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Schizophrenia (SCZ) is a devastating genetic mental disorder.
Identification of the SCZ risk genes in brains is helpful to
understand this disease. Thus, we first used the minimum
Redundancy-Maximum Relevance (mRMR) approach to inte-
grate the genome-wide sequence analysis results on SCZ and
the expression quantitative trait locus (eQTL) data from ten
brain tissues to identify the genes related to SCZ. Second, we
adopted the variance inflation factor regression algorithm to
identify their interacting genes in brains. Third, using multiple
analysis methods, we explored and validated their roles. By
means of the aforementioned procedures, we have found that
(1) the cerebellum may play a crucial role in the pathogenesis
of SCZ and (2) ITIH4 may be utilized as a clinical biomarker
for the diagnosis of SCZ. These interesting findings may stim-
ulate novel strategy for developing new drugs against SCZ. It
has not escaped our notice that the approach reported here is
of use for studying many other genome diseases as well.
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INTRODUCTION
Schizophrenia (SCZ) is a devastating chronic psychiatric disorder,
characterized by a group of symptoms including hallucinations and
delusions, severely inappropriate emotional and behavioral re-
sponses, substantial cognitive changes, the division of thought, and
impaired coordination of social or occupational function.1 Despite
its low prevalence (about 1% of the population), SCZ imposes a sub-
stantial burden on the family and society.2 Now, it is widely consid-
ered to be of a complex genetic disease, which is affected by environ-
mental factors together with multiple micro- or intermediate-effect
genes.3,4 Although the studies by the genome-wide association study
(GWAS) analysis have identified a number of significantly associated
variants with SCZ, most of them are located in noncoding regions and
their effects remain elusive.

In 2001, the mRNA expression in the whole genome was proposed as
a quantitative trait. Meanwhile, the first expression quantitative trait
locus (eQTL) mapping analysis, which relates SNP allelic variation to
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target transcript abundance, was performed.5 Because the gene
expression is tissue specific and influenced by environmental factors,
integration of eQTL data and the variants associated with a specific
disease in specific tissue may reveal some problematic genes causing
diseases. Furthermore, many studies have indicated that significant
changes in gene expression rather than alterations in protein structure
and/or function play a crucial role in SCZ susceptibility.6–8 Accord-
ingly, SCZ-susceptible variants could be eQTLs that would influence
the expression of some genes.

In the present study, we used the minimum Redundancy-Maximum
Relevance (mRMR) algorithm to identify the potential eQTL genes
for SCZ by integrating eQTL data from 10 human brain tissues
from the Genotype-Tissue Expression (GTEx) project with the results
from a meta-analysis of GWASs.9,10 Compared with common classi-
fiers of the Naive Bayes, a library for support vector machines
(LIBSVM) version (v.)3.22, linear discriminant analysis (LDA), and
logistic regression, mRMR algorithm has the advantages of reducing
mutual redundancy within the selected genes and effectively selecting
the genes to be more representative of the target phenotypes.11–14 In
addition to eQTL genes, their target genes may also have some effects
on SCZ; we subsequently used the identified genes to explore their
y: Nucleic Acids Vol. 12 September 2018 ª 2018 The Authors. 433
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Figure 1. Association of eQTL with Corresponding Genes Based on the

BrainCloud eQTL Database

(A) rs17693963 with ZNF 192P1. (B) rs67682613 with CYP21A1P.

Figure 2. Venn Diagram Comparison among Three Groups of Genes

Known SCZ genes reported by GWASs, identified SCZ candidate genes in the

present study, and differentially expressed genes in PBMCs. Error bars mean SD.
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target genes in corresponding tissues, and we determined their puta-
tive roles in the brain.

