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Natural language processing (NLP) has become essential for secondary use of clinical data. Over the last two decades, many
clinical NLP systems were developed in both academia and industry. However, nearly all existing systems are restricted to specific
clinical settings mainly because they were developed for and tested with specific datasets, and they often fail to scale up.)erefore,
using existing NLP systems for one’s own clinical purposes requires substantial resources and long-term time commitments for
customization and testing. Moreover, the maintenance is also troublesome and time-consuming. )is research presents a
lightweight approach for building clinical NLP systems with limited resources. Following the design science research approach, we
propose a lightweight architecture which is designed to be composable, extensible, and configurable. It takes NLP as an external
component which can be accessed independently and orchestrated in a pipeline via web APIs. To validate its feasibility, we
developed a web-based prototype for clinical concept extraction with six well-known NLP APIs and evaluated it on three clinical
datasets. In comparison with available benchmarks for the datasets, three high F1 scores (0.861, 0.724, and 0.805) were obtained
from the evaluation. It also gained a low F1 score (0.373) on one of the tests, which probably is due to the small size of the test
dataset. )e development and evaluation of the prototype demonstrates that our approach has a great potential for building
effective clinical NLP systems with limited resources.

1. Introduction

Today’s technologies allow the accumulation of vast textual
data, which consequently has boosted the popularity of NLP
research. )ere has been a huge amount of papers published
and a variety of NLP systems or toolkits crafted in multiple
domains over the last two decades. Among them, clinical
NLP occupies a large portion. )ere are clinical NLP sys-
tems, such as Apache cTAKES, that integrate different NLP
tools to process clinical documents [1, 2].)ere are also NLP
tools which target certain specific clinical needs, including
extracting medication information [3], identifying locations
of pulmonary embolism from radiology reports [4], and
categorizing pain status [5].

Figure 1 presents a general architecture of a clinical NLP
system that contains two main components: background
knowledge and framework [1]. Background knowledge
contains ontologies, domain models, domain knowledge,
and trained corpora. )e widely used clinical domain

knowledge is the Unified Medical Language System (UMLS)
[6]. Framework refers to a software platform that integrates
various NLP tasks or modules either sequentially or hier-
archically into NLP pipelines. GATE and UIMA are the
leading open-source frameworks [7, 8]. )ere are two levels
of NLP tasks: low-level tasks and high-level tasks. Low-level
tasks include tokenization, part of speech tagging, sentence
boundary detection, and so on. High-level tasks refer to the
semantic level processing such as named entity recognition,
relation extraction, and sentiment analysis.

History has shown that building a successful clinical NLP
system requires a tremendous amount of resources. For
instance, it took a team from Columbia University 14 years
to commercialize the MedLEE system [9]. )e development
of cTAKES started at the Mayo Clinic in 2006, and further
external collaborations with four other universities in 2010
resulted in the first release of the current Apache project [2].
)erefore, creating reusable NLP pipelines based on open-
source modular frameworks like GATE and UIMA becomes
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more reasonable [9, 10]. Although it dramatically reduces
resources and level of expertise, we argue that it is not an
efficient and effective solution for two main reasons. Firstly,
nearly every NLP pipeline that is created to address a single
specific clinical need, either rule or machine-learning based,
has been proven to be useful for only its designated purposes
[11]. )us, reusability is difficult given the properties. Sec-
ondly, deploying cTAKES-based NLP pipelines implies a
high cost of operation which requires installation and
configuration of multiple components by NLP experts [12].
Besides, maintenance of a deployed NLP system requires a
continuous investment.

With the purpose of simplifying and outsourcing the
NLP implementation, software as a service, or SaaS, has been
introduced to the NLP world during recent years [13]. SaaS
generally refers to the mode of software delivery where end-
users are charged with a monthly or annual subscription fee
to utilize a set of functionalities over the Internet [14]. NLP
systems distributed in the SaaS model are often available
through web application programming interfaces (APIs)
and named as NLP APIs or cloud-based NLP APIs [13, 15].
Many NLP APIs have emerged from both companies and
universities and are growing popularly [7]. A few prominent
examples are IBMWatson, Aylien, Lexalytics, and TextRazor
[13]. From the cost-benefit perspective, these NLP APIs
allow developers to rapidly create NLP-enabled tools
without investing abundant resources on implementing
necessary NLP techniques in codes and on regular main-
tenance. A number of applications based on NLP APIs were
built [16–18].

