

Received: 2021.03.15

e-ISSN 1643-3750 © Med Sci Monit, 2021; 27: e932146 DOI: 10.12659/MSM.932146

Accepte Available onlin Publishe	d: 2021.04.28 e: 2021.05.18 d: 2021.05.24	\$ 3 4	(PD-1) and Programme (PD-L1) Polymorphism Susceptibility: An Upo Studies with 60 612 S	ed Death Ligand-1 is with Overall Cancer lated Meta-Analysis of 28 Subjects
Author Da Statis Data I Manuscrip Lite Fun	rs' Contribution: Study Design A ata Collection B stical Analysis C nterpretation D ot Preparation E rature Search F dds Collection G	BCDEF 1,2 ABEF 3,4 ACEG 1	Wenjing Zhang Yuxuan Song Xiangcheng Zhang	 Department of Gynaecology and Obstetrics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China The First Clinical Medical School, Nanchang University, Nanchang, Jiangxi, P.R. China Department of Urology, Tianjin Medical University General Hospital, Tianjin, P.R. China Department of Urology, Peking University People's Hospital, Beijing, P.R. China
	Corresponding Source o	g Authors: f support:	Xiangcheng Zhang, e-mail: drxczhang2012@163.com, Yu: Departmental sources	xuan Song, e-mail: songyuxuan@tmu.edu.cn
	Baci Material/M Con	kground: Methods: Results: clusions:	Programmed death-1 and its ligand-1 (PD-1/PD-1 have explored the relationship between PD-1, P clusions are not always consistent. Therefore, we MEDLINE, Web of Science, EMBASE and other d search. Then, we used STATA15.0 software to can is better than OR to evaluate this relationship. A total of a total of 28 related studies were invol and rs7421861 increased the overall cancer prob fectively reduced the risk of cancer in the domin rs17718883 effectively increased the probability duced incidence of cancer in heterozygote, hon showed that PD-1rs2227981 can promote the su the susceptibility to breast cancer. PD-L1 rs28900 PD-1rs11568821, rs36084323, rs7421861, pD-L1 ceptibility. However, a review based on more exp	.1) regulate tumor immunotherapy. A large number of studies D-L1, and different tumor susceptibility. However, these con- e updated this meta-analysis. latabases were searched systematically to obtain related re- rry out the final meta-analysis. The computational advantage wed in our meta-analysis. It was found that PD-1 rs11568821 vability in the allelic genetic model, while PD-1 rs36084323 ef- nant genetic model. In the homozygous genetic model, PD-L1 y of tumorigenesis. PD-L1rs4143815 is associated with a re- nozygote and dominant genetic patterns. Subgroup analysis sceptibility to breast cancer, while PD-1rs2227982 can reduce 658 can significantly reduce the risk of lung and liver cancer. Irs17718883, and rs4143815 are associated with tumor sus- perimental evidence is needed to verify our findings.
	Ke	eywords:	Disease Susceptibility • Genes, Neoplasm • M	leta-Analysis • PDCD1 Protein, Human
	Abbrev	viations:	PD-1 – programmed cell death-1; PD-L1 – prog Knowledge Infrastructure; ORs – odds ratios; O ronment; APCs – antigen-presenting cells; ICB tide polymorphisms; HWE – Hardy-Weinberg e ed protein 4; FDA – Food and Drug Administratic chain reaction; LDR – ligase detection reaction length polymorphism	rammed cell death ligand 1; CNKI – China National CIs – confidence intervals; TME – the tumor microenvi- – immune checkpoint blockade; SNPs – single-nucleo- quilibrium; CTLA-4 – cytotoxic T lymphocyte-associat- tion; NOS – Newcastle-Ottawa Scale; PCR – polymerase I; qRT – quantitative real time; RFLP – restriction fragment
	Full-1	text PDF:	https://www.medscimonit.com/abstract/index/i	idArt/932146
			💼 2564 🏛 5 🌆 12	

Relationship of Programmed Death-1

Background

Cancer is a serious global problem. According to the American Cancer Society (ACS), there were more than 1.8 million new cancer cases and 606 520 cancer-related deaths in the United States last year [1]. In the past few decades, considerable progress has been made in understanding how cancer successfully escapes from the immune system and survives, and these advances provide an active way to overcome tumor immune escape and may help to eliminate cancer cells [2]. As a preliminary study, immunotherapy is mainly concentrated in immune checkpoints [3]. Programmed cell death protein 1 and its ligand (PD-1/PD-L1) pathway play an important role in the induction and maintenance of immune tolerance in the tumor microenvironment [4]. Early studies have shown that several IgG4 antibodies point to PD-1/PD-L1 in some solid tumors. These studies have helped to improve the first round of PD-1 inhibitors, such as nivolumab, which were approved by the U.S. Food and Drug Administration (FDA) in 2014 [5]. PD-L1, pointing to PD-1, on T cells helps to destroy cancer cells. However, tumor cells show immune escape through the expression of PD-L1 [6]. The overexpression of PD-L1 in many kinds of cells, such as cancer cells and antigen-presenting cell (APC), is considered to be the key factor for maintaining anti-tumor immunity in the tumor microenvironment (TME) and tumor draining lymph nodes. The increase of PD-L1 level is related to the enhancement of (ICB) response blocked by immune checkpoints against PD-1/PD-L1 [7]. Due to the complexity of tumor immunity, there is no definite biomarker to evaluate the results of PD-1/PD-L1 targeted therapy [8]. It is very important to identify the single-nucleotide polymorphism (SNP) that affects expression of the PD-1 gene and participates in tumor susceptibility. Therefore, it will help to predict potential individuals and clarify the pathophysiological mechanism of cancer [9]. A growing number of studies have explored the relationship between PD-1 and PD-L1 single-nucleotide polymorphisms and multiple cancer susceptibility. However, their results are not consistent, and the same location has different effects in different studies [10-19]. More systematic reviews are needed to support the evidence of these results. To address this problem, we propose a new meta-analysis to assess the relationship between PD-1 and PD-L1 and cancer susceptibility.

Material and Methods

Literature Search

The related literatures in the databases of PubMed, Web of Science, EMBASE, and China National knowledge Infrastructure (CNKI) and Wanfang data information Service platform were searched by computer, and the related research was carried out. To determine the relationship between PD-1/PD-L1 mutations and cancer susceptibility, we used the following keywords: (programmed cell death 1 or programmed cell death ligand1 or PD-1 or PDCD1 or PD-L1 or CD274 or B7-H1) and (polymorphism or genotype or variant or SNP) and (cancer or carcinoma or neoplasm).

We searched for relevant published research until March 28, 2019, and we also searched the literature for relevant dissertations. **Figure 1** shows a flowchart of search strategies that illustrate PD-1 and PD-L1 variants and cancer predisposition.

Inclusion and Exclusion Criteria

The process of retrieving studies is shown in **Figure 1**. We list the inclusion and exclusion standards below.

Inclusion Criteria

The inclusion criteria were: (1) Case-control studies on the relationship of PD-1 and PD-L1 variant with cancer predisposition; (2) The genotypes of control groups were in Hardy-Weinberg equilibrium (HWE); (3) Allele frequencies in studies were shown; (4) English and Chinese articles; and (5) Studies with human subjects.

Exclusion Criteria

The exclusion criteria were as follows: (1) genotypes in the control group did not conform to HWE; (2) studies of genotype frequency estimates of odds ratio (OR) and 95% confidence interval (CI) could not be obtained; (3) useful data or results could not be extracted; (4) the results were not related to cancer susceptibility; (5) the article was a duplicate publication or existed only as an abstract.

Data Extraction

The data were extracted independently by 2 authors. If necessary, the differences between the 2 authors were resolved through discussion with a third investigator. All valid data are shown in **Table 1**: author's name, year, country, nationality, cancer type, number of groups, P value of HWE, and genotype method.

Trials Quality Assessment

The quality of the selected articles was evaluated with the Ottawa Newcastle scale (NOS). The NOS score was ranged from 0 to 9. Scores greater than 5 indicate high-quality articles. **Table 2** lists the quality of all selected studies. The assessment includes the following 3 parts: (1) selection of subjects; (2) comparability between groups; and (3) exposure assessment.

