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Abstract: Systemic sclerosis (SSc) is a rare chronic autoimmune disease associated with significant
morbidity and mortality. Two main subsets of SSc are recognized: (i) diffuse cutaneous SSc with rapidly
progressive fibrosis of the skin, lungs, and other internal organs; and (ii) limited cutaneous SSc, which
is dominated by vascular manifestations, with skin and organ fibrosis generally limited and slowly
progressing. In spite of intense investigation, both etiology and pathogenesis of SSc are still unknown.
Genetic and environmental factors, as well as abnormalities of immune functions, are strongly
suggested for etiology, while microvascular abnormalities, immune system activation, and oxidative
stress are suggested for the pathogenesis. Recently, it has been found that a multitude of mediators
and cytokines are implicated in the fibrotic processes observed in SSc. Among these, a central role
could be exerted by “alarmins”, endogenous and constitutively expressed proteins/peptides that
function as an intercellular signal defense. This review describes, in a detailed manner, the role of
alarmins in the pathogenesis of scleroderma.
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1. Introduction

SSc is a rare autoimmune disease characterized by microvascular damage, fibrosis of the skin and
internal organs, and aberrant immune activation. Based on the extent of skin involvement, two main
subsets of SSc are recognized: (i) diffuse cutaneous SSc (dcSSc) with rapidly progressive fibrosis of
the skin, lungs, and other internal organs; and (ii) limited cutaneous SSc (lcSSc), which is dominated
by vascular manifestations, with skin and organ fibrosis generally limited and slowly progressing.
Vascular disease is clinically revealed by digital pits and ulcers whereas visceral involvement commonly
includes gastroesophageal reflux disease, interstitial lung disease, and cardiac diastolic dysfunction.

Growing evidence corroborates the notion that a complex interplay between genetic,
environmental, and immunological factors plays a causative role in the development of systemic
sclerosis. It is commonly accepted that SSc develops in an individual with a permissive genetic
background. Thanks to the advances of genetic techniques, many SSc susceptibility loci have been
firmly identified both in the MHC-HLA region and in non-HLA immune regulatory and inflammatory
genes. HLA class-II is the most significant region associated with SSc, while CD247, encoding for the
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CD3 zeta chain, the interferon regulatory factor 5 (IRF5), and the signal transducer and activator of
transcription protein 4 (STAT4) are the non-HLA-associated genes more frequently associated with
SSc susceptibility. Taken as a whole, genetic studies have shown that virtually all SSc-associated risk
loci are located in genes related to innate immune signaling, including the toll-like receptor (TLR)
and interferon (IFN) systems. Variants of TNFAIP3, a key negative regulator of TLR signaling and its
partner molecule, (TNFAIP3)-interacting protein 1 (TNIP1), both showed a strong association with
SSc [1]. Multiple variants in IFN genes linked to mortality and discrete phenotypes of SSc, such
as dcSSc, lcSSc, anti-DNA topoisomerase I antibody (ATA), anticentromere antibodies (ACA), and
pulmonary arterial hypertension (PAH), point to the importance of the IFN pathway, both in the
development and progression of SSc. Type I IFN synthesis is induced by a microbial challenge when
the pattern-recognition receptors (PRRs) in the cytosol or within endosomes sense microorganisms
such as bacteria, viruses, and fungi. An interferon signature is observed in most patients with SSc, as
well as in patients with HIV infection, thus reinforcing the long-held hypothesis that infections might
be the first trigger of SSc in genetically susceptible individuals.

The precise etiology and molecular pathogenesis of SSc are still unclear, although considerable
evidence suggests that innate immune system responses are pivotal in disease initiation. Inappropriate
activation of innate immune cells via PRRs, such as TLRs, leads to signaling cascades that are
ultimately detrimental to the host. TLRs are germ-line-encoded PRRs that recognize components of
pathogens, as well as endogenous danger signals, therefore contributing to the “sterile inflammation” [2].
They have been linked to different autoimmune diseases, including rheumatoid arthritis (RA), systemic
lupus erythematosus (SLE), and SSc. TLR2, 3, 4, 7, 8, and 9 have particular relevance to SSc
pathogenesis. A functional polymorphism in TLR2 associates with ATA positivity, while TLR4, which
recognizes bacterial lipopolysaccharide (LPS) and a variety of endogenous ligands, synergizes with
transforming grow factor β (TGF-β) to increase collagen production [3]. Other PRRs, named NLRs
(NOD (nucleotide-binding and oligomerization domain)-like receptors) localize in the cytoplasm and
recognize intracellular motifs. This family of receptors is composed in humans of 22 cytoplasmic
proteins that, upon ligation, trigger NF-kB and mitogen-activated protein kinase (MAPK), thereby
resulting in the expression of pro-inflammatory cytokines. In SSc patients, polymorphisms in NOD-,
LRR- and pyrin domain-containing protein 1 (NLRP1) are associated with pulmonary fibrosis and
anti-topoisomerase-positivity [4], whereas elevated levels of NOD2 and NLRP3 are observed in dermal
fibroblast [5].

Vascular abnormalities are the earliest manifestations of SSc clinically presented as nailfold
capillary abnormalities and Raynaud’s phenomenon. The causes of the initial vascular damage in
SSc are unclear, but infectious agents, cytotoxic T cells, nitric oxide (NO)-related free radicals, and
autoantibodies against endothelial cells have all been implicated [6]. The histological features of SSc
vasculopathy include the decrease in the number of small vessels, dilation of capillaries, and stenosis
of arterioles and small arteries. Blood vessels of SSc patients are characterized by a subendothelial
accumulation of activated fibroblasts or myofibroblasts with excessive production of type I collagen
(CI) and extracellular matrix (ECM) [7]. Another abnormality observed in SSc patients is the transition
of endothelial cells to a mesenchymal phenotype expressing α smooth muscle actin (αSMA), vimentin,
and CI. This phenomenon is probably under the control of TGF-β, but its role in SSc vasculopathy,
if any, remain to be elucidated. Overall, key vascular abnormalities are intimal proliferation in the
absence of significant inflammation, endothelial cell damage, defective angiogenesis, impaired vascular
tone and permeability, the platelet activation, and finally the enhanced coagulation with decreased
fibrinolysis. An impaired balance of vasoconstrictors (e.g., endothelin (ET) and vasodilator substances
(e.g., NO) factors also participate in vascular dysfunction.

Nearly 30 years ago, Murrel associated, for the first time, the pathogenesis of SSc to oxidative
stress [8]. Later, many reports have supported this hypothesis, showing remarkable evidence of
oxidative stress, such as abnormalities of NO, nitric oxide synthase, and 8-isoprostane [9,10] for both
lcSSc and dcSSc (for a comprehensive review see Vona et al. [11]). Reactive oxygen species (ROS) and
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reactive nitrogen species (RNS) are considered the background pathology involved in the development
of SSc [12]. ROS are the reduced metabolites of molecular oxygen, including superoxide anion radical
(O2•), hydroxyl anion (•OH), and hydrogen peroxide (H2O2). RNS are the overproduction of NO,
nitrogen dioxide (NO2), and peroxynitrite (ONOO−), which is formed from the interaction between NO
and superoxide. Both ROS and RNS can induce the production of pro-inflammatory and pro-fibrotic
cytokines, such as platelet-derived growth factor (PDGF) and TGF-β; stimulate the proliferation and
the activation of fibroblasts; augment the synthesis of CI; and cause vascular dysfunction. In conditions
of intense production of ROS and RNS, red blood cells (RBCs) may also undergo oxidative damage and
act as pro-oxidant “weapons” capable of transforming the behavior and fate of endothelial cells [13].
In SSc patients, alteration of RBCs induced by oxidative imbalance includes cytoskeleton oxidative
denaturation and derangement, as well as loss of lipid asymmetry. These changes can ultimately result
in the modification of RBC adhesive properties, aggregability, and deformability, all related to disease
severity [14].