To utilize NLP APIs, API-based frameworks have been
produced [15,19–21]. API-based systems, also known as
cloud-based, refer to tools that are built on external web
APIs and having their functionalities partially or fully ac-
complished with one or a pipeline of APIs. Due to the
growing popularity of web APIs in the software industry,
API-based tools are abundant in companies. For instance, an
API-based CMS (content management system) is utilized to
save development resources and follow-up maintenance
[22]. Furthermore, researchers have also investigated the
approach in recent years. Rizzo and Troncy proposed the
Named Entity Recognition and Disambiguation (NERD)
framework that incorporates the result of ten different public
APIs-based NLP extractors [21]. A web-based tool called

TeXTracT was devised to support the setup and deployment
of NLP techniques on demand [15]. Abdallah et al. de-
veloped a flexible and extensible framework for integrating
named entity recognition (NER) web APIs and assessed it
across multiple domains [19]. Although these tools exhibit
promising results, few were built for clinical NLP or eval-
uated on clinical datasets. )erefore, it is safe to say that
adopting these tools in clinical settings would be problematic
due to the unique characteristics of the clinical domain. For
example, privacy is considered to be of the utmost impor-
tance, but none of the above tools have taken it into
consideration.

)is paper thus proposes a lightweight framework which
enables a rapid development of clinical NLP systems with
external NLP APIs. )e approach has the following ad-
vantages compared to traditional NLP frameworks: (1) fast
development; (2) lower costs; (3) flexibility; and (4) pro-
gramming language independent. )e deployment is min-
imized by outsourcing both NLP tasks and background
knowledge to external API services. )us, NLP systems can
be quickly and cost-efficiently developed based on the
proposed framework. )e framework is flexible in many
aspects. To begin with, it supports the flexible combination
of different NLP tasks from external APIs. Secondly, users
have the freedom of choosing their preferred NLP API
vendors, and multiple APIs can be integrated to achieve
better results. To evaluate the framework, we have built a
web-based open-source clinical NLP application.

2. Methods

2.1.DesignScience. Our research followed the design science
research as we built and evaluated the framework because of
its strength and popularity in solving a real-world problem
by designing and building an innovative IT artifact [23]. In
our case, the artifact is a lightweight framework that facil-
itates clinical NLP systems development. We follow the
design science research methodology (DSRM) proposed by
Peffers et al., which consists of six steps: problem identifi-
cation and motivation, definition of the objectives for a
solution, design and development, demonstration, evalua-
tion, and communication [24].

)e DSRM is initiated by the (I) problem identification
and motivation, which we addressed by literature study.
Previous studies have described the general architecture of
clinical NLP systems and how expensive it is to build them.
Even though the introduction of modular NLP frameworks
reduced the complexity of NLP systems, it is still challenging
to create clinical NLP systems for many healthcare in-
stitutions due to limited resources. Based on the identified
problem, we inferred the (II) objectives for a solution:
creating a lightweight NLP framework that enables a rapid
development of an API-based clinical NLP system. In the
(III) design and development, we developed the framework
based on the general architecture we identified, after which
each of its components is explained in detail. To (IV)
demonstrate and (V) evaluate the framework, a web-based
open-source clinical NLP application was developed.
Moreover, experiments were carried out with three clinical
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Figure 1: A general architecture of clinical NLP systems.
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datasets to primarily examine whether external NLP APIs
would deliver the state-of-the-art performance. )e final
step of the DSRM is the communication. )e paper serves as
the start of our (VI) communication on this topic.

2.2. Evaluation Design. )ree English anonymized clinical
datasets were used in our evaluation. Two of the datasets are
obtained from the Informatics for Integrating Biology and
the Bedside (i2b2) center: 2008 Obesity Challenge and 2009
Medication Challenge. )e third dataset comes from a
European clinical trial called OPERAM. Since the primary
goal of our evaluation is to prove that external general-
purpose NLP APIs can yield good performance on clinical
data, we only used a subset of the two large i2b2 datasets.