Figure 1. Flowchart illustrating the search strategy for PD-1 and PD-L1 variants and cancer.

Statistical Analyses

STATA15.0 software was used for statistical analysis. Q test and heterogeneity coefficient I² were used to evaluate the heterogeneity of the study. If there was no statistical heterogeneity (I² <50%), our meta-analysis used a fixed-effect model, as well as random effects. The combined OR value and its 95% CI were evaluated to assess the relationship. We include 5 genetic models: (1) allele, (2) heterozygote, (3) homozygote, (4) dominance, and (5) recessive model, and studies the relationship between them. If it was indispensable, we analyzed the relevant causes that may have led to heterogeneity in groups. We used the funnel chart and the P value of Egger's and Begg's test to judge the publication deviation.

Results

Based on our search strategy, a total of 476 appropriate and related articles were identified. In the end, 28 articles were screened out for analysis.

Characteristics of the Selected Studies

The characteristics of the selected articles [9,20-41] are shown in **Table 1**. Twenty-eight articles were identified for the relationship between PD-1/PD-L1 SNP and cancers susceptibility. These studies contained 60 612 subjects.

A total of 25 articles were involved in the meta-analysis of PD-1 SNPs. A total of 6 trials were conducted to study the relationship between PD-1 rs10204525 and tumor susceptibility, with 8940 subjects. Five studies involving 3156 subjects investigated the relationship between PD-1 rs11568821 and cancer predisposition. A total of 7829 subjects in 11 studies showed a relationship between PD-1rs2227981 mutations and cancer susceptibility. Ten trials, including 10 976 subjects, investigated the relationship between PD-1rs2227982 and cancer susceptibility. A total of 11 005 subjects in 10 studies reported the relationship between PD-1 rs36084323 and cancer susceptibility. A total of 10 963 subjects in 8 studies analyzed the relationship between PD-1 rs7421861 variation and cancer susceptibility. For PD-L1 SNPs, a total of 8 articles that studied the effects of 3 widely studied polymorphisms in PD-L1 were included in the meta-analysis. Three studies were conducted to assess the relationship between PD-L1 rs17718883

Table 1. Characteristics of the selected articles.

Genotype	n	First author	Year	Country	Ethnicity	Cancer type		Case		C	ontro	ol	HWE	Genotype methods
							GG	AG	AA	GG	AG	AA		
		Zhou R-M	2016	China	Asian	Esophageal cancer	33	226	325	51	238	296	0.748	PCR-LDR
		Zang B	2019	China	Asian	Esophageal cancer	63	329	420	50	359	551	0.388	qRT-PCR
PD-1	6	Ren H-T	2016	China	Asian	Breast cancer	54	248	257	51	240	291	0.879	PCR
rs10204525	0	Tang WF	2015	China	Asian	Gastric cancer	21	123	169	53	219	309	0.119	PCR-LDR
		Qiu H	2014	China	Asian	Esophageal cancer	43	240	317	63	243	345	0.038	PCR-LDR
		Tang WF	2017	China	Asian	Esophageal cancer	544	397	98	870	672	132	0.887	PCR-LDR
							AA	GG	AG	AA	AG	GG		
		Fathi F	2019	Iran	Asian	Basal cell cancer	3	183	24	7	58	255	0.099	PCR-RFLP
		Bayram S	2012	Turkey	Asian	Hepatocellular cancer	0	191	45	0	56	180	0.038	PCR-RFLP
PD-1	5	Haghshenas MR	2011	Iran	Asian	Breast cancer	8	365	63	4	55	231	0.725	PCR-RFLP
1511500021		Ma Y	2015	China	Asian	Non-small cell lung cancer	0	426	102	2	142	456	0.009	PCR-RFLP
		Fathi F	2018	Iran	Asian	Carcinomas of head and neck	4	119	27	5	32	113	0.162	PCR-RFLP
							сс	CG	GG	сс	CG	GG		
		Xie Q	2018	China	Asian	Hepatocellular carcinoma	215	8	2	108	69	23	0.025	PCR-RFLP
PD-L1 rs17718883	3	Li Q	2016	China	Asian	Gastric cancer	87	13	1	77	48	16	0.054	PCR
		Chen S	2017	China	Asian	Hepatocellular carcinoma	122	1	0	77	48	16	0.054	PCR
							тт	СТ	сс	π	ст	сс		
		Fathi F	2019	Iran	Asian	Basal cell carcinoma	30	87	93	150	134	36	0.466	PCR-RFLP
		Zhou R-M	2016	China	Asian	Esophageal cancer	52	241	291	46	229	310	0.683	PCR-LDR
		Li XF	2016	China	Asian	Cervical cancer	44	167	45	87	101	62	0.004	PCR-RFLP
		Ma Y	2015	China	Asian	Non-small cell lung cancer	68	216	244	98	246	256	0.004	PCR-RFLP
PD-1 rs2227981	11	Fathi F	2018	Iran	Asian	Carcinomas of head and neck	16	69	65	13	71	66	0.317	PCR-RFLP
152227 901		Hua Z	2011	China	Asian	Breast cancer	22	169	295	24	210	244	0.012	PCR-RFLP
		Mojtahedi Z	2012	Iran	Asian	Colorectal cancer	32	109	59	36	89	75	0.290	PCR-RFLP
		Li Y	2016	China	Asian	Ovarian cancer	351	233	351	51	250	319	0.837	PCR-LDR
		We L	2017	China	Asian	Ovarian cancer	7	42	67	6	44	60	0.571	RT-PCR
		Haghshenas MR	2010	Iran	Asian	Breast cancer	50	191	194	46	145	137	0.445	PCR-RFLP
		Sanaz Savabkar	2013	Iran	Asian	Gastric cancer	6	66	50	7	70	89	0.136	PCR-RFLP

Table 1 continued. Characteristics of the selected articles.

Genotype	n	First author	Year	Country	Ethnicity	Cancer type		Case		c	ontro	ol	HWE	Genotype methods
							сс	СТ	TT	сс	СТ	TT		
		Zhou R-M	2016	China	Asian	esophageal cancer	149	305	130	150	297	138	0.702	PCR-LDR
		Tan D	2017	China	Asian	ovarian cancer	87	60	17	111	48	11	0.075	qRT-PCR
		Ma Y	2015	China	Asian	non-small cell lung cancer	343	148	37	404	168	28	0.056	PCR-RFLP
		Hua Z	2011	China	Asian	breast cancer	111	249	127	95	268	143	0.121	PCR-RFLP
PD-1	10	Kasamatsu T	2019	Japan	Asian	multiple myeloma	55	116	40	43	55	26	0.285	PCR-RFLP
rs2227982	10	Tang WF	2015	China	Asian	gastric cancer	75	168	87	163	292	148	0.448	PCR-LDR
		Qiu H	2014	China	Asian	esophageal cancer	159	303	154	189	325	167	0.245	PCR-LDR
		Tang WF	2017	China	Asian	esophageal cancer	220	549	272	416	816	442	0.309	PCR-LDR
		Tang WF	2017	China	Asian	esophageal cancer	87	168	75	148	292	163	0.448	PCR-LDR
		Ren H-T	2016	China	Asian	breast Cancer	172	257	128	137	299	146	0.503	PCR
							AA	AC	сс	AA	AC	сс		
		Chen Y-B	2014	China	Asian	non-small cell lung cancer	242	48	3	266	26	1	0.671	PCR-RFLP
		Xie Q	2018	China	Asian	hepatocellular carcinoma	170	49	6	139	55	6	0.844	PCR-RFLP
PD-L1	6	Zhou R-M	2017	china	Asian	esophageal cancer	18	161	396	15	144	418	0.541	PCR-LDR
152090000		Li Q	2016	china	Asian	gastric cancer	79	20	2	98	39	4	0.959	PCR
		Ma Y	2015	China	Asian	non-small cell lung cancer	416	106	6	512	84	4	0.785	PCR-RFLP
		Chen S	2017	china	Asian	hepatocellular carcinoma	95	27	1	98	39	4	0.959	PCR
							AA	AG	GG	AA	AG	GG		
		Zhou R-M	2016	China	Asian	esophageal cancer	134	303	147	142	298	145	0.649	PCR-LDR
		Zang B	2019	China	Asian	esophageal cancer	8	132	673	12	188	761	0.919	qRT-PCR
		Hua Z	2011	China	Asian	breast cancer	116	271	103	112	260	140	0.673	PCR
		Kasamatsu T	2019	Japan	Asian	multiple myeloma	50	110	51	33	54	37	0.154	PCR-RFLP
PD-1 rs36084323	10	Bôas Gomez GV	2018	Brazil	Caucasian	Cutaneous Melanoma	6	18	226	0	25	225	0.405	qRT-PCR
		Ma Y	2015	China	Asian	non-small cell lung cancer	138	246	144	148	296	156	0.747	PCR-RFLP
		Li Y	2016	China	Asian	ovarian cancer	169	301	150	129	323	168	0.251	PCR-LDR
		We L	2017	china	Asian	ovarian cancer	37	57	22	21	53	36	0.849	PCR-LDR
		Zhao Y	2018	China	Asian	colorectal cancer	116	207	96	123	253	121	0.686	PCR-RFLP
		Tang WF	2017	China	Asian	esophageal cancer	282	521	238	444	800	430	<0.001	PCR-LDR

