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Abstract

Community structure is a fundamental topological characteristic of optimally orga-

nized brain networks. Currently, there is no clear standard or systematic approach for

selecting the most appropriate community detection method. Furthermore, the

impact of method choice on the accuracy and robustness of estimated communities

(and network modularity), as well as method-dependent relationships between net-

work communities and cognitive and other individual measures, are not well under-

stood. This study analyzed large datasets of real brain networks (estimated from

resting-state fMRI from n =5251 pre/early adolescents in the adolescent brain cogni-

tive development [ABCD] study), and n =5338 synthetic networks with heteroge-

neous, data-inspired topologies, with the goal to investigate and compare three

classes of community detection methods: (i) modularity maximization-based

(Newman and Louvain), (ii) probabilistic (Bayesian inference within the framework of

stochastic block modeling (SBM)), and (iii) geometric (based on graph Ricci flow).

Extensive comparisons between methods and their individual accuracy (relative to

the ground truth in synthetic networks), and reliability (when applied to multiple fMRI

runs from the same brains) suggest that the underlying brain network topology plays

a critical role in the accuracy, reliability and agreement of community detection

methods. Consistent method (dis)similarities, and their correlations with topological

properties, were estimated across fMRI runs. Based on synthetic graphs, most

methods performed similarly and had comparable high accuracy only in some topo-

logical regimes, specifically those corresponding to developed connectomes with at

least quasi-optimal community organization. In contrast, in densely and/or weakly
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connected networks with difficult to detect communities, the methods yielded highly

dissimilar results, with Bayesian inference within SBM having significantly higher

accuracy compared to all others. Associations between method-specific modularity

and demographic, anthropometric, physiological and cognitive parameters showed

mostly method invariance but some method dependence as well. Although method

sensitivity to different levels of community structure may in part explain method-

dependent associations between modularity estimates and parameters of interest,

method dependence also highlights potential issues of reliability and reproducibility.

These findings suggest that a probabilistic approach, such as Bayesian inference in

the framework of SBM, may provide consistently reliable estimates of community

structure across network topologies. In addition, to maximize robustness of biological

inferences, identified network communities and their cognitive, behavioral and other

correlates should be confirmed with multiple reliable detection methods.

K E YWORD S

community detection, data-driven synthetic graphs, fMRI, graph Ricci flow, human brain
networks, stochastic block modeling

Practitioner Points

• Community detection in human brain networks significantly depends on both the type of

method used and underlying network topology.

• Different types of community detection methods can yield highly dissimilar modularity esti-

mates, and may significantly impact correlations of modularity estimates with physiological,

cognitive, and other individual characteristics.

• A probabilistic approach, such as Bayesian inference within the framework of stochastic

block modeling, may be more accurate and robust for community detection in brain

networks.

1 | INTRODUCTION

The optimal organization of structural and functional circuits in the

adult human brain is modular, with a small-world topology that facili-

tates efficient, domain-specific localized computations and informa-

tion transmission to highly connected regions (hubs) for synthesis

(Bassett & Bullmore, 2006; Bullmore & Sporns, 2009; Cohen &

D'Esposito, 2016; Fransson et al., 2018; van den Heuvel &

Sporns, 2013). These characteristics, which are shared across opti-

mally organized complex systems, may be necessary to maximize the

brain's flexibility, adaptability to dynamically changing environments,

learning, but also resilience (Simon, 1962). Across spatial scales, locally

connected neuronal ensembles and brain regions form functionally

specialized communities that support local information processing and

interact with each other through robust but sparse long-range con-

nections (Bertolero et al., 2015; Crossley et al., 2013). This topological

organization is optimized over a period of two decades of human

development (Fair et al., 2009; Venon, 2013).