(i) 2008 Obesity Challenge. )is dataset consists of 611
discharge letters. All discharge letters are annotated
with 16 different medical condition terms in the
context of obesity, including asthma, gastroesoph-
ageal disorder, and depression. Terms could be
either annotated as being in the document, not
being in the document, or undecided/unknown
which was treated as a not being in the document.
)e strength of this dataset, concerning the aim of
these tests, is that there are a lot of documents, snf its
weakness is that it is only annotated for 16 abstract
terms in the context of obesity. To simplify the
experiment, we randomly selected 100 discharge
letters and labeled each document with the medical
conditions that are annotated as “present.”

(ii) 2009 Medication Challenge. 947 out of 1243 in total
deidentified discharge letters have the gold standard
annotations. Medication names in the annotations
are used for the evaluation. By comparing the an-
notated medication names with those generated
from our application, we calculate the evaluation
metrics. We also randomly select 100 out of the 947
documents.

(iii) OPERAM Dataset. )e dataset consists of five
discharge letters that have been used during the
pilot of the OPERAM clinical trial [25]. Medical
experts of the trial annotated these letters by both
medical conditions and pharmaceutical drugs.
Moreover, standardized clinical codes for each
annotation are included. With this dataset, we aim
to demonstrate the performance of our NLP ap-
plication with clinical documents from practices,
even though it is clear that the small size limits our
findings.

We extracted entities of “medical condition” or “phar-
maceutical drug” from the, in total, 205 clinical documents
and then encoded themwith UMLS. Based on the encodings,
extracted entities were filtered so that distinct entities were
extracted for each clinical document. In order tomeasure the
performance of our extraction, we have used well-known
metrics: precision, recall, and F1 score. )ey are computed
from true positives (TP), false positives (FP), and false
negatives (FN) for each document. As stated above,

annotations of the 2008 Obesity Challenge are different from
the other two datasets. To simplify the identification of
positives and negatives, we divided annotations into two
groups: positives that are in the text and negatives which are
not mentioned. )erefore, comparing clinical entities
extracted by our application to the ground truth, we cal-
culate the following:

(i) TP: entities that were both extracted and annotated
as positives

(ii) FP: entities that were extracted as positives but were
annotated as negatives

(iii) FN: entities that were not extracted but were an-
notated as positives

Precision (1) represents the proportion of extracted
positives that are annotated positives. On the contrary, recall
(2) is the proportion of annotated positives that were cor-
rectly extracted as such. F1 score (3) is the harmonic mean of
precision and recall:

precision �
TP

TP + FP
, (1)

recall �
TP

TP + FN
, (2)

F1 score � 2∗
precision∗ recall
precision + recall

. (3)

3. Results

)e section presents results in two parts: the framework and
a web-based open-source clinical NLP application. )e
architecture lays down the technical groundwork, upon
which the application was constructed. )e following ex-
plains each of them in details.

3.1. A Lightweight NLP Architecture for Clinical NLP. )e
architecture addresses the issues of existing clinical NLP
applications, including interoperability, flexibility, and
specific restrictions within the clinical field, such as privacy
and security. )e strength of our proposed architecture is
shown in its capabilities: (1) freedom of assembling suitable
NLP APIs either sequentially or hierarchically based on
scenarios; (2) encoding clinical terms with comprehensive
and standardized clinical codes; (3) the built-in deidentifi-
cation function to anonymize clinical documents. Figure 2
depicts its four main components: external APIs, in-
frastructure, NLP pipelines, and Apps.

3.1.1. External APIs. In this architecture, two types of APIs,
namely, an NLP API and a domain knowledge API, are
included to parse unstructured medical text and map parsed
terms against a medical metathesaurus, respectively. )e
NLP API provides various cloud-based NLP services that
parse unstructured text for different purposes, including
entity recognition and document classification. )e domain
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knowledge API supports the mapping of medical text to
concepts from the UMLS metathesaurus. As the most used
biomedical database, UMLS contains millions of biomedical
concept names and their relations. In addition, domain
models and training corpora are available for specific clinical
documents such as radiology reports, pathology reports, and
discharge summaries [1]. )e UMLS is a major part of the
solution for standardization and interoperability as it maps
terms extracted by multiple APIs to standardized codes such
as ATC and ICD10.