Genotype	n	First author	Year	Country	Ethnicity	Cancer type		Case		C	ontro	ol	HWE	Genotype methods
							сс	CG	GG	сс	CG	GG		
		Wang W	2013	China	Asian	Gastric cancer	45	72	88	135	188	70	0.746	PCR
		Tan D	2017	China	Asian	Ovarian cancer	31	82	51	54	78	38	0.334	qRT-PCR
PD-I 1		Xie Q	2018	China	Asian	Hepatocellular carcinoma	50	101	74	65	104	31	0.316	PCR-RFLP
rs4143815	6	Zhou R-M	2017	China	Asian	Esophageal cancer	211	277	87	203	289	85	0.275	PCR-LDR
		Li Q	2016	China	Asian	Gastric cancer	41	47	13	49	76	16	0.09	PCR
		Chen S	2017	China	Asian	Hepatocellular carcinoma	50	50	23	49	76	16	0.09	PCR
							сс	ст	тт	сс	ст	TT		
		Tang WF	2017	China	Asian	Esophageal cancer	7	91	226	22	168	408	0.368	PCR-LDR
		Zang B	2019	China	Asian	Esophageal cancer	343	370	100	457	411	92	0.977	PCR-RFLP
		Hua Z	2011	China	Asian	Breast cancer	11	146	333	12	130	370	0.884	PCR-RFLP
PD-1		Tang WF	2015	China	Asian	Gastric cancer	7	91	226	22	168	408	0.367	PCR-LDR
rs7421861	8	Qiu H	2014	China	Asian	Esophageal cancer	21	168	411	25	188	460	0.295	PCR-LDR
		Jie Ge	2015	China	Asian	Colorectal cancer	14	187	395	17	163	440	0.684	PCR-RFLP
		Tang WF	2017	China	Asian	Esophageal cancer	41	358	642	54	454	1166	0.232	PCR-LDR
		Ren H-T	2016	China	Asian	Breast cancer	23	196	341	28	205	347	0.746	PCR

Table 1 continued. Characteristics of the selected articles.

mutations and cancer susceptibility. Six trials involving 3797 subjects confirmed the relationship between PD-L1 rs2890658 and cancer susceptibility. Six studies, including 3015 subjects, estimated the relationship between PD-L1 rs4143815 and cancer susceptibility.

Meta-analysis Results

Table 3 contains our meta-analysis summary of PD-1 and PD-L1variants and cancer susceptibility.Table 4 lists the subgroupanalyses based on cancer type.

ORs of PD-1 SNPs and Cancer Predisposition

As regards PD-1 rs11568821 polymorphism, we revealed the variant increased the cancer predisposition in the allele genetic model (OR=1.314, 95% CI=1.116-1.547, P=0.001, G vs A). PD-1 rs36084323 variant was proved to decrease the cancer risk in dominant genetic model (OR=0.903, 95% CI =0.819-0.995, P=0.038, GG+GA vs AA). PD-1 rs7421861 variant was

found to enhance cancer predisposition in the heterozygote model (OR=1.202, 95% Cl=1.031-1.402, P=0.019, TC vs CC) and dominant genetic model (OR=1.181, 95% Cl=1.020-1.368, P=0.026, TT+CT vs CC). No clear relationship was found between rs2227981, rs227982, and rs10204525 variants and cancer susceptibility. Forest plots of meta-analysis of PD-1 rs11568821 and rs10204525 in the allele model are demonstrated in **Figure 2**. Forest plots of meta-analysis on PD-1 rs36084323 and rs2227981 in the dominant model are shown in **Figure 3**. Forest plots of the meta-analysis of PD-1 rs7421861 in the heterozygote model and dominant model are presented in **Figure 4**.

Subgroup Analysis of PD-1 SNPs and the Cancer Predisposition

We conducted some subgroup analyses that were based on cancer types. We detected PD-1 rs2227981 promoted the predisposition of breast cancer (OR=1.219, 95% CI=1.045-1.422, p=0.012, C vs T, **Figure 5**). PD-1 rs2227982 variant was

	Sele	ction				Exposure			
ltems	Adequacy of case definition	Representa- tiveness of the cases	Selection of controls	Definition of controls	Compara- bility	Ascertain- ment of exposure	Same method of ascertain- ment	Non- response rate	Total scores
Тао	☆	☆	NA	NA	NA	☆	\$	NA	4
Cheng, 2017	NA	☆	NA	☆	☆ ☆	☆	☆	☆	7
Zhou, 2017	☆	☆	NA	☆	☆ ☆	☆	☆	☆	8
Li, 2016	☆	\$	NA	NA	\$	\$	☆	\$	6
Mojtahedi, 2012	☆	NA	NA	☆	\$	\$	☆	\$	6
Qiu, 2014	\$	\$	NA	\$	\$ \$	\$	\$	\$	8
Tang, 2015	\$	\$	NA	NA	☆ ☆	\$	\$	\$	7
Haghshenas, 2011	\$	NA	NA	\$	☆ ☆	\$	\$	NA	6
Li, 2016	\$	\$	NA	\$	A A	\$	\$	\$	8
Kasamats, 2019	\$	\$	NA	NA	NA	\$	\$	\$	5
Boas, 2018	NA	4	NA	NA	4	\$	\$	\$	5
Wei, 2017	\$	\$	NA	4	☆ ☆	☆	A	\$	8
Fathi, 2018	\$	NA	NA	4	4	☆	4	\$	6
Xie, 2018	\$	4	NA	\$	☆ ☆	\$	\$	\$	8
Emma, 2010	NA	\$	NA		4	☆	A	NA	4
Bay, 2012	\$	\$	NA	\$	A A	\$	\$	\$	8
Zhou, 2016	\$	\$	NA	\$	4	\$	\$	\$	7
Li, 2016	\$	\$	NA	\$	* *	\$	\$	\$	8
Haghshenas, 2016	NA	NA	NA	\$	NA	\$	\$	NA	3
Namavar, 2017	\$	NA	NA	\$	\$	\$	\$	\$	6
Ge, 2015	\$	\$	NA	\$	\$	\$	\$	NA	6
Wang, 2013	\$	\$	NA	\$	\$	\$	\$	\$	7
Chen, 2014	NA	\$	NA	\$	\$	\$	\$	\$	6
Tan, 2017	☆	\$	NA	☆	\$	\$	☆	\$	7
Zang, 2020	NA	NA	NA	NA	NA	\$	\$	\$	5
Ren, 2016	☆	\$	NA	☆	\$	\$	☆	NA	6
Ma, 2015	\$	\$	NA	\$	\$	\$	\$	\$	7
Hua, 2011	☆	\$	NA	\$	\$	\$	\$	\$	7
Tang, 2017	\$	\$	NA	\$	\$	\$	\$	NA	6
Fathi, 2019	\$	\$	NA	\$	\$	\$	\$	\$	7
Zhao, 2018	☆	NA	NA	\$	\$	☆	\$	NA	5