Aberrant immune activation, on the one hand, and vascular damage, on the other hand, lead to
the third cardinal process in the pathogenesis of SSc, fibrosis. Fibrosis is the abnormal expression of
collagens and other extracellular matrix proteins within the tissues, ultimately resulting in the failure of
the organ or tissue. When tissues are damaged by excessive deposition of ECM, several signaling events
occur in the cellular microenvironment where additional cells are recruited, attempting to “repair” the
damaged tissue. This paradoxically elicits further exacerbation of the damage with the addition of
more collagen and extracellular matrix. However, tissue fibrosis can also occur in the absence of any
overt damage, and indeed, in many instances, the cause of the fibrosis remains unknown. In the tissue,
effector cells responsible for fibrosis include bone-marrow-derived mesenchymal progenitors, such as
fibrocytes and monocytes, and most importantly, myofibroblasts. In SSc, fibrosis occurs prevailingly in
the skin and lungs, but it can also affect other tissues, such as the myocardium, gastrointestinal tract,
renal interstitium, tendons, and muscles, thus contributing to morbidity and mortality [15]. A large
number of mediators and cytokines and their downstream signaling cascades are implicated in the
fibrotic processes observed in scleroderma. Innate immune responses have recently emerged as pivotal
drivers of persistent fibrotic response in SSc. The expression of TLR4, as well as several endogenous
danger signals ligand, is elevated in lesional tissue from patients with SSc, and its activation triggers
fibrotic gene expression and myofibroblast transformation and survival. These endogenous danger
signals are called alarmins, and together with exogenous pathogen-associated molecular patterns
(PAMPs), which are microbial in origin, are referred to as damage-associated molecular patterns
(DAMPs) [16,17]. Nevertheless, the terms “alarmins” and “DAMPS” are often used as synonyms.

Alarmins are endogenous and constitutively expressed proteins/peptides showing
immune-activating activities. They are released in the microenvironment as a result of degranulation,
cell injury, or death, or in response to immune induction [18,19]. In addition to a physiological, often
homeostatic, role inside the cell, alarmins also deliver, when exposed to the extracellular milieu, danger
signals to the host, triggering a local inflammatory response, as well as innate/adaptive immune
responses. Most alarmins are passively released from dead cells, but some alarmins can also be
actively secreted to signal early a state of sublethal cell stress [20]. Sterile tissue injury leads to the
generation of DAMPs that enable cells to sense and respond to danger. However, as a consequence of
severe injuries or maximal stimulation, the signaling pathways activated by alarmins may become
dysregulated, resulting in unwanted pathologic inflammation. Since DAMP-initiated inflammatory
responses are independent of pathogen infection, they are referred to as sterile inflammation [21].
Alarmins function as intercellular signals’ defense by interacting with chemotactic and PRRs. Based on
their localization, PRRs may be divided into (i) membrane-bound PRRs, such as TLR and C-type lectin
receptors (CLRs), and (ii) cytoplasmic PRRs, such as NLRs and RIG-I-like receptors (RLRs). In addition,
alarmins can be sensed by several other receptors, referred to as non-PRR DAMP receptors. These
include receptors for advanced glycation end products (RAGE), triggering receptors expressed on
myeloid cells (TREMs), and several G-protein-coupled receptors (GPCRs). PRRs also bind PAMPs,
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exogenous warning signals that alert the organism to intruding pathogens, represented by microbial
molecules that share recognizable biochemical features [22]. The main differences between alarmins
and PAMPs are the diverse localization (endogenous vs. exogenous) and the different way of action
(cytokine-like vs. receptorial) [19]. Similar to the pathogen-induced inflammation, alarmins can
activate both innate immune cells, such as neutrophils, macrophages, and dendritic cells (DCs), and
non-immune cells, such as epithelial cells, endothelial cells, and fibroblasts. This activation leads to the
production of several cytokines and chemokines, which in turn recruit inflammatory cells and activate
adaptive immune responses. Sterile inflammation is essential for tissue repair and regeneration,
but when it becomes uncontrolled, sterile inflammatory diseases may arise, including metabolic
disorders, neurodegenerative diseases, autoimmune diseases, and cancer [23]. A strategy evolved
by DAMP-sensing receptors is to sense various DAMPs to initiate sterile inflammatory responses.
In addition, the same DAMP is recognized by two or more DAMP-sensing receptors that cooperate to
activate and maintain multiple effector responses (e.g., high-mobility group box-1 (HGMB-1) that binds
to TLR2, TLR4, RAGE, and TREM1). Moreover, in order to amplify their responses, different DAMPs
can interact with each other, (e.g., HMGB-1 bind to endogenous DNA and augment DNA-induced
TLR9 activation and cytokine release) [24].

In addition to the initially described roles in host defense and cellular homeostasis, alarmins
play key roles in a very broad range of physiological and pathological processes, such as gene
expression, wound healing, inflammation, allergy, autoimmunity, and oncogenesis. Alarmins activate
tissue-resident leukocytes, stimulating the production of a variety of inflammatory cytokines (for
a comprehensive review, see [19]) and participate in the activation of inflammasomes, specialized
proteins containing NLRs [25], a critical step for innate/inflammatory responses and host defense.
However, inflammasomes are not only sensors for pathogens but can also be activated, as in the
case of the NLRP3 inflammasome, by generic stress signals such as perturbations in reactive oxygen
species and potassium concentration [26]. A critical step for the activation of the inflammasome is the
cleavage and activation of caspase-1 [27]. Once activated, the inflammasome can process a large array
of precursors, many of them involved in wound healing [28] and fibrosis. Many studies point out a
pivotal role for the NLRP3 inflammasome in the signaling process leading to fibrosis. Considering that
oxidative stress has a key role in fibrosis, it has been hypothesized that an increase of NLRP3 activation
in fibrotic diseases might be due to ROS production. Many alarmins display intrinsic chemotactic
activity toward different types of leukocytes, thereby contributing to the cellular infiltration into sites of
infection or tissue injury. However, alarmins may also promote the recruitment of leukocytes indirectly,
through the production of chemokines by activated leukocytes or upregulating the expression of
adhesion molecules in endothelial cells and leukocytes, as in the case of HMGB-1, which stimulates
endothelial expression of intercellular adhesion molecule 1 (ICAM-1), and β1 and β2 integrins [29].

Alarmins can be grouped in three main categories: (1) nuclear, including HMGB-1, HMGN1, IL-33,
and IL-1α; (2) granule derived, including α- and β-defensins, cathelicidin (LL37/cathelicidin-related
antimicrobial peptide (CRAMP), eosinophil-derived neurotoxin (EDN), and granulisin; and
(3) cytoplasmic, such as heat-shock protein (HSP-60, -70, -90, and -96), S100 proteins, ATP, and
uric acid. Accumulating evidence indicates alarmins as primary players in SSc, as well as in many
other diseases linked to inflammation and immune system activation [30]. In particular, a role for
alarmins has been strongly suggested in SSc for the pathogenesis of vasculopathy, inflammation, and
fibrosis. During the last few years, inhibitors of alarmin signaling have also been identified, making
them attractive therapeutic tools. Signal transduction pathways of the main alarmins involved in SSc
pathogenesis are schematically shown in Figure 1. In this review, we describe current knowledge about
the different alarmins and the pathogenesis of SSc. New therapeutic strategies aimed to counteract
alarmin functions are also summarized.
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by membrane-bound receptors mainly belonging to the toll-like receptor (TLR) and IL-1R families. 
Multiple signal transduction pathways are thereby activated, culminating in the transcriptional 
activation of proinflammatory and type I interferons (IFNs) genes. Alarmins are therefore attractive 
targets for novel pharmacological intervention, but only a few clinical trials are currently ongoing to 
evaluate the effects of alarmin blockade on human diseases. 