3.1.2. Infrastructure. )e infrastructure layer prepares
clinical data before sending them to external APIs by dei-
dentification and adding authentications. Furthermore, it
processes results received from external APIs for later in-
tegration. An optional component, locally implemented
NLP techniques, is also incorporated.

(i) API Processing. )e purposes of API processing are
two-fold: (1) prepare clinical text before sending
them to external APIs and (2) process results
returned from external APIs. Given the difference
between multiple APIs, data processing is inevitable
to achieve interoperability. Specific API processing
tasks include formatting clinical text for APIs re-
quests, filtering results returned fromAPIs, and data
conversion.

(ii) Privacy. Privacy protection is a critical issue in
clinical data sharing for both research and clinical
practices, and privacy violations often incur legal
problems with substantial consequences. )e pri-
vacy component embedded in the infrastructure
offers technical solutions to deidentify or ano-
nymize patient-level data, such as CRATE [26] and
DEDUCE [27]. CRATE is an open-source software
system that anonymizes an electronic health records
database to create a research database with ano-
nymized patients’ data. With CRATE implemented,
our approach can directly use patients’ data. In

comparison with CRATE, DEDUCE is more
lightweight. As a Python package, it processes
sensitive patient information with commands like
“deduce.deidentify_annotations().”

(iii) Security. )e security component controls the ac-
cess of clinical data and all external APIs. Au-
thentication and encryption are added to safeguard
data sharing via the Internet.

(iv) (Optional) Local NLP Tasks. As discussed pre-
viously, an external NLP API grants no control of
what NLP techniques to employ. In case some
specific NLP techniques are required, our local NLP
technique component provides a choice of imple-
menting your own NLP techniques locally in a
preferred language.

3.1.3. NLP Pipelines. )is layer provides a list of NLP ser-
vices from which clinical applications can select the most
suitable ones on demand. First of all, differences among NLP
API providers in terms of their available NLP services are
apparent. However, as shown in Table 1, there are also a
number of common NLP services. Secondly, systematic
studies have summarized some commonly used NLP
techniques in clinical NLP applications [11]. By combining
the common NLP services of various APIs and the useful
NLP techniques in clinical settings, a shortlist of NLP ser-
vices is selected for the architecture.

Moreover, multiple NLP services from different APIs
can be integrated either sequentially or hierarchically for a
single clinical NLP task. )is enables clinical NLP appli-
cations to address the limitations of individual APIs caused
by particular NLP techniques implemented and data
employed to build it. More importantly, having a config-
urable NLP pipeline brings scalability and flexibility. For
instance, a clinical concepts extraction enabled application
can support combining entity extraction service from two or
more of the NLP APIs in Table 1. However, interoperability
between different NLP APIs becomes a challenge as both
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Figure 2: A lightweight NLP architecture for clinical NLP.
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their inputs and outputs might vary considerably. )erefore,
the NLP pipelines contain an integration component which
facilitates the interoperability by implementing a proper
integration strategy.

3.1.4. Apps. In the application layer, clinical NLP-enabled
applications for various needs can be created. )ey are
produced either for performing a specific NLP task such as
extracting diagnoses from discharge summaries and iden-
tifying drugs and dosage information from medical records
or with a general purpose of processing unstructured clinical
text. Existing NLP applications in clinical domains are
categorized into the following groups:

(i) Concept Extraction. Kreimeyer et al. conducted a
systematic literature review of NLP systems con-
structed to extract terms from clinical documents
and map them to standardized clinical codes [11].

(ii) Text Classification. Classification of free text in
electronic health record (EHR) has surfaced as a
popular topic in clinical NLP research. Koopman
et al. devised a binary classifier to detect whether or
not death is related to cancer using free texts of

death certificates [28]. Other text classification ex-
amples in clinical settings cover classifying a
complete patient record with respect to its eligibility
for a clinical trial [29], categorizing ICU risk
stratification from nursing notes [30], assessing
inpatient violence risk using routinely collected
clinical notes [31], and among others.

(iii) Sentiment Analysis: Unlocking the subjective
meaning of clinical text is particularly helpful in
psychology. A shared task for sentiment analysis
of suicide notes was carried out as an i2b2
challenge [32].