Table 2. Quality assessment based on the Newcastle-Ottawa Scale of trials included in this meta-analysis.

e932146-7

Table 3. Meta-analyses on PD-1 and	PD-L1 variants and cancer susceptibility.
------------------------------------	---

Ganatura	Contract model	OP (95%1)	D	Test for he	terogeneity	Analysis
Genotype	Contrast model	OK (95%I)	F	l² (%)	Р	model
	A vs G	1.002 (0.889-1.129)	0.976	67.50	0.009	R
	GA vs GG	1.073 (0.866-1.331)	0.517	49.00	0.081	R
rs10204525	AA vs GG	1.097 (0.817-1.474)	0.539	68.30	0.008	R
	AA+GA vs GG	1.068 (0.843-1.354)	0.586	61.80	0.023	R
	AA vs AG+GG	0.995 (0.856-1.599)	0.943	59.40	0.031	R
	G vs A	1.314 (1.116-1.547)	0.001	0.00	0.869	F
	AG vs AA	0.911 (0.437-1.898)	0.803	0.00	0.716	F
rs11568821	GG vs AA	1.298 (0.644-2.618)	0.466	0.00	0.691	F
	GG+GA vs AA	1.221 (0.606-2.459)	0.576	0.00	0.698	F
	GG vs GA+AA	1.061 (0.955-1.180)	0.270	0.00	1.000	F
	C vs G	14.156 (4.024-49.805)	<0.001	85.10	0.001	R
	GC vs GG	2.077 (0.645-6.691)	0.221	0.00	0.626	F
rs17718883	CC vs GG	25.488 (8.494-76.481)	<0.001	0.00	0.829	F
	CC+CG vs GG	16.615 (5.565-49.609)	<0.001	0.00	0.855	F
	CC vs CG+GG	16.361 (4.203-63.685)	<0.001	84.60	0.001	R
	C vs T	1.077 (0.753-1.539)	0.686	96.20	<0.001	R
	TC vs TT	1.056 (0.542-2.058)	0.873	94.60	<0.001	R
rs2227981	CC vs TT	1.095 (0.531-2.260)	0.805	95.20	<0.001	R
	CC+CT vs TT	1.085 (0.548-2.146)	0.815	95.50	<0.001	R
	CC vs CT+TT	1.050 (0.754-1.464)	0.771	91.60	<0.001	R
	C vs T	0.981 (0.898-1.071)	0.665	56.00	0.015	R
	TC vs TT	1.050 (0.952-1.158)	0.330	0.00	0.773	F
rs2227982	CC vs TT	0.977 (0.824-1.157)	0.787	50.20	0.034	R
	CC+CT vs TT)	1.028 (0.938-1.127)	0.555	0.00	0.498	F
	CC vs CT+TT	0.942 (0.809-1.096)	0.437	64.30	0.003	R
	A vs C	1.002 (0.718-1.400)	0.989	79.80	<0.001	R
	CA vs CC	1.154 (0.902-1.476)	0.254	0.00	0.933	F
rs2890658	AA vs CC	1.121 (0.696-1.806)	0.638	0.00	0.542	F
	AA+AC vs CC	1.159 (0.915-1.469)	0.220	0.00	0.640	F
	AA vs AC+CC	1.002 (0.662-1.515)	0.994	76.90	0.001	R
	G vs A	0.930 (0.851-1.016)	0.106	49.80	0.036	R
	AG vs AA	0.933 (0.842-1.034)	0.189	31.30	0.158	F
rs36084323	GG vs AA	0.829 (0.701-0.981)	0.029	38.80	0.099	R
	GG+GA vs AA	0.903 (0.819-0.995)	0.038	35.10	0.127	F
	GG vs GA+AA	0.913 (0.798-1.044)	0.183	49.00	0.039	R
	C vs G	0.752 (0.555-1.019)	0.066	86.90	<0.001	R
	GC vs GG	0.560 (0.365-0.860)	0.008	76.00	0.001	R
rs4143815	CC vs GG	0.537 (0.315-0.918)	0.023	82.00	<0.001	R
	CC+CG vs GG	0.555 (0.351-0.877)	0.012	81.50	<0.001	R
	CC vs CG+GG	0.809 (0.575-1.138)	0.223	75.70	0.001	R

Constune	Contract model		P	Test for het	erogeneity	Analysis
Genotype	Contrast model	UK (95 %)	r i	l² (%)	Р	model
	T vsC	0.980 (0.855-1.124)	0.777	74.20	<0.001	R
	TC vsCC	1.202 (1.031-1.402)	0.019	0.00	0.963	F
rs7421861	TT vs CC	1.171 (0.969-1.416)	0.102	19.80	0.272	F
	TT+CT vs CC	1.181 (1.020-1.368)	0.026	0.00	0.642	F
	TT vs CT+CC	0.947 (0.811-1.106)	0.492	68.10	0.003	R

Table 3 continued. Meta-analyses on PD-1 and PD-L1 variants and cancer susceptibility.

confirmed to decrease breast cancer risk in the allele model (OR=1.173, 95% Cl=1.040-1.322, P=0.010, C vs T, **Figure 5**); homozygote model (OR=1.379, 95% Cl=1.081-1.758, P=0.010, CC vs TT) and recessive genetic model (OR=1.375, 95% Cl=1.126-1.679, P=0.002, CC vs CT+TT). As regards the PD-1 rs36084323, our analyses results showed this polymorphism lowered the ovarian cancer predisposition in the heterozygote model (OR=0.695, 95% Cl=0.538-0.897, P=0.005, AG vs AA); homozygote model (OR=0.615, 95% Cl=0.459-0.823, P=0.001, GG vs AA, **Figure 6**) and dominant genetic model (OR=0.666, 95% Cl=0.523-0.847, P=0.001, GG+GA vs AA, **Figure 6**).

ORs of PD-L1 SNPs and Cancer Predisposition

As regards PD-L1 rs17718883 polymorphism, we demonstrated the variant increased the cancer predisposition in the homozygote genetic models (OR=25.488, 95% CI=8.494-76.481, P= 0, CC vs GG). PD-L1 rs4143815 was found to decrease cancer risk in the heterozygote genetic model (OR=0.560, 95% CI=0.365-0.860, P=0.008, GC vs GG), homozygote genetic model (OR=0.537, 95% CI= 0.315-0.918, P=0.023, CC vs GG), and dominant genetic model (OR=0.555, 95% CI= 0.351-0.877, P=0.012, CC+CG vs GG). There was no significant association of PD-L1 rs2890658 variant with cancer predisposition. Forest plots of meta-analysis on PD-L1 rs17718883 and rs2890658 in homozygote model are shown in **Figure 7**. Forest plots of meta-analysis about PD-L1 rs4143815 in heterozygote model and homozygote model are presented in **Figure 8**.

Subgroup Analyses of PD-L1 SNPs and the Cancer Predisposition

We found that PD-L1 rs2890658 reduced the non-small cell lung cancer predisposition in the allele model (OR=0.609, 95% CI=0.477-0.777, *P*=0, A vs C) and recessive genetic model (OR=0.589, 95% CI=0.454-0.765, *P*=0, AA vs AC+CC). Moreover, PD-L1 rs2890658 variant increased the hepatocellular carcinoma predisposition in the allele model (OR=1.358, 95% CI=1.006-1.833, *P*=0.046, A vs C, **Figure 9**) and recessive genetic model (OR=1.405, 95% CI=1.002-1.970, *P*=0.049, AA vs AC+CC, **Figure 9**). With respect to PD-L1 rs4143815, we found

that this polymorphism lowered the hepatocellular cancer predisposition in the heterozygote model (OR =0.422, 95% CI=0.279-0.639, *P*=0, GC vs GG, **Figure 10**), homozygote model (OR=0.459, 95% CI=0.213-0.991, p=0.047, CC vs GG, **Figure 10**), and dominant genetic model (OR=0.425, 95% CI=0.288-0.628, p=0, CC+CG vs GG).