2. The Expression and Function of Nuclear Alarmins HMGB-1, IL-33, and IL-1α and Their 
Receptors in SSc 

HMGB-1 is a highly conserved, non-histone, ubiquitous nuclear DNA-binding protein 
contained in most cell types, and it serves as a nuclear/transcriptional regulator [31]. It has both 
chemoattractant and activating effects on leukocytes, including dendritic cells (DCs), and hence, it 
has the capacity to induce innate and adaptive immune responses [19]. As a result of cell damage or 
via regulated secretion, similar to other “multitasking” alarmins, HMGB-1 is released into the 
extracellular microenvironment [32], where it acquires cytokine-like and pro-inflammatory activities 
[33–40]. HMGB-1 contains three residues of cysteine that determine the binding specificity to three 
different receptors: TLR4/MD-2 receptor axis, leading to the induction of inflammatory cytokines in 
macrophages [33,35]; CXCR4 to promote chemotactic cell migration of monocytes/macrophages and 
T cells [41]; and receptor of advanced glycation end products (RAGE) to trigger cell migration or 
autophagy. RAGE and TLR4 are also multitaskers, since they bind other alarmins, such as the S100 
proteins [42,43] and heat-shock proteins (HSPs). RAGE belongs to the immunoglobulin (Ig) 
superfamily and has been described as a pattern-recognition receptor [44]. It is expressed on several 
cell types (monocytes/macrophages, T-lymphocytes, endothelial cells, dendritic cells, fibroblasts, 
smooth muscle cells, neuronal cells, glia cells, chondrocytes, and keratinocytes) and recognizes a 
large number of different ligands (AGEs, amyloid β peptide, S100/calgranulin protein, HMGB1, and 
LPS) [45]. There are two types of RAGE: (i) full-length RAGE (fl-RAGE), a transmembrane protein 

Figure 1. Signal transduction of the main alarmins involved in SSc pathogenesis. Upon cell injury,
alarmins are released both actively and passively into the microenvironment, where they are sensed by
membrane-bound receptors mainly belonging to the toll-like receptor (TLR) and IL-1R families. Multiple
signal transduction pathways are thereby activated, culminating in the transcriptional activation of
proinflammatory and type I interferons (IFNs) genes. Alarmins are therefore attractive targets for novel
pharmacological intervention, but only a few clinical trials are currently ongoing to evaluate the effects
of alarmin blockade on human diseases.

2. The Expression and Function of Nuclear Alarmins HMGB-1, IL-33, and IL-1α and Their
Receptors in SSc

HMGB-1 is a highly conserved, non-histone, ubiquitous nuclear DNA-binding protein contained in
most cell types, and it serves as a nuclear/transcriptional regulator [31]. It has both chemoattractant and
activating effects on leukocytes, including dendritic cells (DCs), and hence, it has the capacity to induce
innate and adaptive immune responses [19]. As a result of cell damage or via regulated secretion, similar
to other “multitasking” alarmins, HMGB-1 is released into the extracellular microenvironment [32],
where it acquires cytokine-like and pro-inflammatory activities [33–40]. HMGB-1 contains three
residues of cysteine that determine the binding specificity to three different receptors: TLR4/MD-2
receptor axis, leading to the induction of inflammatory cytokines in macrophages [33,35]; CXCR4
to promote chemotactic cell migration of monocytes/macrophages and T cells [41]; and receptor of
advanced glycation end products (RAGE) to trigger cell migration or autophagy. RAGE and TLR4
are also multitaskers, since they bind other alarmins, such as the S100 proteins [42,43] and heat-shock
proteins (HSPs). RAGE belongs to the immunoglobulin (Ig) superfamily and has been described as
a pattern-recognition receptor [44]. It is expressed on several cell types (monocytes/macrophages,
T-lymphocytes, endothelial cells, dendritic cells, fibroblasts, smooth muscle cells, neuronal cells, glia
cells, chondrocytes, and keratinocytes) and recognizes a large number of different ligands (AGEs,
amyloid β peptide, S100/calgranulin protein, HMGB1, and LPS) [45]. There are two types of RAGE:
(i) full-length RAGE (fl-RAGE), a transmembrane protein with a short cytoplasmic domain, essential for
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activation of nuclear factor-κB (NF-κB) [46]; and (ii) soluble RAGE (sRAGE), produced by alternative
splicing of RAGE messenger RNA [47,48]. It has been shown that sRAGE prevents ligands to interact
with RAGE or with other cell surface receptors [49], suggesting the presence of a negative feedback
mechanism in RAGE signaling.

Signaling pathway activated by HMGB-1 induces the NFκB phosphorylation, which in turn
results in the production of several cytokines and chemokines, such as TNF-α, IL-1β, IL-6, macrophage
inflammatory protein-1α, and transforming growth factor-β by a large number of cells, including
endothelial cells, fibroblasts, macrophages, monocytes, T cells, and B cells [27,37,50–52]. It is now well
established that HMGB-1 actively promotes fibrosis. This has been observed in different pathological
conditions, including pulmonary, renal, and myocardial fibrosis [53–55]. HMGB-1 also promotes
fibrogenesis after endothelial cell damage and favors neurovascular remodeling and functional recovery
after stroke and brain injury [56]. Moreover, the upregulation of RAGE observed in various diseases
(rheumatoid arthritis, inflammatory kidney disease, arteriosclerosis, and inflammatory bowel disease),
in association with the capacity of RAGE to bind many proinflammatory ligands (amyloid-β fibrils,
S100 proteins, and HMGB-1), strongly suggests that RAGE also plays a pivotal role in the activation
and maintenance of immune/inflammatory responses.

Yoshizaki et al., for the first time, observed that serum HMGB-1 and sRAGE levels were higher
in SSc patients than in controls. Elevated levels of both HMGB-1 and sRAGE were also observed in
bleomycin-induced scleroderma mice, an animal model of SSc. SSc patients with increased HMGB-1
and sRAGE levels also showed a more severe disease compared to those with normal levels. Lungs,
heart, kidneys, and joints involvement were all associated with significantly increased levels of both
HMGB-1 and sRAGE. Moreover, a significant association was also observed with anti-topoisomerase
I antibodies, erythrocyte sedimentation rate (ESR), and C reactive protein (CRP). Finally, HMGB-1
and sRAGE levels were positively associated with modified Rodnan total skin thickness score and
inversely with pulmonary function test [57]. A role for the higher production of reactive oxygen
species in the increased HMGB-1 levels was suggested, due to vascular ischemia and reperfusion
injury after Raynaud’s phenomenon. The generation of sRAGE would be a counter-system versus
HMGB-1/RAGE-induced inflammatory responses.

An enhanced activation of platelets and increased tendency to aggregation have long been
observed in SSc patients [58–62]. This is generally attributed to the concomitant dysfunction of the
endothelium [63]. Activated platelets release in the plasma of SSc patients several factors involved in
SSc pathogenesis, such as vascular endothelial growth factor (VEGF), PDGF, TGF-β, serotonin [64],
HMGB-1 protein [65], and microparticles (MP). Microparticles, in particular, are abundant and contain
bioactive HMGB-1 [66,67].