RESULTS
SCZ Risk Genes Based on the Integration Analysis of eQTL and

GWASs

A total of 10,301 SNPs met the GWAS significant threshold of
p < 10e�8. From the 10 brain tissues, 492,401 eQTL SNPs, which
affected the expression of 22,832 genes, were collected. Of these,
only 134 SNPs exhibited positive expression SNPs (eSNPs). Thus,
for each of 10,000 SNP benchmark datasets, there were 134 positive
eSNPs and 134 negative randomly selected eSNPs. Subsequently,
based on the MaxRel scores of the eQTL gene feature in the mRMR
analysis, we identified the most discriminative eQTL gene features
from different brain tissues for the positive eSNPs of SCZ. Using
the average MaxRel score of greater than 0.01 and the frequency of
gene feature reappearance in the top 500 among all tested eSNP-
gene pair matrix more than 70%, we identified 22 eQTL gene features,
which included 12 candidate genes in eight different brain tissues,
excluding the anterior cingulate cortex BA24 and the caudate basal
ganglia (see Table S1).

Furthermore, these 12 genes were supported by at least one item of
evidence from the GWASs, gene differential expression ones, and/or
alternative eQTL data for replication. These genes may play crucial
roles in the pathogenesis of SCZ, and they can serve as potential
putative genes that increase the risk of developing SCZ. Of these,
the gene with the highest average MaxRel score was PRSS16 from
cerebellum (average MaxRel = 0.0311), which exhibited the most sig-
nificant association with SCZ and was only supported to be risk for
SCZ by the results of GWASs. Furthermore, this gene was also found
to increase the risk for SCZ in the cerebellar hemisphere and hippo-
campus. The second most significant SCZ eQTL gene was comple-
ment factor 4A (C4A) in the cerebellum and the frontal cortex BA9
(average MaxRel = 0.0165 and 0.0129, respectively), which was only
supported to be risk for SCZ by the results of the gene differential
expression study GEO: GSE53987. Interestingly, the AS3MT gene
was found to be a potential risk gene for SCZ in the most number
of tissues, i.e., the cerebellum, cerebellar hemisphere, and cortex.
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Furthermore, in the cerebellum noncoding RNA lnc-CNNM2-1 tar-
geting the CNNM2 gene (average MaxRel = 0.0127) and CYP21A1P
(average MaxRel = 0.0147) in the cerebellum and ZNF192P1 in the
cerebellum and cortex (both average MaxRel = 0.011) were identified
to be SCZ risk genes in the present study (Figure 1).

Potential Genes Interacted with SCZ Risk Genes Identified

above

To determine the target interacting genes of the SCZ risk genes
identified, we first identified their coexpressed genes in each of the
corresponding brain tissues using the variance inflation factor
(VIF) regression algorithm, and then we used adjusted R2 to select
the potential interactors. In total, 186 genes were identified to interact
with the nine SCZ candidate genes (i.e., ARL3, AS3MT, C10orf32,
C4A, CYP21A1P, HLA-DMA, PRSS16, ARL6IP4, and SNX19) in the
three brain tissues of cerebellum, frontal Cortex BA9, and nucleus ac-
cumbens basal ganglia (see Table S2). Of these, ARL6IP4 in the nu-
cleus accumbens basal ganglia exhibited the largest number (174)
of functionally relevant target genes. Moreover, the nucleus accum-
bens basal ganglia interactor gene SNX19 had 96 target genes that
probably participate in a wide variety of physiological processes rele-
vant for SNX19. Another interactor gene, C4A, was identified with
nine target genes in the cerebellum and with four target genes in
the frontal cortex BA9. In the present study, only nine genes of all
these identified genes overlapped with known SCZ genes (Figure 2).

Enrichment Analysis

Gene enrichment analysis of the genes expressed in the brain indi-
cated that the candidate risk genes are significantly enriched within
the known SCZ genes15 (p = 0.015). Furthermore, gene ontology
(GO) enrichment analysis demonstrated that the genes were involved
in a variety of physiological and pathophysiological processes. Within
the molecular function GO category, all the above genes were signif-
icantly enriched in protein binding (false discovery rate [FDR]-
adjusted p = 5.75E�06) and poly(A) RNA binding (FDR-adjusted
p = 2.02E�03). Within the cellular component GO category, the
significantly enriched terms were cytosol (FDR-adjusted p =
1.06E�05), mitochondrion (FDR-adjusted p = 1.07E�04),



Figure 3. The Top Eight Signaling Pathways in which All Identified Genes in

the Present Study Are Enriched
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extracellular exosome (FDR-adjusted p = 2.85E�04), and myelin
sheath (FDR-adjusted p = 3.61E�03). Within the biological process
GO category, three enriched terms, specifically SRP-dependent co-
translational protein targeting to the membrane (FDR-adjusted p =
8.18E�03), viral transcription (FDR-adjusted p = 2.99E�02), and
nuclear-transcribed mRNA catabolic process, nonsense-mediated
decay (FDR-adjusted p = 4.64E�02), were revealed (see Table S2).