Sensitivity Analyses and Publication Bias

We performed a series of sensitivity analyses, and the composite results showed no significant change. This shows that our research results are reliable.

We used the *P* values of 2 tests to evaluate publication bias. Then, the results of merger analysis were compared in the allelic genetic model. The consequences of publication bias are listed in **Table 5**. If the *P* value of both tests is less than 0.05, it indicates that there is publication bias. In conclusion, there is no publication bias in the literature on the relationship between PD-1rs11568821, rs36094323, pD-L1 rs4143815, and rs7421861 gene polymorphisms and cancer risk. **Figures 11 and 12** show Begg's funnel plots of PD-1 rs11568821, rs36094323, rs7421861, and PD-L1 rs4143815 in the allele model, but there was publication bias about the relationship of PD-1 rs17718883 polymorphism and cancer predisposition in the allele genetic model.

Discussion

It has recently been confirmed that checkpoint blockade immunotherapy is one of the reasons for the continued decline in cancer mortality [1]. Single-nucleotide polymorphisms are expected to become biomarkers to help scientists classify tumors and will allow patients to be assigned to the most appropriate treatment [42]. PD-1 and PD-L1 play an indispensable role in immune tolerance, and they have become key targets in cancer therapy [43]. Some articles have discussed the relationship between PD-1 and PD-L1 mutations and different cancer susceptibility, but the conclusions are still inconsistent. Our study estimated the relationship between 9

Table 4. Subgroup analyses based on cancer type.

Constune	Subgroup		Contract model	OR (05% CI)	n	Test for he	terogeneity	/ Analysis							
Genotype	Subgroup	n	Contrast model	OK (95% CI)	P	l² (%)	P	model							
			A vs G	1.015 (0.862-1.195)	0.859	77.40	0.004	R							
			GA vs GG	1.063 (0.796-1.419)	0.679	63.70	0.041	R							
	Esophageal cancer	4	AA vs GG	1.122 (0.749-1.681)	0.576	77.70	0.004	R							
			AA+GA vs GG	1.068 (0.774-1.475)	0.687	73.50	0.010	R							
			AA vs AG+GG	1.030 (0.832-1.274)	0.787	71.90	0.014	R							
			A vs G	0.891 (0.745-1.064)	0.202			R							
			GA vs GG	0.976 (0.640-1.488)	0.910			R							
rs10204525	Breast cancer	1	AA vs GG	0.834 (0.549-1.267)	0.395			R							
			AA+GA vs GG	0.898 (0.601-1.342)	0.600			R							
			AA vs AG+GG	0.851 (0.674-1.074)	0.174	·	•	R							
			A vs G	1.085 (0.871-1.351)	0.021	•	•	R							
			GA vs GG	1.417 (0.817-2.461)	0.215	•	•	R							
	Gastric cancer	1	AA vs GG	1.380 (0.805-2.366)	0.241	•	•	R							
		cuncer	cuncer				AA+GA vs GG	1.396 (0.825-2.360)	0.213	•	•	R			
			AA vs AG+GG	1.033 (0.784-1.361)	0.817	•	•	R							
			C vs T	1.219 (1.045-1.422)	0.012	6.70	0.301	R							
			TC vs TT	1.081 (0.750-1.557)	0.677	0.00	0.408	R							
	Breast	2	CC vs TT	1.309 (0.910-1.883)	0.147	0.00	0.975	R							
	cancer		CC+CT vs TT	1.206 (0.852-1.707)	0.291	0.00	0.750	R							
			CC vs CT+TT	1.301 (0.991-1.706)	0.058	49.60	0.159	R							
rszzz/981			C vs T	0.639 (0.241-1.694)	0.368	94.60	<0.001	R							
							TC vs TT	0.304 (0.053-1.756)	0.183	88.00	0.004	R			
	Ovarian cancer	2	CC vs TT	0.358 (0.063-2.054)	0.249	88.50	0.003	R							
	cancer		CC+CT vs TT	0.336 (0.058-1.942)	0.223	89.00	0.003	R							
			CC vs CT+TT	0.769 (0.390-1.516)	0.449	82.90	0.015	R							
			C vs T	0.982 (0.914-1.056)	0.623	10.20	0.342	F							
			TC vs TT	1.095 (0.966-1.241)	0.154	0.00	0.813	F							
	Esophageal cancer	4	CC vs TT	0.961 (0.831-1.112)	0.592	15.10	0.316	F							
	cancer		CC+CT vs TT	1.049 (0.932-1.181)	0.424	0.00	0.613	F							
2227002			CC vs CT+TT	0.907 (0.805-1.022)	0.108	11.80	0.334	F							
rszz2/982			C vs T	1.173 (1.040-1.322)	0.010	0.00	0.599	F							
			TC vs TT	1.012 (0.823-1.245)	0.908	0.00	0.758	F							
	Breast	2	CC vs TT	1.379 (1.081-1.758)	0.010	0.00	0.734	F							
	curreer		CC+CT vs TT	1.120 (0.921-1.361)	0.257	0.00	0.980	F							
										CC vs CT+TT	1.375 (1.126-1.679)	0.002	0.00	0.536	F

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

e932146-10

Table 4 continued. Subgroup analyses based on cancer type.

Constune	Subgroup	_	Contract model	OP (05% CI)	D	Test for he	terogeneity	Analysis
Genotype	Subgroup	n	Contrast model	OK (95% CI)	P	l² (%)	Р	model
			A vs C	0.609 (0.477-0.777)	0.000	5.20	0.304	F
			CA vs CC	0.777 (0.252-2.398)	0.661	0.00	0.817	F
	Non-small cell lung	2	AA vs CC	0.465 (0.155-1.397)	0.172	0.00	0.662	F
			AA+AC vs CC	0.503 (0.167-1.510)	0.221	0.00	0.668	F
rc2800658			AA vs AC+CC	0.589 (0.454-0.765)	0.000	0.00	0.345	F
152090000			A vs C	1.358 (1.006-1.833)	0.046	0.00	0.629	F
	Hepato-		CA vs CC	1.195 (0.430-3.323)	0.733	0.00	0.380	F
	cellular	2	AA vs CC	1.648 (0.612-4.436)	0.323	0.00	0.361	F
	carcinoma		AA+AC vs CC	1.516 (0.566-4.065)	0.408	0.00	0.362	F
			AA vs AC+CC	1.405 (1.002-1.970)	0.049	0.00	0.794	F
			G vs A	1.036 (0.893-1.202)	0.639	61.80	0.073	R
			AG vs AA	1.041 (0.893-1.214)	0.608	0.00	0.960	F
	Esophageal cancer	3	GG vs AA	0.942 (0.789-1.125)	0.510	0.00	0.436	F
	cuncer		GG+GA vs AA	1.008 (0.872-1.165)	0.917	0.00	0.720	F
****			GG vs GA+AA	1.024 (0.810-1.295)	0.843	68.90	0.040	R
1550094525			G vs A	0.727 (0.523-1.012)	0.059	64.70	0.092	R
			AG vs AA	0.695 (0.538-0.897)	0.005	0.00	0.673	F
	Ovarian cancer	2	GG vs AA	0.615 (0.459-0.823)	0.001	61.80	0.106	F
	cancer		GG+GA vs AA	0.666 (0.523-0.847)	0.001	0.00	0.333	F
			GG vs GA+AA	0.689 (0.397-1.196)	0.185	65.90	0.087	R
			C vs G	0.708 (0.307-1.630)	0.417	92.90	<0.001	R
			GC vs GG	0.449 (0.185-1.089)	0.077	73.90	0.050	R
	Gastric	2	CC vs GG	0.498 (0.132-1.878)	0.303	87.00	0.006	R
			CC+CG vs GG	0.473 (0.162-1.384)	0.172	83.80	0.013	R
rc / 1 / 2 9 1 5			CC vs CG+GG	0.815 (0.348-1.911)	0.638	85.20	0.009	R
154145615			C vs G	0.736 (0.440-1.233)	0.245	81.50	0.020	R
	Hepato-		GC vs GG	0.422 (0.279-0.639)	0.000	0.00	0.795	R
	cellular	2	CC vs GG	0.459 (0.213-0.991)	0.047	63.50	0.098	R
	carcinoma		CC+CG vs GG	0.425 (0.288-0.628)	0.000	0.00	0.353	R
			CC vs CG+GG	0.864 (0.405-1.844)	0.706	81.00	0.022	R
			T vs C	1.000 (0.784-1.276)	0.999	87.00	<0.001	R
			TC vs CC	1.179 (0.995-1.396)	0.057	0.00	0.770	F
	Esophageal	4	TT vs CC	1.133 (0.760-1.689)	0.541	61.00	0.053	R
			TT+CT vs CC	1.169 (0.995-1.374)	0.058	30.00	0.232	F
rc7/21961			TT vs CT+CC	0.984 (0.735-1.317)	0.913	83.00	0.001	R
15/421001			T vs C	0.960 (0.784-1.175)	0.692	42.10	0.189	R
			TC vs CC	1.183 (0.730-1.917)	0.494	0.00	0.923	F
	Breast	2	TT vs CC	1.123 (0.701-1.798)	0.630	0.00	0.701	R
		ancer 2	TT+CT vs CC	1.169 (0.995-1.374)	0.586	0.00	0.807	F
			TT vs CT+CC	0.931 (0.729-1.189)	0.565	46.10	0.173	R