Maugeri et al. [68] found that, in the blood of SSc patients, activated platelets release abundant
MP that interacts with neutrophils, promoting neutrophil autophagy, a process by which stressed cells
provide anabolic substrates to feed their bioenergetics and to generate neutrophil extracellular traps
(NETs), a source of autoantigens that play an important role in the pathogenesis of autoimmune diseases,
like systemic lupus erythematosus (SLE) and rheumatoid arthritis [69,70]. NETs and autophagic
neutrophils are abundant in blood from SSc patients. When injected into NSG mice, platelet-derived
microparticles obtained from SSc patients prompt neutrophil activation and NET production, resulting,
in turn, in endothelial damage and fibrosis. Microparticle–neutrophil interaction, neutrophil autophagy
and survival, and accumulation in the blood of NET by-product generation were all abated in the
presence of BoxA, a competitive inhibitor of HMGB-1, indicating that HMGB-1 was required for
the in vivo effects of microparticles. In contrast, microparticles retrieved from the plasma of healthy
controls did not cause endothelial damage in mice. Therefore, HMGB-1 is ultimately responsible for
the endothelial damage in SSc [71]

Vogel et al., generating transgenic mice with platelet-specific ablation of HMGB-1 and studying
trauma patients, demonstrated that platelet-derived HMGB-1 is a critical mediator of thrombosis and a
regulator for platelet activation, granule secretion, adhesion, and spreading. These consequences were
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guided via TLR4- and MyD88-dependent recruitment of platelet guanylyl cyclase (GC) toward the
plasma membrane, followed by MyD88/GC complex formation and activation of the cGMP-dependent
protein kinase I (cGKI) [72]. Similarly, Stark et al., identified blood-derived HMGB-1 to be the main
controller of the prothrombotic cascade, implicating platelets and myeloid leukocytes fostering occlusive
DVT production [73]. Therefore, it can be speculated that HMGB-1 might coordinate microthrombosis
in SSc patients and contribute to sustaining the vasculopathy associated with the disease.

Many studies have found a significant relationship also between TLR-4 and SSc. In response to
PAMPs, TLR4 forms a complex with its co-receptor MD2 on the cell surface. TLR4 and its co-receptors,
MD2, and CD14, were elevated in lesional skin biopsies from patients with diffuse cutaneous SSc,
and significantly correlated with disease progression [74]. Interestingly, in lesional biopsies, TLR4
co-localized with myofibroblasts, as well as infiltrating macrophages and vascular cells. Increased
TLR4 expression was also observed in lung biopsies from SSc-ILD patients mainly in parenchymal
fibroblasts and infiltrating cells located at fibrotic loci. However, according to current evidence, the role
of TLR4 in lung fibrosis is contradictory. The pulmonary fibrosis was ameliorated by TLR4 knockout
in murine models of scleroderma, as well as in mice with TLR4 deleted using small hairpin RNA
(shRNA) [75,76].

These findings were not confirmed by subsequent studies showing worsening of bleomycin-induced
lung inflammation and fibrosis in Tlr4−/− mice, possibly due to an impairment of alveolar epithelial
cell renewal in the absence of TLR4 [77,78]. The contrasting observations in these studies are difficult to
reconcile at the moment. In skin, fibroblast treatment with LPS, or endogenous TLR4 ligands, triggered
a profibrotic gene expression program and transdifferentiation into α myofibroblasts. Moreover, TLR4
activation greatly enhanced fibroblast sensitivity to the profibrotic effect of TGF-β. Consistent with these
observations, genetic targeting of TLR4, or its endogenous DAMP ligands, or pharmacological disruption
of signaling from TLR4 or its co-receptor MD2, ameliorated progressive tissue fibrosis in different disease
models [79,80].

Interleukin-33 (IL-33) is a tissue-derived nuclear cytokine from the IL-1 family, including IL-1α,
IL-1β, and IL-18 [81]. It is expressed in endothelial cells, epithelial cells, fibroblast-like cells, and
myofibroblasts both during both steady-state and inflammation [82–84]. As other alarmins, IL-33
is a multitasking molecule. In the inactive state, the full-length IL-33 protein (flIL-33) is associated
with chromatin in the cell nuclei and acts as an intranuclear gene regulator [82,85]. The mature form
of IL-33 (mIL-33) may be passively released by damaged or necrotic cells upon cell injury, as well
as actively secreted by immune cells. It acts as an extracellular cytokine [85–87] that alerts a very
large number of immune cells expressing the IL-1 receptor-related suppression of tumorigenicity 2
receptor (ST2) (IL-1RL1), a member of the Toll-like receptor (TLR)/IL-1 superfamily [88–94]. The most
important isoforms of ST2 are the membrane-bound receptor (ST2L) and the soluble form (sST2). IL-33
binding to ST2L leads to interaction with IL-1 receptor accessory protein (IL-1RAcP), which clusters
their toll/ interleukin-1 receptor (TIR) domains and recruits myeloid differentiation primary response
protein 88 (MYD88), the IL-1R associated kinase 4 (IRAK4), IRAK1, and TNF receptor-associated
factor 6 (TRAF6) proteins [95,96]. Downstream events, including activation nuclear factor-κB (NF-κB),
p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) [97], stimulate
the production of Th2-associated cytokines, IL- 4, IL-5, and IL-13, and support the proliferation and
survival of ST2+ cells such as Th2 cells, Treg cells, and ILC2s. Conversely, the IL-33/ST2 signaling
pathway is negatively regulated by sST2, which binds to free IL-33 as a decoy receptor, and by single
immunoglobulin domain IL-1R-related molecule (SIGIRR), through interaction with the ST2 receptor
complex [98]. The main target of IL-33 are cells involved in Th2 immunity and allergic inflammation,
such as group 2 innate lymphoid cells (ILC2s), mast cells, Th2 cells, eosinophils, basophils, and
dendritic cells. However, the ST2 receptor is also expressed in type-1 immunity cells, like Th1 cells, NK
cells, CD8 T cells, neutrophils, macrophages, B cells, and NKT cells. This accounts for the involvement
of IL-33 in an extensive range of non-allergic diseases, including fungal, helminth, protozoa, bacterial,
and viral infection diseases, cardiovascular diseases, chronic obstructive pulmonary disease (COPD),
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fibrotic diseases, musculoskeletal diseases, inflammatory bowel diseases, diseases of the central
nervous system (Alzheimer), cancer, graft versus host disease (GVHD), obesity, and diabetes. Many
studies have also indicated IL-33 as an important factor in the pathogenesis of multiple inflammatory,
autoimmune and allergic diseases, such as SLE, rheumatoid arthritis (RA), and inflammatory bowel
disease (IBD) [99–102]. The IL-33/ST2 axis has long been known to play a pivotal role in the development
and regulation of immune responses, as well as cell homeostasis, by promoting wound healing and
tissue repair. These tissue-protective functions of IL-33 involve activation of tissue-reparative M2
macrophages [103], ILC2s [104], and Tregs [105]. A profibrogenetic role of IL-33 has been demonstrated
for pulmonary fibrosis (idiopathic and SSc-related fibrosis), liver fibrosis (cirrhosis, viral hepatitis,
primary biliary cirrhosis, and NASH), pancreatic fibrosis, intestine fibrosis (IBD), renal fibrosis, and
skin fibrosis. In regard to skin fibrosis, it has been documented that the IL-33/ST2 axis associates
with fibroblast proliferation, differentiation of endothelial cells, increased angiogenesis, and ECM
deposition [106].

To explore the consequences of the dysregulated IL-33 signaling pathway in the skin, Rankin et al.
injected recombinant IL-33 to IL-1RAcP-/-, ST2-/-, IL-13-/-, and WT mice subcutaneously. Interestingly,
the development of cutaneous fibrosis was observed in association with ST2 and IL-1RAcP-dependent
accumulation of CD3 lymphocytes and eosinophils. IL-33 stimulated bone-marrow-derived eosinophils
to secrete IL-13, which might represent a key mediator of IL-33-induced fibrosis [107].