Results from pathway enrichment analysis, performed using the
hypergeometric test, are illustrated in Figure 3. Eight of these
pathways fulfilled the criterion that –logp > 2. The top three pathways
associated with SCZ were EIF2 signaling, IGF-1 signaling, and 14-
3-3-mediated signaling. Moreover, interestingly, all proteins in
L-cysteine Degradation III pathways (i.e., MPST and GOT1) were
among the candidate SCZ proteins (Table S3).

Systematic Review of 14-3-3 Isoforms

Because 14-3-3 protein includes seven isoforms (b, ε, g,s,h, q, and z)
and the 14-3-3-mediated pathway is involved in SCZ, we attempted to
identify the isoforms that might play a role in SCZ. To that end, we
performed an updated systemic review of 14-3-3 isoforms with
SCZ. The previous results are listed in Table S4. In total, 11 studies
meeting the analysis criteria were included; they concerned six iso-
forms, namely, b, ε, g, h, q, and z. Among these studies, p values
were calculated on the basis of either Student’s t test or a multivariate
analysis of covariance. All studies of the q isoform had p values less
than 0.05. Since a multivariate analysis of covariance is more strict,
after excluding the studies using Student’s t test, all six isoforms
were significantly associated with SCZ; and, furthermore, the average
fold changes (FCs) for the six isoforms b, ε, g, h, q, and z were 0.89,
1.42, 0.741, 1.135, 0.787, and 0.879, respectively. According to one
study,16 a variation of a minimum 40% is viewed as significant regu-
lation; thus, the results suggest that the ε and q isoforms tend to play
important roles in SCZ.
Potential Candidate Genes for Clinical Diagnosis

Among the genes identified in brain tissues, inter-a-trypsin inhibitor
H4 (ITIH4), MOSPD3, SNAP25, RNPEPL1, UBE4A, SLC25A39,
ZNF688, ANK2, BAD, and THAP7 were found to be significantly dys-
regulated in peripheral blood mononuclear cells (PBMCs) of patients
with SCZwith the FC > 1.5 (see Table S5). Furthermore, ITIH4 (padj. =
0.010, logFC = �1.102), SNAP25 (padj. = 0.026, logFC = �1.373),
RNPEPL1 (padj. = 0.028, logFC = �0.725), UBE4A (padj. = 0.044,
logFC = �0.780), BAD (padj. = 0.030, logFC = �0.671), and THAP7
(padj. = 0.048, logFC = �0.878) were found to be downregulated
significantly in patients with SCZ, whereas the significantly upregu-
lated genes were SLC25A39 (padj. = 0.0002, logFC = 0.979), ZNF688
(padj. = 0.012, logFC = 0.606), ANK2 (padj. = 0.026, logFC = 0.637),
and MOSPD3 (padj. = 0.003, logFC = 0.611). The common genes
among those known for SCZ, candidate genes in the brain and dysre-
gulated expressed genes in PBMCs are also depicted in Figure 1. How-
ever, only ITIH4 was found to display an overlap among these three
groups, and, therefore, it may serve as a potential putative gene for
diagnosing SCZ by a blood test.

DISCUSSION
Schizophrenia is a multifactorial and polygenic psychiatric disorder.
Due to limited sample size, several GWASs on SCZ reported various
independent genomic loci exceeding genome-wide significance, i.e.,
p < 10�8.17–20 Furthermore, most of the identified risk variants are
located in noncoding regions. How these risk variants contribute to
SCZ susceptibility remains unidentified. Therefore, the Schizophrenia
Working Group of the Psychiatric Genomics Consortium (PGC) was
created to combine all available SCZ samples with published or un-
published GWAS analysis genotypes into a single, systematic meta-
analysis.10 Since many studies implicated that changes in gene expres-
sion rather than alterations in protein structure and/or function play
critical roles in SCZ susceptibility,7,8 it was suggested that those risk
variants in GWAS may alter the expression of SCZ-related genes
rather than protein function. Furthermore, it is well known that brain
tissues appear to be most relevant to SCZ; however, so far which part
of the brain plays a significant role in SCZ remains elusive. In the
present study, we integrated eQTL data from 10 brain tissues and ge-
netic association findings from the largest meta-GWAS on SCZwith a
total of 150,064 subjects using mRMR method, and we identified the
potential putative interactors in corresponding brain tissues.