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

e932146-11

Study ID	OR (95% CI) % weigl	t Study ID	OR (95% CI) % weight
Fathi F (2019) -	1.65 (1.06, 2.57) 12.68	Zhou R-M (2016)	→ 1.23 (1.02, 1.48) 15.85
Bayram S (2012)	1.28 (0.84, 1.93) 15.65	Zang B (2019)	0.81 (0.69, 0.94) 17.99
Haghshenas MR (2011)	1.22 (0.86, 1.73) 22.19	Ren H-T (2016	0.89 (0.75, 1.06) 16.16
Ma Y (2015)	1 30 (0 99 1 69) 37 60	Tang W (2015)	1.08 (0.87, 1.35) 13.65
Fath: F (2010)		Qiu H (2014)	- 1.06 (0.89, 1.26) 16.35
	1.23 (0.76, 1.99) 11.87	Tang W (2017)	1.03 (0.91, 1.16) 19.99
Overall (I-squared=0.0%, p=0.869)	1.31 (1.12, 1.55) 100.00	Overall (I-squared=67.5%, p=0.009)	1.00 (0.89, 1.13) 100.00
		Note: Weights are from random effects analysis	
.389 1	2.57	.678 1	1.48

Figure 2. Forest plots of meta-analysis. (A) PD-1 rs11568821 in allele model (B) PD-1 rs10204525 in allele model.

Figure 3. Forest plots of meta-analysis. (A) PD-1 rs36084323 in dominant model (B) PD-1 rs2227981 in dominant model.

A		D (c) L (D)	
Study ID	OR (95% CI) % weight	Study ID	OR (95% CI) % Weigh
Tang WF (2017)	→1.70 (0.70, 4.14) 2.74	Tang WF (2017)	→ 1.73 (0.73, 4.09) 2.65
Zang B (2019)	1.20 (0.98, 1.46) 59.89	Bao Z (2019)	1.24 (1.03, 1.50) 59.05
Hua Z (2011)	1.23 (0.52, 2.87) 3.21	Hua Z (2011)	- 1.05 (0.46, 2.39) 3.33
Tang WF (2015) —	→1.70 (0.70, 4.14) 2.74	Tang WF (2015)	→ 1.73 (0.73, 4.09) 2.65
Qiu H (2014)	1.06 (0.57, 1.97) 6.60	Qiu H (2014)	1.06 (0.59, 1.92) 6.49
Ge J (2015)	1.39 (0.67, 2.91) 4.02	Ge J (2015)	— 1.17 (0.57, 2.40) 4.21
Tang WF (2017)	- 1.04 (0.68, 1.59) 13.78	Tang WF (2017) =	0.81 (0.54, 1.23) 14.85
Ren H-T (2016)	1.16 (0.65, 2.09) 7.01	Ren H-T (2016)	- 1.18 (0.67, 2.08) 6.76
Overall (I-squared=0.0%, p=0.963)	1.20 (1.03, 1.40) 100.00	Overall (I-squared=0.0%, p=0.642)	1.18 (1.02, 1.37) 100.00
.242 1	4.14	.244 1	4.09

Figure 4. Forest plots of meta-analysis. (A) PD-1 rs7421861 in heterozygote model (B) PD-1 rs7421861 in dominant model.

Study ID	OR (95% CI)	% weight	Study ID	OR (95% CI)	% weight
Breast cancer Hua Z (2011) Haghshenas MR (2010) Subtotal (I-squared=6.7%, p=0.301)	→ 1.32 (1.07, 1.62) → 1.13 (0.91, 1.39) → 1.22 (1.05, 1.42)	25.40 25.37 50.77	Eso cancer Zhou R-M (2016) Qiu H (2014) Tang WF (2017) Tang WF (2017) Subtotal (I-squared=10.2%, p=0.342)	1.02 (0.87, 1.20) 0.95 (0.82, 1.11) 0.93 (0.84, 1.04) 1.13 (0.93, 1.37) 0.98 (0.91, 1.06)	14.62 16.78 33.62 10.15 75.17
Li Y (2016) Wei L (2017) Subtotal (I-squared=94.6 %, p=0.000)	0.40 (0.34, 0.46) 1.07 (0.70, 1.65) 0.64 (0.24, 1.69)	25.69 23.55 49.23	Breast cancer Hua Z (2011) Ren H-T(2016) Subtotal (I-squared=0.0%, p=0.599)	1.13 (0.95, 1.35) 1.21 (1.02, 1.42) 1.17 (1.04, 1.32)	11.75 13.08 24.83
Overall (I-squared=97.3%, p=0.00 0) Note: Weights are from random effects analysis	0.89 (0.45, 1.73)	100.00	Overall (I-squared=48.7%, p=0.083)	1.03 (0.97, 1.10)	100.00
.241 1	4.15			1.42	

Figure 5. Forest plots of Subgroup analysis. (A) breast cancer (PD-1 rs2227981 in allele model); (B) breast cancer (PD-1 rs2227982 in allele model).

Figure 6. Forest plots of Subgroup analysis. (A) ovarian cancer (PD-1 rs36084323 in homozygote model); (B) ovarian cancer (PD-1 rs36084323 in homozygote model).

Figure 7. Forest plots of meta-analysis. (A) PD-L1 rs17718883 in homozygote model; (B) PD-L1 rs2890658 in homozygote model.

Figure 8. Forest plots of meta-analysis. (A) PD-L1 rs4143815 in heterozygote model; (B) PD-L1 rs4143815 in homozygote model.

Study ID	OR (95% CI)	% weight	Study ID		OR (95% CI) 9	% weigh
Non-small cell lung cancer			Non-small cell lung cancer			
Chen Y-B (2014) *	0.49 (0.31, 0).79) 21.	Chen Y-B (2014) *		0.48 (0.29, 0.79)	22.61
Ma Y (2015)	0.66 (0.50, 0).88) 48.	Ma Y (2015)		0.64 (0.47, 0.87)	49.66
Subtotal (I-squared=5.2%, p=0,30∰>	0.61 (0.48, 0).78) 69.4	Subtotal (I-squared=0.0%, p<0.345)		0.59 (0.45, 0.77)	72.77
Hepatocellular carcinoma			Hepatocellular carcinoma			
Xie Q (2018)	1.28 (0.88, 1	1.87) 19.8	Xie Q (2018) –	*	1.36 (0.88, 2.08)	17.57
Cheng S (2017)	1.50 (0.91, 2	2.46) 10.1	Cheng S (2017) —	· · · ·	-1.49 (0.86, 2.59)	10.15
Subtotal (I-squared=0.0%, p=0.629)	> 1.36 (1.01, 1	1.83) 30.	Subtotal (I-squared=0.0%, p=0.794)	<>	1.40 (1.00, 1.97)	27.73
Overall (I-squared=83.0%, p=0.001)	0.84 (0.70, 1	1.01) 100.0	Overall (I-squared=82.0%, p=0.004)	>	0.82 (0.66, 1.00)	100.00
308 1	3 24			1	3 42	

Figure 9. Forest plots of Subgroup analysis. (A) hepatocellular cancer (PD-L1 rs2890658 in allele model); (B) hepatocellular cancer (PD-L1 rs2890658 in recessive model).