In an initial work on the role of IL-33 in SSc, Manetti et al. studied the IL-33 protein expression,
IL33 mRNA, and ST2 expression in skin and visceral organ biopsies from SSc patients (both early and
late) and controls. They found that the expression of IL-33 protein in EC and keratinocytes in the
skin was markedly decreased in early SSc patients, whereas the mRNA expression was normal or
even increased. This was explained as mobilization of IL-33 by EC nuclei in the early disease stage
upon activation/damage. By contrast, in patients with late-stage SSc, IL-33 protein was constitutively
found in most endothelial cells. The authors then concluded that IL-33 might play an important role
as epithelial “alarmin” in tissues exposed to the environment [108]. In subsequent work, the same
research group also demonstrated that circulating IL-33 was significantly higher in SSc patients than in
controls and early stage SSc than in late-stage SSc. Moreover, IL-33 levels were significantly higher
in patients with the “active” than in those with the “late” capillaroscopic pattern. These findings, in
association with the reported strong expression of ST2L in endothelial cells, inflammatory/immune
cells, and myofibroblasts in early stage SSc, suggested a role of IL-33 in the active derangement of the
microcirculation, as well in other pathogenetic mechanisms of SSc, such as immune abnormalities and
fibrosis [109].

Yanaba et al. added another piece of information, demonstrating that high serum level of IL-33
positively correlated with skin sclerosis and severity of pulmonary fibrosis. When considering the
enhancing activity of IL-33 on Th2 responses, the authors suggested that IL-33 is likely to contribute to
the Th2 lymphocyte infiltration and promote Th2 cytokine production, such as IL-4 and IL-13, leading
to skin fibrosis in SSc [110]. According to these findings, the expression of IL-33 mRNA is reported to
increase in the primary pulmonary fibroblasts from patients with SSc-ILD, as well as in those from
patients with idiopathic pulmonary fibrosis (IPF) [111]. These findings were only in part confirmed
by a subsequent study of Terras et al. that found a significant association only between the increased
levels of Il-33 and peripheral vascular involvement in form as digital ulcers [112]. More interestingly,
Vettori et al., when studying the serum levels of factors involved in endothelial, T-cell, and fibroblast
interplay in SSc patients, found that IL-33 was significantly higher in early SSc patients, as compared to
both controls and SSc patients with a definite disease. The early subset of this study was represented
by patients presenting with RP and NVC scleroderma findings and/or SSc marker autoantibodies not
meeting 2013 ACR/EULAR criteria for SSc. This newly identified early SSc population represents an
ideal setting to investigate endothelial-lymphocyte-fibroblast interplay in the early stages of the disease.
In early SSc, there were no differences in the other investigated markers, according to the functional
and serological features assessed. Therefore, IL-33 might mediate the very early pathogenic events



Int. J. Mol. Sci. 2020, 21, 4985 9 of 24

of SSc, being crucially increased in the early subset. At the same time, the data also suggested that
IL-33 gives way to Th2-type pro-fibrotic cytokines, like IL-13, in the fibrotic stages of the disease [113].
More recently, Zhang et al., in a case-control study in the Chinese population, found that serum levels
of IL-1β, IL-18, and IL-33 in SSc patients were considerably augmented than those detected in healthy
subjects. No correlations of serum IL-1α, IL-1β, IL-18, and IL-33 levels with clinical parameters were
found. The authors thus concluded that, although no direct associations between these cytokines and
disease manifestations could be demonstrated, they still could be considered as serum markers of the
development of SSc [114]

Moreover, sST2 has also been suggested to have a direct role in fibrotic diseases, such as liver
fibrosis, possibly representing a suitable biomarker. Wagner et al. found elevated levels of sST2
in late-phase limited cutaneous SSC (lcSSc), as compared to patients with shorter disease duration
or with the diffuse subtype of SSc. Since iloprost treatment resulted in lowered sST2 levels, the
authors proposed sST2 as a biomarker and possibly a therapeutical target. Recently, MacDonald
et al. showed that (i) Treg cells from affected skin of SSc patients produced significant amounts of
IL-4 and IL-13, and (ii) Treg cells in the blood of patients with SSc had a considerably higher ratio
of skin-homing cells expressing TH2-cell-associated chemokine receptors. The authors also found
that IL-33 stimulated the differentiation of skin Treg cells into TH2-like cells and that skin-resident
Treg cells expressed the ST2 chain of the IL-33 receptor. Taken together, all of these findings strongly
suggest that IL-33 might be an important stimulator of tissue-localized loss of normal Treg cell function.
Localized dysfunction of Treg cells might contribute to fibrosis in patients with SSc [115]. A role for
IL-33-producing dermal fibroblasts in Th2-like Treg transdifferentiation has been recently suggested
by Saigusa et al. They demonstrated that, in the bleomycin-treated Fli1+/−mice model for SSc, Fli1
haploinsufficiency increased proportions of Th2- and Th17-like Tregs [116].

Kurowska-Stolarska et al. showed that IL-33 enhanced the polarization of M2 macrophages in an
IL-4Rα- and IL-13-dependent manner. Il-13, in turn, increased macrophage responsiveness to IL-33 by
increasing ST2L expression [117]. Activated macrophages are known to produce IL-13, a profibrotic
cytokine in pathological fibrosis. In addition, IL-33 also induced the expansion of type 2 innate
lymphoid cells (ILC2s), to increase the production of IL-13 [118]. Altogether, these findings strongly
suggest that IL-13 represents a key factor for the fibrotic activity of IL-33. IL-13 is a pleiotropic cytokine
mainly secreted by activated Th2 cells, and, to date, multiple fibrotic pathways have been demonstrated
to be triggered by it. On one hand, IL-13 may stimulate fibroblast activation both in a direct manner
and through the production of TGF-β; on the other hand, Il-13 maintains sustained type-2 immune
response, as well as increased levels of proinflammatory mediators that play an important role in
chronic fibrotic disorders. Lee et al. demonstrated that IL-13 induces tissue fibrosis by selectively
stimulating and activating transforming growth factor-beta 1. IL-13 stimulates macrophages to produce
TGF-β by several distinct mechanisms, including the production of latent TGF-β and upregulation
of matrix metalloproteinases (MMPs), that cleave the LAP-TGF-β complex [119,120], as well as via
an IL-13Rα2 signaling pathway. In fact, despite IL-13Rα2 being considered nonfunctional and only
acting as a decoy receptor for IL-13, recent studies have shown that signaling is possible through
IL-13Rα2 and that, during prolonged inflammation, in the presence of TNF-α, this pathway leads to the
production of TGF-β by macrophages and, ultimately, fibrosis in various experimental inflammatory
states [121,122]. Interestingly, a significant association between IL-13Rα2 gene polymorphisms and
susceptibility to SSc has been found in a French cohort of the Caucasian population [123]. A recent
work has demonstrated that a dysregulated production of IL-13 by effector CD8+ T cells is critical
for predisposing patients to more severe forms of cutaneous disease. This dysregulation seems to be
associated with defects in the molecular control of IL-13 production, such as increased expression
of the transcription factor GATA-3. The silencing of GATA-3 with siRNA significantly reduces IL-13
production by CD8+ T cells from patients.