3.2. Prototype: API-Based Clinical Concept Extraction. To
evaluate the architecture, a prototype that extracts clinical
concepts from clinical free texts has been developed. )is
section first illustrates the design of its main components.
)en, the prototype itself is presented.

3.2.1. External NLP APIs. As described above, web NLP
APIs have gained wide popularity over the last few years.
Both academics and companies recognized the importance
and extended their NLP systems with web APIs. As shown in
Table 2, the prototype incorporates six leading NLP APIs
from both academia and industry in its implementation.)e
selection is based on three criteria: (1) free or free trial
available; (2) industrial APIs supported by big companies/
teams; (3) academic APIs verified by peers.

3.2.2. NLP Technique Implemented Locally. Studies have
revealed that negation is very common in clinical reports
[33, 34]. For instance, “no fracture,” “patient denies a
headache,” and “he has no smoking history” often appear in
clinical texts. In order to correctly extract clinical terms,
negation detection becomes inevitable. However, given that
most of the selected NLP APIs are tools for text processing
and analysis in the general domain, the negation issue of
clinical documents is not properly tackled, and they cannot
filter out irrelevant information. )erefore, negation de-
tection is implemented locally for the prototype. As the most
well-known negation detection algorithm, NegEx has been
adopted by a number of biomedical applications [35–37].
We implemented the algorithm to handle negation in this
prototype.

3.2.3. API Processing. NLP APIs first extract clinical terms
which will be filtered by the local negator. )en the UMLS
API transforms the filtered clinical terms to the standardized
codes, such as ATC codes, ICD-10, or SNOMED, which
ensures that the extracted clinical terms are interoperable
after integration.

For each extracted term, the UMLS API returns its top 10
matched codes. )ese top matches are ranked on their
similarity to the extracted term, with the first as the most
similar one. )e prototype captures the unique identifier of
each matched code for later use.

Table 1: NLP services of common NLP API providers.

NLP API Available NLP services

IBM Watson
NLU

Entity extraction, concept extraction, relation
extraction, text classification, language

detection, and sentiment analysis

Aylien

Article extraction, entity extraction, concept
extraction, summarization, text classification,

language detection, semantic labeling,
sentiment analysis, hashtag suggestion, image

tagging, and microformat extraction

Lexalytics
Sentiment analysis, concept extraction,

categorization, named entity extraction, theme
extraction, and summarization

Meaning Cloud

Topic extraction, text classification, sentiment
analysis, language detection, and linguistic

analysis (POS tagging, parsing, and
lemmatization)

Alchemy API

Entity extraction, concept tagging, keywords
extraction, relation extraction, text

classification, language detection, sentiment
analysis, microformat extraction, feed

detection, and linked data

TextRazor
Entity extraction, disambiguation, linking,
keywords extraction, topic tagging, and

classification

Developer Cloud Concept extraction, translation, personality
insights, and classification

Open Calais Entity extraction, relation extraction, and
sentiment analysis

Dandelion API
Entity extraction, text classification, language

detection, sentiment analysis, and text
similarity

Haven
OnDemand

Autocomplete, concept extraction, document
categorization, entity extraction, language
detection, sentiment analysis, and text

tokenization
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As discussed above, when multiple APIs are applied for
one task, results need to be integrated. )e prototype em-
ploys a double weight system to integrate multiple APIs. )e
first weight system determines whether an extracted term is
similar to another extracted term from the same document.
)e weight of a pair of two extracted terms is calculated
based on their top 10 matches from the UMLS API and then
is compared with the similarity threshold c; if the weight is
higher than the threshold, we consider it to be an equal term.
)e weight formula is shown as follows:

α
4

􏼒 􏼓 +
3β
4

􏼠 􏼡≻c, (4)

where α refers to the percentage of equal terms over all 10
terms and β is the percentage of equal terms over the top 3
terms. α and β are calculated based on the UMLS API
matches of two extracted terms. )e weight is a value be-
tween 0 and 1, 0 being that the terms are not similar at all and
1 being exactly the same. For a given NLP task, an initial
value of c � 0.1 is recommended, and then according to the
number of false positives and false negatives, we adjust the
value of c to achieve optimal output. )e strategy of tuning
these parameters is discussed further in Section 3.3.