The simple mRMR approach is one of the most potent methods pro-
posed by Peng et al. to use mutual information (MI) for gene feature
selection based on microarray gene expression data.11,21–24 Probably,
mRMR is much faster and in practice more robust, since this algo-
rithm is theoretically more efficient to perform an optimal max-
dependency selection and produce a feature set with little pairwise
redundancy, and usually mRMR yields more excellent classification
accuracy than other classifiers (e.g., LIBSVM, LDA, Naive Bayes,
logistic regression, etc.). Using this algorithm, we found that cere-
bellum is the most closely linked to SCZ since the most amount of
genes was identified within it than other brain tissues. Cerebellum
has been established to be associated with the auditory, cognitive,
Molecular Therapy: Nucleic Acids Vol. 12 September 2018 435
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and social behavior of SCZ in addition to motor function.25 Further-
more, our results found that C4A, known for its role in immunity, is
an eQTL gene in cerebellum and frontal cortex, which supports that
C4A is an authentic risk gene for SCZ. The C4A gene, located in major
histocompatibility complex (MHC) class III region on chromosome
6, encodes the acidic form of complement factor 4, which is the
primary effector of the innate and the adaptive immune system,
and is involved in the classical pathway of complement activation
system.26 Recently, studies reported that C4 might play essential roles
in the pathogenesis of SCZ.26,27 It was also suggested that some C4
variants in the brain caused significant differential expression of
C4A and C4B and the SCZ-related common C4 allele is more likely
to cause higher expression of C4A.26

In the current study, at least three items of evidence support that
ITIH4 is a risk gene for SCZ. Also, interestingly, ITIH4, which
was also identified as an eQTL gene in putamen basal ganglia,
was found to be significantly decreased in the serum of patients
suffering acute-phase processes.28 ITIH4 is one of the heavy chains
of inter-a-trypsin inhibitor (ITI), which encodes the ITI family
molecules with four other homologous heavy chains and one light
chain. It has been demonstrated that the ITIH3-ITIH4 region is
one of the most significantly associated with SCZ and bipolar disor-
der.20 Also, we have identified that the SNPs rs2239547, rs4687552,
and rs2535627 in ITIH4 exceed the GWAS threshold and regulate
expression of ITIH4. Over the last decade, many research groups
have been interested in finding a reliable clinical biomarker for
the early detection of SCZ.2,29,30 Although significant differences
between patients with SCZ and healthy controls have been found
in brain structure, functional brain imaging, gene expression, and
genetic polymorphisms, etc., the overlap of reported abnormalities
between patients and healthy controls indicates that there is no
valid diagnostic test for establishing a concrete early diagnosis of
SCZ.29 Here, supported by the above multiple findings, ITIH4 is
suggested to be a potential clinical biomarker for the diagnosis of
SCZ through a blood test, which can provide easy operation and
objective diagnosis criteria. Furthermore, we identified two risk
genes risk for SCZ, including CYP21A1P and ZNF192P1. These
are pseudogenes, whose products function as regulatory elements.
Although we identified three target genes for CYP21A1P, further
work is warranted to investigate the mechanism underlying these
genes.