IL-1α is a nuclear alarmin belonging to the IL-1 superfamily of cytokines that comprises 11
cytokines, seven with agonistic functions (IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β, and IL-36γ)
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and four with antagonistic activities (IL-1Ra, IL-36Ra, IL-37, and IL-38) [124], which amplify and
modulate the immune response. Based on both altered expression or gene polymorphisms, about
half of the members of this family (IL-1α, IL-1β, IL-18, IL-33, and IL-36α) have been associated with
fibrotic diseases, including SSc. Similarly, to most IL-1 family members, IL-1α is expressed as a
full-length precursor that needs proteolytic processing to acquire biological activity. The full-length
IL-1α is cleaved by cysteine protease calpain, whereas IL-1β and IL-18 precursors are cleaved by
the inflammasome [125]. IL-1α bind to IL-1R1 receptor, consisting of extracellular Ig domains and
intracellular TIR domains. IL-1R1 induces cell activation recruiting cytoplasmic myeloid differentiation
primary response protein 88 (MyD88), IL-1R associated kinase 4 (IRAK4), and tumor necrosis factor
receptor-associated factor 6 (TRAF6). This signaling cascade ends up in the activation of NF-κB and
mitogen-activated protein kinase (MAPK) [126].

Genome-wide association studies have revealed associations between genes encoding IL-1 family
cytokines and SSc. The human IL-1α (IL-1A) gene contains the sodium nitroprusside (SNP) rs1800587,
which has been reported to be associated with SSc susceptibility in the Slovak Caucasian, Japanese, and
Chinese populations [127]. However, in a very recent meta-analysis, IL-1A rs1800587 polymorphism
seems not to be statistically linked to the risk of SSc [128]. Fibroblasts obtained from the lesional skin
of SSc patients show an abnormal phenotype in vitro, characterized by altered expression of several
receptors, including transforming growth factor-β (TGF-β) receptor and IL-1 receptor type I.

In a pivotal study published in 1994, by Kawaguchi, an increased expression of IL-1α mRNA in
cultured SSc fibroblast was reported to be found [129]. Some years later, Higgins et al. demonstrated that
lesional fibroblasts from SSc patients also showed increased intracellular IL-1α, as well as intracellular
IL-1αR antagonist [130]. Therefore, there may exist intracellular regulatory loops that modulate the
expression and activities of the intracellular IL-1 family members, similarly to the case for the secreted
IL-1s. Moreover, since SSc fibroblasts expressed elevated basal pre-IL-1α and induction of icIL-1Ra,
compared with normal fibroblasts, the authors speculated that these intracellular cytokines might play
a role in the pathogenesis of scleroderma.

In another study published in 2004, Kawaguchi et al. added further information about the role
of IL-1α in the pathogenesis of SSc. In fibroblasts from SSc patients, the production of pro-collagen
and IL-6 were decreased when the expression of IL-1α was inhibited via IL-1α siRNA. As opposite,
overexpression of IL-1α through stable transfection in normal fibroblasts induced the differentiation of
the SSc fibroblast phenotype [131]. These observations suggested that IL-1α could have a potential
role in regulating fibroblast–myofibroblast differentiation, a key event in SSc. At present, evidence of
altered IL-1α serum level is lacking. In a very recent paper, Lin et al. reported that SSc patients with
high serum IL-1α concentrations were more likely to have digital ulcers [132].

Different mechanisms have been suggested to explain the profibrotic role of IL-1α in SSc.
Endogenous IL-1α stimulates the production of IL-6 and PDGF in SSc, as demonstrated by the
observation that inhibition of endogenous IL-1α resulted in decreased expression levels of IL-6
and PDGF in SSc fibroblasts [133]. IL-6 is profibrotic in multiple ways, including induction of
pro-fibrotic gene expression in vivo, enhancement of TGF-β1 production, and regulation of the TGF-β
receptor [134]. TGF-β1 is the main regulator of fibrosis-stimulating epithelial-mesenchymal transition
(EMT), fibroblast proliferation, ECM synthesis, and inhibition of collagenase and MMP [135]. PDGF
is a potent chemotactic factor for inflammatory cells and TGF-β1 [136]. Alternatively, a profibrotic
activity of IL-1α could result from its inhibitory activity on nuclear protein necdin, which has been
demonstrated to possess an inhibitory effect on procollagen type I production [137]. Finally, IL-1α and
IL-1β were found to promote the viability of cultured fibroblasts and myofibroblasts from patients
with SSc [138]. Therefore, IL-1 might contribute to fibroblast–myofibroblast differentiation and the
myofibroblast longevity, which are believed to be key events in SSc-consequent skin fibrosis in patients
with SSc.
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3. Expression and Function of Granule-Derived Alarmins α- and β-Defensins and LL-37 in SSc

Defensins are small arginine-rich cationic peptides with antimicrobial activity [139]. Human
defensins are cationic peptides of approximately 30 amino acids classified into two subfamilies, namely
α- and β-defensins, based on their disulfide bond linkages. As major players at the front line of defense,
immunological activities of defensins and their role as alarmins in host defense have been intensively
investigated. In humans, among the six known α-defensins, human neutrophil peptides (HNP)-1
to 4 are found in neutrophils, whereas human defensins (HD)-5 and HD-6 are mainly expressed in
intestinal Paneth cells and the respiratory and female reproductive tracts. Human β defensins (HBDs)
are expressed by epithelial cells in the skin and at mucosal surfaces in contact with the environment.
While neutrophils produce the largest amounts of HNPs, these peptides are also found in other immune
cells [140]. Accumulating evidence indicates that levels of defensins are often altered not only in
response to infection but also in inflammation, angiogenesis [141], or in case of tissue damage, thus
suggesting an immune regulatory role in disease pathogenesis [142,143]. Increased levels of HNPs
and HBD have been observed in both plasma and BALF from patients with different inflammatory
lung diseases [144], in association with increased neutrophil counts [145]. Furthermore, HBDs are
chemoattractants for numerous cell types, increase cell proliferation, and accelerate angiogenesis and
wound healing. It has been shown that HBD-3 plays a role in skin barrier homeostasis by improving
the tight junction (TJ) barrier [146]. Immunomodulatory properties of HBDs are controlled by various
pathways, including chemokine receptors, mas-related G-protein-coupled receptor X2 (MrgX2), TLRs,
epidermal growth factor receptor (EGFR), and some GPCRs.

The significance of abnormal levels of defensins in SSc is unclear. On one hand, it might simply
be the consequence of the cytokine microenvironment of SSc aimed at protecting against infection.
On the other hand, it could have pathogenic importance in SSc, as recently suggested by Kuzumi et al.,
who found significantly reduced levels of HBD-2 in SSc patients, in comparison to healthy controls.
HBD-2 levels were significantly lower in patients with diffuse SSc, as compared with limited SSc, and
in early stage dcSSc, as compared to mid-stage and late-stage. It is worth noting that SSc patients
suffering from telangiectasia, pitting scars, and digital ulcers had HBD-2 levels significantly higher in
comparison to patients without symptoms [147]. Increasing HBD-2 levels from early to the late stage of
the disease could be related to the shift from a Th2 to a Th 1 profile over the disease course [148] since
Th2 cytokine downregulates HBD-2, while Th1 cytokine increases it. HBD-2 might also contribute
to the development of vasculopathy in SSc through its angiogenic properties. HBD-2 is expressed in
vascular endothelial cells associated with oral squamous cell carcinoma (OSCC) and Kaposi’s sarcoma
lesions, but not in that of the normal stroma. Therefore, it has been hypothesized that its expression in
vascular endothelial cells located within malignant lesions may play a role in tumor angiogenesis and
cancer metastasis [141].

Another finding favoring the involvement of α-defensins in SSc pathogenesis is the correlation
found between the increased levels of α-defensins in bronchoalveolar lavage fluid of SSc patients and
clinical disease parameters of interstitial lung disease, including ILD biomarkers, pulmonary function
tests, the ratio of neutrophils and eosinophils in BALF, tricuspid regurgitation peak gradient (TRPG),
and the extent of high-resolution computed tomography (HRCT) findings in the lung [145].