)e second weight system determines whether an
extracted clinical term has enough cumulative weight from
all NLP APIs. Since the performance of NLP APIs varies, a
weight for each individual API is estimated by using the F1
scores calculated after testing each API on a small subset of
clinical documents. )e F1 score for each API is normalized
to an extractor-weight ω. For each clinical term extracted, we
sum the weights of the extractors the term was extracted by.
If the weight is over the extractor threshold θ, it is considered
to be actually extracted. If it is less, it is considered to be a
false extraction. )e weight is computed as follows:

􏽘
n

i�1
ωi, (5)

where ω is the weight of an NLP API and n refers to the
number of API used. )e pseudocode of the integration
process is shown in Algorithm 1.

3.2.4. Prototype. Figure 3 shows the overall functional
components of the prototype, which is an instantiation of
the proposed architecture. )e prototype is a web appli-
cation with a minimalistic user interface, developed with
HTML5, CSS, JavaScript, and PHP for the back end. Given
that many existing NLP APIs use JSON as the default

format, JSON is the chosen format for data transferring
between different components. Figure 4 presents a
screenshot of the application. Users need to provide
clinical documents they want to process in the upper input
field and then select APIs and coding standards. After
clicking the Extract button, the results will be displayed in
the table at the bottom. “Diseases Remote” lists the ex-
tractions of external NLP APIs, while “Diseases Local”
represents results of combining external NLP APIs, the
local negation handler, and the UMLS API. Unfortunately,
the application is not accessible online due to a lack of API
token management. Sharing our tokens online might incur
a charge when there are a large number of API requests.
Nevertheless, researchers are able to deploy their own
version of the system with the source codes we share on
GitHub at https://github.com/ianshan0915/MABNLP. A
demo video is also available at https://youtu.be/
dGk9NQGWYfI.

3.3. Evaluation Results. As explained before, the prototype
comes with three hyperparameters that adjust the extraction
outputs: negation (κ), term similarity threshold (c), and
extractor threshold (θ). )e hyperparameter tuning was
manually conducted by the researchers in the experiments.

)e impacts of the controlling hyperparameters on the
outputs of our experiments vary. First of all, negation
surprisingly shows little positive influence as shown in
Table 3. Its main reason probably lies in the fact that the
implemented negation algorithm, NegEx, only uses negation
cue words without considering the semantics of a sentence
[34]. Implementation of more advanced algorithms, such as
DEEPEN and ConText, will be conducted in future research.
)e higher c value means a higher similarity threshold for
entities to be merged, which results in a lower false positive
and higher false negative numbers. By increasing the θ value,
we want entities to be extracted by more APIs, and sub-
sequently lower the number of false positives and increase
the number of false negatives. However, higher values bring
down the number of true positives. )e aim is to strive for
the best combination of these hyperparameters for each
specific NLP task. )e experiments suggested that the values
of c � 0.1 and θ� 0.35 are a decent starting point for further
exploration.

Results have shown that the performance of the pro-
totype is not consistent. Datasets like the obesity challenge
can rely on our approach, but its reliability on datasets, such
as the medication challenge and OPERAM dataset, need
further improvement and evaluation.

Table 2: NLP APIs selected for the prototype.

API Fee Company/team References

IBM Watson NLU Free trial IBM https://www.ibm.com/watson/developercloud/natural-
language-understanding/api/v1/

MeaningCloud Free trial MeaningCloud LLC https://www.meaningcloud.com/developer/documentation
Open Calais Free trial )omson Reuters http://www.opencalais.com/opencalais-api/
Haven OnDemand Free trial Hewlett Packard https://dev.havenondemand.com/apis
TextRazor Free trial TextRazor Ltd. https://www.textrazor.com/docs/rest
Dandelion API Free trial Spaziodati https://dandelion.eu/docs/
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Many NLP systems have been tested on the two i2b2
datasets, and there are benchmark performance metrics
being published in the literature [38, 39]. We calculated the
averages of top 5 best systems as the baselines. As displayed
in Table 4, the prototype performs well and has great po-
tential of being adopted for clinical concept extraction. In
case of the OPERAM dataset, there is no benchmark.