Since SCZ is a complex disease, multiple genes/pathways are
involved in disease progression. Thus, we further explored target
genes within the eQTL-corresponding brain tissues using the VIF
regression algorithm, which provided a list of prioritized genes.
With all identified genes in the brain, we performed pathway anal-
ysis. The most relevant pathway of eIF2 signaling was suggested.
eIF2 is a multimeric protein consisting of a, b, and g subunits,
and it is generally considered to affect the maintenance of a rate-
limiting step in mRNA translation.31 eIF2 signaling has important
roles in the pathogenesis of SCZ as the corresponding stressors (star-
vation, virus, cytokines, and oxidative and endoplasmic reticulum
436 Molecular Therapy: Nucleic Acids Vol. 12 September 2018
stress) activate eIF2a kinases, which ultimately suppress protein syn-
thesis through a series of reactions of phosphorylated eIF2-alpha.32

The second significant pathway identified was IGF1 signaling.
IGF1, insulin-like growth factors 1, is a multifunctional protein
whose amino terminus is highly homologous to the insulin B chain,
which makes it possible to promote the consumption of glucose in
adipose tissue via the insulin/IGF1 axis.33 Previous studies on
IGF1 signaling in human neuroblastoma cells demonstrated that
IGF1 signaling is involved in SCZ, as the pharmacological stimula-
tion of muscarinic and insulin/IGF1 receptors reverses the expres-
sion levels of the specific subunits of disordered genes in SCZ.34

Another critical pathway including 14-3-3 proteins was also identi-
fied, which is a family of highly conserved, multifunctional
proteins highly expressed in the brain during development.
Moreover, many studies have examined the 14-3-3 family gene
and protein expression in the brain of patients with SCZ, and
14-3-3 proteins include seven isoforms, b, ε, g, h, s, q, and z;35,36

however, conflicting results have been obtained, and which isoform
plays a role in SCZ remains to be elucidated.16,35–38 Our results sug-
gested that the isoforms of ε and q have essential roles in SCZ,
although other isoforms required more data to validate.

There are some limitations to the present analysis that need to be
acknowledged and addressed. First, in addition to SNPs, other
variants, such as copy number variation (CNV) and chromosomal
aberration, may contribute to gene expression alteration and SCZ.
In the present study, GTEx project V6p eQTL only provides the
full data about the SNPs. If more data about other variants were
available, the data could be used in the mRMR analysis. Second,
as pointed out in Chou and Shen39 and demonstrated in a series
of recent publications40–72, user-friendly and publicly accessible
web servers represent the future direction for developing practically
more useful prediction methods and computational tools. Actually,
many practically useful web servers have increasing impacts on
medical science,73 driving medicinal chemistry into an unprece-
dented revolution.74 We shall make efforts in our future work to
provide a web server for the prediction method presented in this
paper. (Once the web server has been established, an announce-
ment will be made in the official website of Bio-X Institutes and
via the MTNA journal.) Last, it is widely considered that environ-
mental factors and genetic factors work together to induce many
diseases, including SCZ. Gene expression is the direct result from
environmental and genetic factors. Although here we focus on
the integration of data from eQTL and GWAS to identify
SCZ risk genes, we do not identify those genes associated with a
certain environmental condition, and further studies are required
to explore the specific genes for an environmental factor related
to SCZ.

Conclusions

Our analysis by integrating the data from brain eQTL and GWAS of
SCZ using the mRMR algorithm has indicated that cerebellum may
play a crucial role in the pathogenesis of SCZ. Also, ITIH4 may be
utilized as a clinical biomarker for the diagnosis of SCZ, since its
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quantity has been observed significantly decreased in the serum.
Furthermore, three major pathways, i.e., EIF2 signaling, IGF-1
signaling, and 14-3-3-mediated signaling, have been identified to
confer risk of SCZ. Further in-depth studies, both experimental and
theoretical, are needed to reveal the molecular mechanism of such
important findings.

MATERIALS AND METHODS
Benchmark Dataset

According to the 5-step rule75 widely used in performing various
genome or proteome analyses40–44,76–90, the first important thing is
to construct or select an effective benchmark dataset.