Cathelicidin family peptides are antimicrobial peptides found in many mammalian species, and
LL-37 is the only human cathelicidin known so far. LL-37 is generated from the hCAP-18 precursor,
which is proteolytically generated by proteinase 3 in neutrophils and kallikrein 5 and 7 in epidermal
keratinocytes. LL-37 is produced by many cell types, including neutrophils, macrophages, NK cells,
and epithelial cells of the skin, airways, ocular surface, and intestine. Moreover, to exert a wide number
of antimicrobial activities against bacteria, viruses, fungi, and parasites, LL-37 carries numerous
pro- and anti-inflammatory and chemotactic properties that may contribute to autoimmune disease
development (for a comprehensive review, see [149]). Kim et al. demonstrated that LL-37 expression
was enhanced in SSc fibroblast, as compared with healthy controls, and that LL-37 inhibited SSc
fibroblasts from sodium nitroprusside (SNP)-induced apoptosis through modulation of Bcl-2, as well
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as activation of caspase-3, COX-2, and the ERK pathway. Therefore, LL-37 could have a role in skin
sclerosis by inhibiting the apoptosis of dermal fibroblasts [150]. In a subsequent study, Hizal et al.
investigated the circulating levels of LL-37 in SSc patients and its association with clinical, laboratory,
and instrumental parameters. The main result of this study was the significant association between
the lower levels of circulating LL-37 and the pulmonary involvement defined at HRCT (ground glass,
reticular, and honeycombing pattern). No significant association or correlation was found between
LL-37 levels and any other clinical, serological, or instrumental features. The authors, therefore,
suggested LL-37 as a possible marker for interstitial lung disease [151].

More recently, Takahashi et al. investigated the serum LL-37 levels and the LL-37 expression in
lesional skin from both patients and SSc animal models by immunostaining and quantitative RT-PCR.
LL-37 expression was increased and correlated with interferon-α expression in systemic sclerosis
lesional skin, possibly reflecting LL-37-dependent induction of interferon-α. Similarly, in SSc animal
models, bleomycin-treated skin exhibited the expression pattern of CRAMP, a murine homolog of
LL-37. Finally, LL-37 levels were significantly higher in SSc patients, in comparison to healthy controls,
and positively associated with skin score and the activity of alveolitis and were considerably higher in
subjects with digital ulcers compared with those without [152].

4. Expression and Function of Cytoplasmic Alarmins HSP-70 and S100 in SSc

The first study reporting involvement of HSP-70 in SSc dates back to 1990, when Deguchi et al.
found significantly increased HSP-70 levels in scleroderma fibroblasts by a nuclear run-on transcription
assay and Northern blot assay [153]. Subsequently, Ogawa et al. found increased serum levels of
Hsp70 in patients with both limited cutaneous and diffuse cutaneous SSc. The HSP70 levels were
significantly increased in patients with pulmonary fibrosis or contracture of phalanges, compared
with those without these damages. Finally, serum Hsp70 levels associated positively with modified
Rodnan total skin thickness score, renal vascular resistance, serum levels of monocyte chemotactic
protein-1, CRP, and serum levels of 8-isoprostane [154]. Suggesting for a redox-related role for HSP70
in SSc, Ogawa et al. reported significantly elevated autoantibodies to methionine sulfoxide reductase
A (MSRA), one of the antioxidant repair enzymes, in SSc patients with pulmonary fibrosis and cardiac
involvement [155]. Anti-MSRA antibodies correlated positively with renal vascular damage and
negatively with pulmonary function tests. Interestingly, anti-MSRA antibody levels were linked
positively with serum levels of 8-isoprostane and HSP70. More recently, Mišunovà et al. analyzed the
expression regulation of two inducible HSP70 genes, namely HSPA1A and HSPA1B, located within
the major histocompatibility complex (MHC) in patients with various systemic autoimmune diseases.
The author found that the expression of HSPA1A gene alone was significantly upregulated in patients
with SSc and other autoimmune conditions, as compared to healthy controls. Only in SSc patients,
the increase in HSPA1A was seen to be in association with an increased level of extracellular HSP70
protein [156].

S100 is a family of highly acidic calcium-binding proteins found in many body organs. They have
in common the EF-hand motif found on several calcium-binding proteins. The S100 family was found to
be reach of subcategories. S100A7 is also known as “psoriasin” and is a small calcium-binding protein
of the S100 protein family of 11.4 kDa expressed in psoriatic skin, where it is upregulated. It was later
found to be elevated in other inflammatory skin diseases, as well; it was demonstrated as being a potent
chemotactic inflammatory protein for neutrophils and CD4 T lymphocytes. Moreover, it was suggested
to have an important role in skin-invasive malignant lesions, participating in tumor progression.
Successively, some authors suggested an antibacterial action in wounds for this alarmin. Baldini et al.
found the psoriasin in the whole saliva of patients with diffuse systemic sclerosis. Thus, it revealed a
potential salivary marker ability in patients affected by SSc associated with pulmonary involvement.
The authors hypothesized that the link between psoriasin and lung involvement may be represented
by the protein chemotactic action for immune cells [157]. More recently, to investigate the potential
contribution of psoriasin to the development of SSc, Takahashi et al. analyzed the psoriasin expression
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in the skin samples and sera derived from SSc patients. The expression of psoriasin was elevated in
the epidermis of SSc lesional skin and psoriasin levels were higher in SSc patients, especially in those
with late-stage (atrophic phase) diffuse cutaneous disease than in healthy controls. Interestingly, SSc
patients with interstitial lung disease, telangiectasia, and pitting scars had significantly augmented
levels of serum psoriasin, as compared to those without each of these symptoms. In the subgroup
of patients with interstitial lung disease, the elevation of serum psoriasin levels was associated with
higher ground-glass opacity scores. Considering the selective expression of psoriasin in the epidermis
and its chemoattractant and pro-angiogenic properties, this molecule may contribute possibly through
a pro-inflammatory activity on keratinocytes to the development of clinical symptoms in SSc, such as
alveolitis, telangiectasia, and pitting scars [158].

A role for S100A8/A9, formerly known as MRp8-14, has been also suggested in the pathogenesis
of arthritis and other autoimmune diseases [159]. In a very initial paper, plasma levels of S100A8/A9
were found at elevated levels in the sera of some patients with connective tissue diseases, including
systemic sclerosis [160]. More recent papers have confirmed and expanded that observation, reporting
an increased expression of S100A8 and S100A9 in the epidermis of SSc patients. Plasma S100A8 levels
were increased in diffuse cutaneous SSc (dcSSc) [161] and might serve as a possible biomarker for
interstitial lung disease (ILD) [162]. Plasma levels of S100A9 were also increased in SSc patients [161],
and since S100A9 induces fibroblast proliferation and fibroblast production of connective tissue growth
factor (CTGF/CCN2) through Toll-like receptors, it likely contributes to the development of tissue
fibrosis in SSc [163]. Altogether, these observations suggest that epithelial cells play many more roles
in SSc than previously believed and that S100 alarmins are key mediators underlying this process.

Alarmins involved in SSc pathogenesis are listed in Table 1, which summarizes their biological
activities and the main findings of their roles in SSc.

Table 1. Alarmins involved in SSc pathogenesis.

Alarmins Biological Activities (Target Cells) Serum Levels in SSc SSc Pathogenesis and
References

HMGB-1
(nuclear)

Nuclear/transcriptional regulator
Increased expression of genes for

proinflammatory factors
(neutrophils)

Induction of cytokine and
chemokine (monocytes, DCs,

macrophages, and endothelial cells).
Transendothelial migration

(monocytes).
Proangiogenic; upregulation of

adhesion molecules
(endothelial cells).