Study ID	OR (95% Cl) % weight	Study ID	OR (95% Cl) % weight
Gastric cancer		Gastric cancer	
Wang W (2013)	0.30 (0.20, 0.46) 38.13	Wang W (2013)	0.27 (0.17, 0.42) 29.33
Li 0 (2016)		Li 0 (2016)	1.03 (0.44, 2.39) 20.82
Subtotal (I-squared=73.9%, p=0.050)	0.45 (0.18, 1.09) 52.51	Subtotal (I-squared=87. 9%, p=0.006)	- 0.50 (0.13, 1.88) 50.14
Hepatocellular carcinoma		Hepatocellular carcinoma	
Xie Q (2018)	0.41 (0.25, 0.67) 30.22	Xie Q (2018)	0.32 (0.18, 0.56) 27.10
Cheng S (2017)	0.46 (0.22, 0.95) 17.27	Cheng S (2017)	- 0.71 (0.34, 1.50) 22.75
Subtotal (I-squared=0.0%, p=0.795)	0.42 (0.28, 0.64) 47.49	Subtotal (I-squared=63.5%, p=0.098)	0.46 (0.21, 0.99) 49.86
Overall (I-squared=27.6%, p=0-245)	0.41 (0.29, 0.57) 100.00	Overall (I-squared=72.6%, p=0-013)	0.46 (0.26, 0.84) 100.00
Note: Weights are from random effects analysis		Note: Weights are from random effects analysis	
.185 1	5 41	132 1	7 56

Figure 10. Forest plots of Subgroup analysis. (A) PD-L1 rs4143815 in heterozygote model (B) PD-L1 rs4143815 in homozygote model.

Table 5. Publication bias consequences.

Genotype	Contract model	Publication bi	Publication bias (Egger's test)		Publication bias (Begg's test)	
	Contrast model	t	Р	Z	Р	
rs11568821	G>A	0.52	0.642	-0.24	1.000	
rs17718883	C>G	1.03	0.49	1.04	0.296	
rs36094323	G>A	-0.61	0.557	0.36	0.721	
rs4143815	C>G	-0.45	0.676	0.75	0.452	
rs7421861	T>C	-0.62	0.71	0.49	0.621	

Figure 11. Publication bias. (A) Begg's funnel plot for PD-1 rs11568821 in allele model; (B) Begg's funnel plot for PD-1 rs36094323 in allele model.

Figure 12. Publication bias. (A) Begg's funnel plot for PD-L1 rs4143815; (B) Begg's funnel plot for PD-1 rs7421861 in allele model.

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

e932146-15

variants of PD-1 and PD-L1 and cancer susceptibility. Our results suggest that PD-1 rs36084323 and PD-L1 rs4143815 are significantly associated with decreased cancer susceptibility, while PD-1 rs7421861, rs11568821, and PD-L1 rs17718883 variants increase overall cancer susceptibility. We found that there was no clear relationship between PD-1 rs2227981, rs2227982, rs10204525, and PD-L1rs2890658 mutations and cancer susceptibility.

Subgroup analysis showed that PD-1rs2227981 increased the susceptibility to breast cancer. In addition, PD-1rs2227982 is associated with reduced susceptibility to breast cancer. However, PD-1rs36084323 is associated with reduced susceptibility to ovarian cancer. In addition, our results suggest that the PD-L1rs4143815 mutation significantly reduces the susceptibility to liver cancer. There was a negative correlation between PD-L1rs2890658 and susceptibility to non-small cell lung cancer.

Recently, Hashemi et al [44] conducted a meta-analysis of 27 case-control studies to explore the relationship between PD-1 genes rs11568821, rs2227981, rs2227982, and rs7421861 and tumor susceptibility. The results showed that the mutations of PD-1rs2227981, rs11568821, rs7421861, and PD-L1rs4143815 were related to the overall susceptibility to cancer. However, Hashemi et al did not include Chinese studies, nor did they rule out low-quality studies based on NOS scores. Shan et al [10] conducted a meta-analysis of 10 studies (9571 subjects) and found that PD-1rs36084323 was associated with reduced susceptibility to cancer in Asians, which is consistent with our findings. Compared with the meta-analysis of Shan et al, the genetic polymorphism studied in this paper is more comprehensive and includes more recent research results. However, a study by Zhou et al [14] showed that PD-L1rs4143815 is associated with increased susceptibility to cancer, which is different from our findings. This phenomenon may be because Zhou Ju and others did not evaluate the quality of NOS studies or analyze the experiments that may be biased. Last but not least, Dong Wenjing et al [12] conducted a meta-analysis of 12 trials and confirmed that PD-1rs2227981 variation was associated with a significant decrease in cancer susceptibility. Compared with Dong Wenjing and others, the research included in our meta-analysis is newer and the scope of genetic polymorphism is wider. In addition, we suspected that the differences in the results of the study should be related to fa tors such as inclusion criteria and race.

Tumor immunotherapy targeting PD-1 and PD-L1 immune checkpoint pathways has begun in the field of oncology. The combination of anti-PD-1 and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) has produced an effective pathological response rate in the treatment of breast and lung cancer [45]. At present, 3 PD-L1 inhibitors have been approved for non-small cell lung cancer [46]. Aaron et al confirmed that the effective rate of blocking PD-1 with nivolumab was more than half in unselected patients with Hodgkin's lymphoma [47]. Melanoma patients with other types of cancer showed the best response [48]. Our meta-analysis includes more case and control samples than previous studies, and we also included Chinese studies. In addition, we evaluated the guality of NOS research, including high-quality research and excluding lowquality articles. Last but not least, in our study, 26 of the 27 trials were conducted in Asians and only 1 in Whites, which could reduce the potential effects of different races on genetic susceptibility. Therefore, our meta-analysis makes a more convincing assessment than previous studies.

However, this study also has some limitations. First of all, the small number of participants with the PD-L1rs1771883 polymorphism may have led to a lack of statistical ability to study this relationship. Secondly, there is obvious heterogeneity in several polymorphisms; therefore, we conducted a subgroup analysis to find out the causes of heterogeneity. Finally, we inferred that the type of cancer and the country of residence of the participants may lead to heterogeneity. These mean that our results should be interpreted carefully.

Conclusions

In conclusion, our results suggest that both PD-1 rs36084323 and PD-L1 rs4143815 variants decrease cancer predisposition, while PD-1 rs7421861, rs11568821, and PD-L1 rs17718883 polymorphisms significantly increase the risk of cancer.

Conflicts of Interest

None.