In this study, the raw eQTL data were taken from 10 human brain
tissues, i.e., anterior cingulate cortex BA24, caudate basal ganglia,
cerebellar hemisphere, cerebellum, cortex, frontal cortex BA9, hippo-
campus, hypothalamus, nucleus accumbens basal ganglia, and
putamen basal ganglia, from the GTEx and association information
on SNPs was taken from the genome-wide meta-analysis about
SCZ.9,10 In this meta-analysis,10 a total of 36,989 cases with SCZ
and 113,075 healthy controls was considered, and p values of a total
of 9,444,231 SNPs were calculated for their genetic association with
SCZ. The GTEx project (V6p eQTL) (https://gtexportal.org/home/
datasets), which is currently the most massive eQTL project including
the gene expression and genotype data of 53 normal human tissues
from 544 donors, provides the association p values for SNPs regu-
lating the gene expression.9 The p value for each SNP-gene pair in
GTEx databases was transformed into � log 10ðp valueÞ. Then,
when a variant had no significant effects on gene expression, the
�log 10ðp valueÞ was set to be 0, i.e., p value of a corresponding
SNP = 1. When a variant had significant effects on gene expression,
i.e., eQTL, the �log 10ðp valueÞ for this eQTL was more than 0.
Moreover, those eQTLs that were significantly associated with SCZ
were classified as positive eSNPs, and those that were not were
referred to as negative eSNPs. Since the number of negative eSNPs
was much higher than that of the positive eSNP set, we randomly
selected 10,000 negative eSNP sets, each of which matched the num-
ber of the total positive eSNP. Then, a benchmark dataset was
constructed by the total positive eSNPs and each randomly selected
negative eSNP set with the same number. Thus, overall, there were
10,000 eSNP benchmark datasets.

Based on each benchmark dataset, an eSNP-gene matrix was con-
structed for the next analysis. In this matrix, the rows were eSNPs,
whereas the columns were class of eSNP, i.e., positive or negative
ones, and genes regulated by the eSNPs from the 10 brain tissues.
Totally, 22,832 eQTL genes were included in this matrix for each
eSNP.

The mRMR Method Integrating Brain eQTL and GWASs

The mRMR algorithm has been widely used in computational biology
for genome and proteome analyses.41,91–95 Here we also used the
mRMR approach to identify the potential eQTL genes for SCZ by
calculating the MI between two features and ranking these features.11
Given two variables x and y, their MI value can be calculated accord-
ing to the following equation:

Iðx; yÞ=
Z Z

pðx; yÞlog pðx; yÞ
pðxÞpðyÞ dx dy; (1)

where p(x) and p(y) are the marginal probabilities of x and y; and
p (x, y) is their joint probabilistic distribution. Using the value of
MI, the distance between two variables can also be quantitatively
measured. Based on the definition of MI, the MaxRel distance can
be formulated as the distance between a given feature and the target
classes, which reflects the relevance between the eQTL gene features
from 10 brain tissues and positive eSNPs. A larger MaxRel score,
which is highly interpretative and can reveal the difference between
target classes, is indicative of a stronger relevance. Since there were
10,000 benchmark datasets, there were 10,000 MaxRel scores for
each eQTL gene. We ranked the eQTL genes based on both the Max-
Rel scores for each benchmark dataset and the average of the MaxRel
scores for all tested benchmark datasets.

Furthermore, the identified candidate genes were evaluated by search-
ing more evidence for them as potential SCZ risk genes in the SZDB
database (http://www.szdb.org/). In this database,96 SCZ risk genes
reaching the genome-wide significance level were extracted from
multiple GWASs and 5 microarray datasets, including GEO:
GSE53987 (114 samples of prefrontal cortex, striatum, and hippo-
campus),97 GEO: GSE12649 (69 post mortem samples of prefrontal
cortex),98 GEO: GSE21138 (59 postmortem samples of prefrontal
cortex s),99 GEO: GSE35978 (195 samples of cerebellum and
parietal cortex brain),100 and GEO: GSE62191 (59 samples of
frontal cortex)101 (https://www.ncbi.nlm.nih.gov/geo/). Moreover,
BrainCloud eQTL database,102 which contains the eQTL data from
the human post mortem dorsolateral prefrontal cortex (DLPFC) of
261 normal human subjects in Caucasians and African Americans,
was used for replication analysis of the eQTL association.
Identify the Potential Interactors of SCZ Risk Genes in the Brain

To identify the target interacting genes of each eQTL gene, the VIF
regression algorithm, an efficient and accurate method, was adop-
ted.103 The objective of this algorithm used here was to select the
optimal genes as interactors that can fit the expression pattern of
the interesting genes. We tried to identify the optimal that could
minimize the penalized sum of squared errors, l0, using the algorithm
represented by the following equation:

argmin
b

�
ky � Xb k 2

2
+ l0kb k lo

�
; (2)

where y = ðy1;.; ynÞ’ are n observations of the target gene,
X = ðX1;.;XpÞ are p interactors, kb k l0 =