Proliferation of naive T
lymphocytes; Th1 polarization (T

lymphocytes).
Procoagulant activity (platelets).

Increased

Promotes pulmonary,
renal, and myocardial
fibrosis; endothelial
damage; coordinate
micro thrombosis

[57,71,73].

IL-33
(nuclear)

Intranuclear gene regulator
Initiation of innate and adaptive

type 2 immune responses with the
production of IL-4, IL-5, and IL-13.
Polarization of M2 macrophages,

proliferation of eosinophils,
production of IgE, proliferation, and
activation of T helper 2 and group 2

innate lymphoid cell (ILC2)
(macrophages, ILC2s, mast cells,
Th2 cells, eosinophils, basophils,

and dendritic cells).
Activation and migration of

neutrophils to sites of infection
(neutrophils).

Increased

Stimulates
fibroblast activation;

Induces tissue fibrosis
(lung, skin); altered

microcirculation;
immune abnormalities

(Tregs transdifferentiation)
[108–113,118].
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Table 1. Cont.

Alarmins Biological Activities (Target Cells) Serum Levels in SSc SSc Pathogenesis and
References

IL-1α
(nuclear)

IL-1α binds to chromatin and
controls homeostatic functions of

the cell, like transcription,
proliferation, differentiation, or

cell death.
Physiological manifestations of IL-1

signaling include fever,
hypotension, vasodilation, and

increased sensitivity to pain.
Apical driver of cutaneous

inflammation, colon inflammation
and cancer, cardiovascular disease,

and neural inflammation.

NA

Stimulates production of
pro-collagen; regulates

fibroblast–myofibroblast
differentiation; stimulate

the production of IL-6
(profibrotic) and PDGF

(chemotactic for
inflammatory cells);

promotes the viability of
fibroblasts [130–138].

α- and β-
defensins

(granule-derived)

Antimicrobial activity.
Altered levels of defensins are

observed in response to infection,
inflammation, angiogenesis or

tissue damage.
HBDs are chemoattractants for

numerous cell types, increase cell
proliferation and accelerate

angiogenesis and wound healing.

Reduced levels in
comparison to healthy
controls, but increasing

levels from early to
late-stage SSc

Possible involvement in
vasculopathy [144–148].

LL-37
(granule
derived)

Antimicrobial activities against
bacteria, viruses, fungi, and

parasites; chemotactic;
pro- and anti-inflammatory

activities and

Increased

Increased in SSc
fibroblasts; Inhibits
apoptosis of dermal

fibroblasts in SSc
[150–152].

HSP-70
(cytoplasmic)

Stimulates both the innate and
adaptive immune systems.

The recognition of Hsp70 by
immune cells causes initiation of

signal transduction which results in
the subsequent release of cytokines,

including IL-1β, IL-6, IL-12
(macrophages), IFN-γ (T cells), IL-10

(monocytes), and TNF-α (DCs).

Increased

Marker of
oxidative stress

and disease severity in
SSc [153–155].

S100
(cytoplasmic)

S100A7 chemotactic inflammatory
protein (neutrophils, CD4 T

lymphocytes); antibacterial activity
in wounds.

Dual impact of S100A8/A9
(calgranulin A and B, respectively)

on the outcome of inflammatory
responses. The secondary release

after a preceding stimulus has
amplifying effects. Under sterile

stress conditions
hyporesponsiveness to subsequent

inflammatory stimuli.

Increased

Salivary marker in SSc
patients with pulmonary

involvement [157].
Pro-inflammatory

activity on keratinocytes
leading to alveolitis,

telangiectasia and pitting
scars in SSc [158].

Possible biomarker for
ILD [162].

S100A9 could contribute
to the development of
tissue fibrosis in SSc

trough fibroblast
proliferation and

production of connective
tissue growth factor

[164].

5. Perspectives

Alarmins, as well as their receptors, play fundamental roles in linking innate and adaptive
immune responses to initiate host defense against danger signals. A growing body of evidence
points to abnormal alarmin responses in many inflammatory and autoimmune diseases, and therefore,
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targeting alarmins is of great therapeutic potential for fibrotic diseases. However, sterile inflammation
is regulated by a complex interaction of a large number of physiologically integrated molecules, and
the risk of negative outcomes, such as increased infection, could be elevated altering alarmin signaling.
Nevertheless, several different strategies have been shown to successfully inhibiting alarmin-dependent
inflammatory processes. Currently, we have limited data on alarmin blockade effects. The sense of
interfering with these dangerous signals is to counteract vasculopathy, inflammation, and fibrosis.
Interesting results have been obtained in experimental models of different inflammatory diseases
with the inhibition of HGMB-1/TLR4-mediated inflammation by P5779 peptide, anti-HMGB1 mAbs,
resveratrol, and dexmedetomidine. However, the antibody-based strategy is hindered by the possibility
of conformational switches in the tertiary structure of the antibody-recognized region and by the
non-cross-reactivity with HMGB2, which may replace HMGB1 as a trigger for inflammation. Another
approach to inhibit HMGB-1 consists of the use of molecules which efficiently interact with the
main HMGB1-receptor, RAGE, acting as competitive antagonists of HMGB1, such as recombinant
box A or S100P-derived RAGE peptide. Other reported molecules affecting HMGB-1 signaling that
could be of some interest for SSc are thrombomodulin, haptoglobin, metformin, and glycyrrhizin,
a natural triterpene glycoside investigated in several HMGB1-related diseases, proving to inhibit
extracellular HMGB1 cytokine activity and protect against ischemia/reperfusion (I/R)-induced injury
in animal models. Interestingly, two largely used cholesterol-lowering drugs, namely atorvastatin
and simvastatin, significantly diminished the overexpression of HMGB1, RAGE, TLR-4, and NF-kB
induced by ischemia [164].

IL-33 is another pro-fibrogenic alarmin potential novel therapeutic target for managing fibrosis in
SSc patients. The IL-33 inhibitor (CNTO-7160), which is currently being examined in clinical trials
for asthma and atopic dermatitis, may be employed as a new therapy for fibrosis in patients with
SSc, since anti-fibrotic effects have been observed on the lung [165,166]. Anti–IL-33 clinical trials are
currently ongoing in patients with asthma, food allergy, chronic rhinosinusitis, chronic obstructive and
airways disease, and an anti-ST2 is under investigation in patients with chronic obstructive airways
disease (for further details, see http://clinicaltrials.gov/). A phase 2a study of a single intravenous
300 mg dose of etokimab, a humanized IgG1/kappa anti–IL-33 monoclonal, in 12 adult patients with
moderate-to-severe atopic dermatitis, has recently been published [167].

Inhibition of signaling through the IL-1 family cytokines (e.g., Interleukin 1 receptor antagonist
anakinra) has been used in different autoimmune diseases, including RA. However, few studies have
explored the clinical benefits in SSc. In an SSc clinical trial rilonacept, an IL-1 receptor fusion protein
did not show treatment-related efficacy to placebo, failing to reduce the expression of IL-6, C-reactive
protein (CRP), or CCL18 expression [168]. Moreover, S100 proteins have been targeted effectively
in preclinical models and in preliminary clinical trials, to treat autoimmune diseases. Targeting the
expression and the immunomodulatory effects of S100 proteins is another promising approach for
future therapeutic strategies in SSc.

In conclusion, deeper investigations on the role of alarmins in SSc are required to expand our
knowledge about the role of innate immune responses in the pathogenesis of this disabling disease,
but also to provide the basis for new therapeutic strategies, thereby putting some of the basic findings
into practice.
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