)erefore, its performance is evaluated from an expert in-
tervention perspective. By comparing the automated
extracted clinical concepts with the annotations, we estimate
how well the prototype can be used to assist physicians
during their manual extraction process. Unfortunately,
feedbacks from physicians indicate that the prototype is
not yet considered practically useful. Firstly, its poor

Input: X� [X1, X2, . . ., Xn]: returns of n APIs;
W� [ω1, ω2, . . ., ωn]: weights of n APIs;
c: similarity threshold;
θ: extractor threshold;

Output: T: a list of clinical terms
Initialisation: ωα � 0.25 and ωβ � 0.75
Filter out same/similar terms extracted by one API

(1) for i� 1 to n do
(2) for xa in Xi do
(3) Get the rest of terms: Xj �Xi − Xa
(4) for xb in Xj do
(5) calculate the percentage of equal terms over all 10 terms: α
(6) calculate the percentage of equal terms over top 3 terms: β
(7) calculate the pairwise similarity: δ � ωα∗α + ωβ∗β
(8) if δ≥ c then
(9) discard same/similar term: Xi �Xi − Xb
(10) end if
(11) end for
(12) end for
(13) end for
(14) Get filtered arrays of terms: Xδ � [X1δ, X2δ, . . ., Xnδ]

Filter out extracted terms by the weights over all APIs
(15) Compute weights over all APIs: Xω � 􏽐

n
i�1XδW

(16) for ωsum, x in Xω do
(17) if ωsum≥ θ then
(18) Add the term the final list: T+� [x]
(19) end if
(20) end for
(21) return T

ALGORITHM 1: Pseudocode of the API integration algorithm.

...

Infrastructure

API integration

Domain knowledge: UMLS API

JSON

JSON

JSON JSON

Extraction pipeline

Watson MeaningCloud TextRazor

CRATE HTTPS
Negation handler

Documents Annotations

Concept extraction

PHP framework: Laravel

Node.js express server

Figure 3: Prototype architecture.
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performance in extracting medical conditions requires
physicians to spend more time filtering out incorrect ex-
tractions. Secondly, the prototype fails to identify the as-
sociated dosages and frequencies of medications.

4. Discussion

We argue that outsourcing NLP tasks offers efficient NLP
solutions for processing unstructured clinical documents. To
begin with, outsourcing often leads to a reduction of both IT
development and maintenance costs. Furthermore, a lower
level of NLP expertise is required when external NLP ser-
vices are used. A developer with limited knowledge of NLP
could develop a clinical NLP application such as our pro-
totype. Lastly, the architecture supports NLP services be-
yond clinical concept extraction. By adding a sentiment
analysis NLP pipeline constructed by external NLP APIs, our
prototype can perform sentiment analysis on clinical doc-
uments. For instance, changing from concept extraction
to sentiment analysis can be accomplished by adjusting the
API request parameters from “{“features”: “entities”}” to
“{“features”: “sentiment”}.”

4.1. Evaluation Results. In comparison with the popular
biomedical NLP component collections listed in [40], the
main advantage of our proposed approach is its lightweight
nature. )e popular component collections, such as
cTAKES, Bluima, and JCoRe, require an intensive IT re-
sources investment including Java developers, NLP spe-
cialists with experience in the UIMA framework, and local
hardware support. On the contrary, clinical institutions
could start to process unstructured text with as little re-
sources as possible due to the fact that our cloud-based
approach outsources NLP to external NLP services. More-
over, Bluima has not been updated for four years. Instead of
replacing the popular NLP tools, our approach should be
considered as an alternative approach in the face of time and
resource constraints.

4.2. Error Analysis. An error analysis has been carried out
in order to better understand the performance of the
prototype. As explained in Section 2.2, there are two types
of errors, namely, FPs and FNs. Figure 5 shows the per-
centage of FP and FN errors in all experiments. First of all,
one major source of errors in the two i2b2 datasets is false
negatives, which means many annotated terms in the
datasets are not extracted by our prototype. )e high
proportion of FNs is in great part attributed to the entity-
type detection errors. Since some NLP APIs (Mean-
ingCloud and Open Calais) are unable to extract phar-
maceutical drug entities, it results in a lower amount of
extracted entities and higher false negatives. )erefore, to
enhance the performance, NLP APIs such as Mean-
ingCloud and Open Calais might as well be excluded.