Pp
i= 1Ifbs0g: This algo-

rithm calculates the correlations of each candidate interactor with
the interesting genes using a small presampled dataset, and it searches
the optimal interactor subset by applying t-statistic with a correction
procedure when adding or removing one interactor at a time. The
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Figure 4. Flow Chart Detailing the Inclusion Process to the Present Study
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R package http://cran.r-project.org/web/packages/VIF/ was used to
implement the VIF method.

Furthermore, to assess the goodness of fit for VIF regression
models, we calculated the adjusted coefficient of determination,
also known as adjusted R2,104 which measures how well the regres-
sion model fits the real data points and considers the number of
interactors that have been used. In the present study, the regression
models with adjusted R2 values greater than 0.6 were considered.
The scheme for the exploration of candidate SCZ genes is shown
in Figure 4.
Enrichment Analysis

To gain a better understanding of the biological effects of all the iden-
tified genes, we performed GO enrichment analysis.105 Using a hyper-
geometric test, we analyzed whether all the above genes, including
eQTL genes and their interactors, significantly overlapped certain
GO terms.106 For each specific GO gene set, the hypergeometric
test p value was caudated as
P =
Xn

k=m

�
M
k

� �
N �M
n� k

�
�
N
n

� ; (3)

where N is the number of all human genes, M is the number of GO
genes, n is the number of interesting genes, and m is the number of
interesting genes that are GO disease genes. To control the FDR,
the p values of the hypergeometric test were adjusted with the
Benjamini-Hochberg method.107
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Furthermore, not only the overlap with GO but also the overlap with
the reported SCZ genes was evaluated. The known SCZ genes re-
ported by GWASs and genes expressed in brain tissues are listed in
Table S1. In addition, we identified the canonical pathways associated
with these SCZ candidate genes using the Ingenuity Pathway Analysis
(IPA) suite (https://www.qiagenbioinformatics.com/). In canonical
pathway-based analysis, the criteria for involved significant pathways
was set as --log p> 2.

Systematic Review of 14-3-3 Isoforms Associated with SCZ

Further, to determine the association of 14-3-3 isoforms with SCZ, we
performed an updated systematic review with a literature search of
studies published between January 1990 and December 2017 in six
English-language databases (PubMed, Embase, Web of Science,
ScienceDirect, SpringerLink, and EBSCO) and two Chinese databases
(Wanfang and Chinese National Knowledge Infrastructure data-
bases). The following keywords were used: 14-3-3 or YWHA and
SCZ. The scheme for this systematic review is described in Figure S1.

Data extraction was independently performed by two investigators;
any discrepancies between the two reviewers were resolved through
discussion, and a consensus was reached by a third party who was
from a different organization. Inclusion criteria for the analysis
were as follows: (1) detailed diagnosis definition of SCZ; (2) sample
size, FC, and p value; and (3) at least three qualifying studies per
isoform. The strength of the associations between gene expression
levels and SCZ was measured by calculating the FC and p value.

Potential Candidate Genes for Diagnosis

To identify the potential candidate genes for the blood test, the gene
expression profile of PBMCs was examined in our previous study.108

http://cran.r-project.org/web/packages/VIF/
https://www.qiagenbioinformatics.com/
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Briefly, blood samples from 18 first-onset SCZ patients (8 males and
10 females, aged 14.78 ± 1.70 years) and 12 healthy controls (6 males
and 6 females, aged 14.75 ± 2.14 years) were collected. The patients
were untreated and drug naive and were independently diagnosed
by at least two experienced psychiatrists according to the Diagnosis
and Statistical Manual of Mental Disorders Fourth Edition (DSM-
IV) criteria for SCZ. Agilent Human LncRNA Microarray v.2.0 and
17,200 valid probes were used to identify the putative clinical gene
biomarkers. All participants have provided informed consent in
accordance with the approval of the Bioethics Committee of Bio-X
Institutes of Shanghai Jiaotong University and the principles set forth
by the Declaration of Helsinki.
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