell trafficking and mechanisms 
controlling tumor infiltration.

Human clinical trials have created the greatest promise for 
Vγ9Vδ2 T cell immunotherapy but also revealed important obsta-
cles to success. The limited potency of γδ T cell immunotherapy 
is the most pressing problem. Potency is a critical parameter even 
early in clinical product development, because Vγ9Vδ2 T  cell 
therapies will be compared to results from CAR-T treatments for 
lymphoma and myeloma. The spectacular cure rates for CAR-T 
in selected diseases have raised expectations among scientists, 
patients, advocates, and funders. Positive results from Vγ9Vδ2 
therapy in Hodgkin’s lymphoma or multiple myeloma clinical tri-
als showed significant in vivo activation of Vγ9Vδ2 T cells among 
55% of patients who were pre-screened for high in vitro responses 
to pamidronate/IL-2, along with objective clinical responses 
among 33% of the pre-screened patients (97). Viewed objectively, 
these outcomes do not compare favorably with high cure rates for 
CAR-T in similar diseases (98). Undoubtedly, γδ-centric immuno-
therapy is eventually less complex and probably safer than CAR-T 
because the T cells are not genetically modified, but differences in 

potency will impede both research and commercial development 
of γδ-centric therapeutics until more data are available.

Tumor immunotherapy with Vγ9Vδ2 T cells, including in vivo 
stimulation, adoptive transfer of expanded cells or combination 
protocols, may find better purchase in solid tumor treatments 
where CAR-T is less advanced (98). Immunotherapy based on 
Vγ9Vδ2 T cells is not limited to tumors with well-defined neo-
antigens and allogeneic cell products may be possible due to the 
MHC-unrestricted responses of Vγ9Vδ2 T cells. Treatments based 
on Vγ9Vδ2 T cells have been tested for head and neck cancer (99), 
renal carcinoma (100, 101), prostate cancer (102), neuroblastoma 
(103), mammary carcinoma (104), and lung cancer (105, 106) 
among others. In most cases, objective responses were noted but 
the proportion of complete remissions was low and long-term dis-
ease-free survival data are minimal. These clinical studies provided 
evidence for the clinical utility of therapies aimed at activating the 
tumor response of Vγ9Vδ2 T cells. Clinical and basic researchers 
in this field need to chart a course for improving these therapies 
in terms of potency and defining the mechanism of action. We 
need to understand conditions controlling tumor infiltration by γδ 
T cells, how cytotoxic and regulatory subsets are regulated, and to 
understand failures or examples of low potency. This is a complex 
field with many different approaches and emphases that cannot be 
covered here in sufficient detail. The reader is encouraged to access 
several excellent reviews of clinically relevant studies that provide 
additional examples and important insights into trial outcomes 
and future directions (48, 49, 51, 107, 108).

FiNDiNG SOLiD GROUND

Researchers in this field are searching for ways to achieve more 
impactful and curative γδ T  cell immunotherapies. If we can 
realize the full potential of tumor surveillance by these cells, it 
will be possible to address malignant disease in a broader part 
of the population than can be reached by other I/O approaches. 
Several studies are already pointing to more potent strategies. 
When Vγ9Vδ2 T  cells, aminobisphosphonate, and IL-2 were 
delivered intratumorally in a murine xenotransplant model for 
glioblastoma, potent tumor reduction was observed (109). Why 
was intratumoral delivery better than systemic delivery of amino-
bisphosphonate? Aminobisphosphonate drugs are tremendous 
for their intended purpose of treating osteoporosis but have unfa-
vorable pharmacokinetics because they complex with calcium and 
precipitate in the bone matrix. Although the drug may remain in 
bone for 10 years or more, circulating aminobisphosphonate is 
eliminated rapidly by renal excretion (110). Rapid clearance of 
aminobisphosphonates from plasma impedes their use for tumor 
therapy except in special cases where accumulation in bone 
was related to the anti-myeloma activity of pamidronate (111). 
Direct intratumoral injection of aminobisphosphonate avoided 
the unfavorable pharmacology of this drug class. Poor systemic 
availability of aminobisphosphonate drugs accounts in part, for 
differences between extraordinary Vγ9Vδ2 tumor killing in vitro 
where there is no bone to trap the drug, and the lower potencies 
observed in clinical trials. One of the possible keys to exploit-
ing Vγ9Vδ2 T cells for tumor therapy is to activate them locally 
and achieve higher potency. In many cases, it may be difficult to 
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continue repeated injections of cells, aminobisphosphonate, and 
cytokine as was done for glioblastoma in a murine model (109), 
but studies of this type are beginning to highlight the potential 
benefits for local activation of Vγ9Vδ2 T cells.