References:

- 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. Cancer J Clin. 2020;70:7-30
- 2. Yang Y. Cancer immunotherapy: Harnessing the immune system to battle cancer. J Clin Invest. 2015;125:3335-37
- 3. Salmaninejad A, Valilou SF, Shabgah AG, et al. PD-1/PD-L1 pathway: Basic biology and role in cancer immunotherapy. J Cell Physiol. 2019;234:16824-37
- Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10:727-42
- Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: A comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018;6:8
- Gou Q, Dong C, Xu H, et al. PD-L1 degradation pathway and immunotherapy for cancer. Cell Death Dis. 2020;11:955
- 7. Cha J, Chan L, Li C, et al. Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 2019.76:359-70
- Guan J, Lim KS, Mekhail T, Chang C. Programmed death ligand-1 (PD-L1) expression in the programmed death receptor-1 (PD-1)/PD-L1 blockade: A key player against various cancers. Arch Pathol Lab Med. 2017.141:851-61
- Ren H, Li Y, Wang X, et al. PD-1 rs2227982 polymorphism is associated with the decreased risk of breast cancer in Northwest Chinese women: A hospital-based observational study. Medicine. 2016;95:e3760
- Da L, Zhang Y, Zhang C, et al. The PD-1 rs36084323 A>G polymorphism decrease cancer risk in Asian: A meta-analysis. Pathol Res Pract. 2018;214:1758-64
- 11. Zang B, Chen C, Zhao J. PD-1 gene rs10204525 and rs7421861 polymorphisms are associated with increased risk and clinical features of esophageal cancer in a Chinese Han population. Aging. 2020;12:3771-90
- Dong W, Gong M, Shi Z, et al. Programmed cell death-1 polymorphisms decrease the cancer risk: A meta-analysis involving twelve case-control studies. PLoS One. 2016;11:e0152448
- Tan D, Sheng L, Yi Q. Correlation of PD-1/PD-L1 polymorphisms and expressions with clinicopathologic features and prognosis of ovarian cancer. Cancer Biomark. 2018;21:287-97
- 14. Zou J, Wu D, Li T, et al. Association of PD-L1 gene rs4143815 C>G polymorphism and human cancer susceptibility: A systematic review and metaanalysis. Pathol Res Pract. 2019;215:229-34
- Zhang J, Zhao T, Xu C, et al. The association between polymorphisms in the PDCD1 gene and the risk of cancer: A PRISMA-compliant meta-analysis. Medicine. 2016;95:e4423
- Xie Q, Chen Z, Xia L, et al. Correlations of PD-L1 gene polymorphisms with susceptibility and prognosis in hepatocellular carcinoma in a Chinese Han population. GENE. 2018;674:188-94
- 17. Zhao X, Peng Y, Li X, et al. The association of PD-L1 gene polymorphisms with non-small-cell lung cancer susceptibility and clinical outcomes in a Chinese population. Int J Clin Exp Pathol. 2020;13:2130-36
- Zhao Y, Gang M, Pang H, et al. [Association of gene polymorphisms with colorectal cancer in chinese han population.] Chinese Journal of Medical Genetics. 2018;35: 219-23 [in Chinese]
- Cheng S. [PD-L1 single nucleotide polymorphisms and serum detection in primary liver cancer and its clinical significance.] Third Military Medical University. 2017 [in Chinese]
- 20. Mojtahedi Z, Mohmedi M, Rahimifar S, et al. Programmed death-1 gene polymorphism (PD-1.5 C/T) is associated with colon cancer. Gene. 2012;508:229-32
- 21. Qiu H, Zheng L, Tang W, et al. Programmed death-1 (PD-1) polymorphisms in Chinese patients with esophageal cancer. Clin Biochem. 2014;47:612-17
- Tang W, Chen Y, Chen S, et al. Programmed death-1 (PD-1) polymorphism is associated with gastric cardia adenocarcinoma. Int J Clin Exp Med. 2015;8:8086-93
- Haghshenas MR, Naeimi S, Talei A, et al. Program death 1 (PD1) haplotyping in patients with breast carcinoma. Mol Biol Rep. 2011;38:4205-10
- 24. Qing Li. [Diagnosis and prognostic value of PD-L1 expression and gene polymorphisms in gastric cancer.] Third Military Medical University. 2016 [in Chinese]
- Li Y, Zhang H, Kang S, et al. The effect of polymorphisms in PD-1 gene on the risk of epithelial ovarian cancer and patients' outcomes. Gynecol Oncol. 2017;144:140-45

- 26. Zhou R, Li Y, Liu J, et al. Programmed death-1 ligand-1 gene rs2890658 polymorphism associated with the risk of esophageal squamous cell carcinoma in smokers. Cancer Biomark. 2017;21:65-71
- 27. Gomez GVB, Rinck-Junior JA, Oliveira C, et al. PDCD1 gene polymorphisms as regulators of T-lymphocyte activity in cutaneous melanoma risk and prognosis. Pigment Cell Melanoma Res. 2018;31:308-17
- Fathi F, Faghih Z, Khademi B, et al. PD-1 haplotype combinations and susceptibility of patients to squamous cell carcinomas of head and neck. Immunol Invest. 2019;48:1-10
- Bayram S, Akkız H, Ülger Y, et al. Lack of an association of programmed cell death-1 PD1.3 polymorphism with risk of hepatocellular carcinoma susceptibility in Turkish population: A case-control study. Gene. 2012;511:308-13
- Zhou R, Li Y, Wang N, et al. Association of programmed death-1 polymorphisms with the risk and prognosis of esophageal squamous cell carcinoma. Cancer Genet. 2016;209:365-75
- 31. Li XF, Jiang XQ, Zhang JW, Jia YJ. Association of the programmed cell death-1 PD1.5 C>T polymorphism with cervical cancer risk in a Chinese population. Genet Mol Res. 2016;15:15016357
- 32. Wei L, Wang J, Men Y, Liao X. [The relationship between PD-1 gene polymorphism and EOC susceptibility and prognosis.] Study on maternal and child health in china. 2017;28:1608-12 [in Chinese]
- Namavar JF, Samadi M, Mojtahedi Z, et al. Association of PD-1.5 C/T, but not PD-1.3 G/A, with malignant and benign brain tumors in Iranian patients. Immunol Invest. 2017;46:469-80
- 34. Ge J, Zhu L, Zhou J, et al. Association between co-inhibitory molecule gene tagging single nucleotide polymorphisms and the risk of colorectal cancer in Chinese. J Cancer Res Clin Oncol. 2015;141:1533-44
- 35. Chen YB, Mu CY, Chen C, Huang JA. Association between single nucleotide polymorphism of PD-L1 gene and non-small cell lung cancer susceptibility in a Chinese population. Asia Pac J Clin Oncol. 2014;10:e1-6
- Ma Y, Liu X, Zhu J, et al. Polymorphisms of co-inhibitory molecules (CTLA-4/PD-1/PD-L1) and the risk of non-small cell lung cancer in a Chinese population. Int J Clin Exp Med. 2015;8:16585-91
- Hua Z, Li D, Xiang G, et al. PD-1 polymorphisms are associated with sporadic breast cancer in Chinese Han population of Northeast China. Breast Cancer Res Treat. 2011;129:195-201
- Wang W, Li F, Mao Y, et al. A miR-570 binding site polymorphism in the B7-H1 gene is associated with the risk of gastric adenocarcinoma. Hum Genet. 2013;132:641-48
- Fathi F, Ebrahimi M, Eslami A, et al. Association of programmed death-1 gene polymorphisms with the risk of basal cell carcinoma. Int J Immunogenet. 2019;46:444-50
- 40. Tang W, Chen S, Chen Y, et al. Programmed death-1 polymorphisms is associated with risk of esophagogastric junction adenocarcinoma in the Chinese Han population: A case-control study involving 2,740 subjects. Oncotarget. 2017;8:39198-208
- Kasamatsu T, Awata M, Ishihara R, et al. PDCD1 and PDCD1LG1 polymorphisms affect the susceptibility to multiple myeloma. Clin Exp Med. 2020;20:51-62
- Heinrichs S, Look AT. Identification of structural aberrations in cancer by SNP array analysis. Genome Biol. 2007;8:219
- Qin W, Hu L, Zhang X, et al. The diverse function of PD-1/PD-L pathway beyond cancer. Front Immunol. 2019;10:2298
- 44. Hashemi M, Karami S, Sarabandi S, et al. Association between PD-1 and PD-L1 polymorphisms and the risk of cancer: A meta-analysis of case-control studies. Cancers. 2019;11:11081150
- Topalian SL, Taube JM, Pardoll DM. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science. 2020;367(6477):aax0182
- Akinleye A, Rasool Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol. 2019;12:92
- Goodman A, Patel SP, Kurzrock R. PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nat Rev Clin Oncol. 2017;14:203-20
- Gomez S, Tabernacki T, Kobyra J, et al. Combining epigenetic and immune therapy to overcome cancer resistance. Semin Cancer Biol. 2020;65:99-113