Nevertheless, the higher number of false positives led to
an overall performance loss in the OPERAM medical
conditions extraction. We found out that the problem lies
in the annotation. For example, the sentence “Fall during

Figure 4: Prototype user interface of the multiple NLP API extraction pipeline. A demo video and source code are available online.

Table 3: Impact of negation from the experiments.

Dataset Negation
(κ) Recall Precision F1

score

Obesity challenge True 0.733 0.939 0.823
False 0.805 0.925 0.861

Medication challenge True 0.62 0.835 0.712
False 0.636 0.838 0.724

OPERAM medical
conditions

True 0.594 0.271 0.373
False 0.594 0.271 0.373

OPERAM medications True 0.795 0.816 0.805
False 0.795 0.816 0.805
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the night, multiple hematomas. Orthostatic hypotension
proven.” contains two medical conditions: hematoma and
orthostatic hypotension. Hematoma was found by two out of
six extractors; orthostatic hypotension was found by five out
of six. However, neither of these two was annotated, most
likely because the context of the sentence was in past tense
and potentially not applicable to the current state of the
patient.

4.3. Limitations and Future Research. )ere are a number of
hurdles that prevent the adoption of our approach in daily
practice. Further research is necessary to sufficiently address
these concerns. First of all, practical implementation re-
quires a more thorough privacy and security component.
)e privacy and security component is part of the proposed
architecture and currently implemented in the prototype
using CRATE [26] and HTTPS. However, since only ano-
nymized datasets are used in the evaluation, the deidenti-
fication toolkit, CRATE, was not validated. Before the
practical adoption, we need to first evaluate the performance
of the privacy and security component with real-world
clinical data.

Another concern lies in the computational efficiency of
our approach, namely, execution time. As shown in the
demo video, it takes about 20 seconds to process a discharge
letter. In specific, the majority of time (15 seconds) goes to
annotation in which extracted terms are first encoded with
UMLS and then pairwise similarity between them is

calculated. Since the prototype was running locally on a
laptop with 8GB RAM, we think it would become faster if we
implement it on a larger server.

In practice, clinical NLP is employed to solve various
clinical problems, ranging from entity extraction to cohort
detection. Our research demonstrates that the proposed
approach performs well on clinical concept extraction. It is
crucial to conduct further evaluation on other tasks, such as
cohort detection and sentiment analysis before adopting the
approach in practice.

Last but not least, due to the wide adoption of health
information systems (HIS) in healthcare institutions, de-
veloping a simple method that supports the integration of
our approach with HIS would facilitate its implementation.

5. Conclusion

)e proposed NLP architecture offers an efficient solution to
develop tools that are capable of processing unstructured
clinical data in the healthcare industry. With our approach,
less time and resources are required to create and maintain
NLP-enabled clinical tools given that all NLP tasks are
outsourced. Moreover, the prototype built upon the ap-
proach produces satisfactory overall results, and its per-
formance on certain datasets indicates that its practical
application in clinical text processing, particularly clinical
concept extraction, is promising. Nevertheless, high variance
among different datasets brings concerns on its general-
ization and practicability.

Table 4: Overall results on three datasets.

Dataset κ c θ Recall Precision F1 score

Obesity challenge False 0.1 0.2 0.805 0.925 0.861
Baseline∗ 0.771 0.815 0.787

Medication challenge False 0.1 0.35 0.636 0.838 0.724
Baseline∗ 0.794 0.845 0.818

OPERAM medical conditions True 0.1 0.5 0.594 0.271 0.373
OPERAM medications False 0 0.35 0.795 0.816 0.805
∗Average of the top 5 best systems from the challenge.
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Figure 5: Error distribution of all the experiments, false positives vs false negatives.
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Data Availability

Source code and the OPERAM dataset are available at
the GitHub repository https://github.com/ianshan0915/
MABNLP. )e two i2b2 datasets are accessible from
https://www.i2b2.org/NLP/DataSets/Main.php. Finally,
a demo video of the prototype is available at https://
youtu.be/dGk9NQGWYfI.
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