We also know that aminobisphosphonate drugs are competi-
tive inhibitors of FDPS. The FDPS is upregulated in some cancers 
(112) resulting in resistance to aminobisphosphonate drugs (113). 
Drug resistance was reversed in vitro by transfecting small inhibi-
tory RNA targeting the FDPS mRNA to lower the enzyme levels 
(113). Thus, we expect an inverse relationship between levels of 
the stimulatory phosphoantigen IPP and levels of FDPS; reducing 
FDPS through genetic manipulation is a strategy for increasing 
the levels of IPP and may be combined with aminobisphospho-
nate for even higher potency. Lentivirus vector delivery of shRNA 
targeting FDPS mRNA was tested in vitro. The B cell lymphoma 
line Raji, a poor stimulator of Vγ9Vδ2 cell proliferation or effec-
tor function, was transduced with lentivirus vector expressing 
shRNA against FDPS mRNA. The modified cells were cultured 
with primary Vγ9Vδ2 T  cells to detect changes in phenotype 
or function. Transduction reduced FDPS levels and markedly 
activated Vγ9Vδ2 T cells cocultured with the modified Raji cells. 
Raji cells with decreased FDPS also had increased sensitivity to 
Vγ9Vδ2 cytotoxicity (114).

Locally administered cancer therapies are increasingly of 
interest for stimulating potent tumor immunity. Peritumoral, 
intratumoral, and intranodal therapies have already been tested 
for a variety of cancers. Viral vectors expressing cytokines, tumor 
targeting antibodies, and checkpoint inhibitor antibodies appear 
to be more potent when injected into the tumor microenvironment 
as opposed to systemic delivery. Intratumoral injection of check-
point inhibitor antibodies was explored as a means for improving 
potency while reducing the toxicity encountered after systemic 
administration [reviewed in Ref. (115)]. Simultaneous intranodal 
administration of the tumor-targeting antibody Rituximab plus 
autologous dendritic cells plus granulocyte-macrophage colony 
stimulating factor caused objective clinical responses in 36% of 
patients with disseminated follicular lymphoma, an aggressive 
disease with no known cure (116). Intranodal injection of an 
adenovirus vector expressing CD40L (CD154) caused objective 
responses to chronic lymphocytic leukemia in 11 of 15 patients 
treated (117). Intranodal injection may be viewed as a way to 
localize therapy near a tumor mass, that also allows stimulation 
of the immune cells outside of the immunosuppressive tumor 
microenvironment. These and similar findings encourage us 
to consider whether potency of Vγ9Vδ2 T  cell immunotherapy 
for cancer has been limited by efforts to stimulate cells through 
systemic administration of drugs and cytokines, especially when 
using aminobisphosphonate drugs with unfavorable pharma-
cokinetics? It seems possible, even likely, that treatment potency 
will increase dramatically once we achieve potent delivery of 
stimulating agents to the tumor itself, either by intratumoral or 

intranodal delivery. Local activation of Vγ9Vδ2 T cells that will 
infiltrate the tumor, may come closer to realizing the full potential 
of these innate-like T cells for attacking a broad range of cancers 
without genetic manipulation of lymphocytes themselves.

SUMMARY

The remarkable γδ T cells continue to be a focus for the devel-
opment of new cancer immunotherapies because they are an 
important component of natural tumor surveillance. The Vγ9Vδ2 
T cells are particularly attractive for tumor therapy because they 
comprise the largest group of memory T  cells responding to a 
single antigen. These phosphoantigen-responsive cells represent 
about 2% of total T  cell memory in the circulating population 
and respond with the speed and uniformity of innate immunity. 
Basic and clinical research on Vγ9Vδ2 T cells and other γδ T cell 
subsets is already demonstrating utility in cancer therapy, but 
the challenge is to increase potency and understand better the 
mechanisms of action. The improvements in patient outcomes 
will come through better definition of the balance between effec-
tor and regulatory subsets, the role for inhibitory costimulation 
pathways, factors governing tumor infiltration, and methods for 
increasing potency. The keys to potency and tumor elimination 
may be found in local administration of stimulating agents 
including chemicals, cytokines, and viral vectors. All of these 
obstacles pale in comparison to the value of an immunotherapy 
that attacks a broad range of tumor cell types, does not require 
identification of tumor-associated antigens, and does not require 
genetic modification of T cells. Local treatment delivered at the 
tumor site may be one way to increase Vγ9Vδ2 T cell potency. 
The promise is to achieve a near universal solution for malignant 
disease. The challenge is to translate the exquisite science of γδ 
T cell biology for the practical goal of cancer immunotherapy.
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