Whether structural or functional, brain network communities

have partly distinct neurodevelopmental trajectories. Highly con-

nected structural modules (hubs) may be present even at birth, primar-

ily in association brain areas (parietal and superior frontal) and

subcortical regions (Ball et al., 2014). These hubs remain topologically

consistent throughout life. In contrast, functional modules and hubs

undergo significant changes as a function of neural maturation. They

begin to emerge in the first year of life (Wen et al., 2019), and are

detectable in primary sensory and motor areas, but by adulthood are

present in frontal, visual, temporal, and subcortical areas (Ball

et al., 2014; Huang et al., 2015). Furthermore, overall functional net-

work modularity increases from childhood to young adulthood,

(Chen & Deem, 2015), likely peaking in young adulthood and decreas-

ing thereafter (Cao et al., 2014; Chong et al., 2019; Geerligs

et al., 2015; Iordan et al., 2018; Onoda & Yamaguchi, 2013; Song

et al., 2014). Age-related differences in modularity have been

reported across brain regions, including frontoparietal control, atten-

tion, and visual networks, as a function of differences in the rate of

neural maturation and protracted development of some of these

regions (Betzel et al., 2014).

In addition to its role in the brain's overall flexibility, adaptability,

and robustness, modularity has been linked to cognitive processing

across domains (Lorenz et al., 2011; Pradhan et al., 2011). Findings

based on diffusion MRI suggest that the development of structural

brain modules, particularly within the frontoparietal control network,

may be associated with age-related improvements in executive
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function in youth (Baum et al., 2017). Prior work based on functional

MRI (fMRI) has shown associations between modularity and working

memory, relational reasoning, language processing, and social cogni-

tion (Bertolero et al., 2018; Stevens et al., 2012). Furthermore, inter-

and intra-individual variability of functional network modularity has

been mapped onto variability in cognitive performance (Stevens

et al., 2012) and response to interventions for cognitive enhancement

(Arnemann et al., 2015; Baniqued et al., 2018; Chaddock-Heyman

et al., 2020; Gallen & D'Esposito, 2019).

Prior studies have also reported disease/disorder-related changes

in the brain's modular organization. For example, epilepsy patients

may have higher structural and functional network modularity com-

pared to healthy individuals (Pedersen et al., 2015; Takeda

et al., 2017; Vaessen et al., 2013). In contrast, lower modularity has

been reported in patients with schizophrenia and depression

(Alexander-Bloch et al., 2010, 2012; Peng et al., 2014). Children with

attention-deficit hyperactivity disorder (ADHD) or autism spectrum

disorder may also have reduced modularity (Belmonte et al., 2004;

Qian et al., 2019; Rudie et al., 2013; Wass, 2011). Finally, lower mod-

ularity has also been reported in patients with neurodegenerative dis-

eases, such as Alzheimer's and Parkinson's disease (Brier et al., 2014;

Göttlich et al., 2013; Ng et al., 2021).

A wide range of community detection methods are used by the

Neuroscience community to estimate the modular organization of

brain networks. However, there is currently no true standard or sys-

tematic approach for method selection. In other fields, method depen-

dence of modularity estimates has been documented, and has been

shown to limit the interpretability, reproducibility, and/or relevance of

findings, as well as scientific inference (Laender et al., 2020; Leskovec

et al., 2010). In the context of the brain, to date, there are limited sys-

tematic assessments and comparisons of these methods as a function

of network topology, particularly in the developing brain, which is

both highly heterogeneous and undergoes profound age-related topo-

logical changes. There are a few detailed studies focusing on a single

type, for example, based on modularity maximization (Garcia

et al., 2018), but very limited cross-type investigations. It is also

unclear how method choice impacts the accuracy of modularity esti-

mates in the developing brain and their associations with cognitive,

physiological, and other individual measures. Thus, there is a signifi-

cant unmet need to systematically evaluate different types of

methods and identify robust approaches for estimating modularity in

brain networks. It is also important to identify advantages and short-

comings of widely used and/or promising community detection

methods, particularly in settings where inter-network variability

is high.

To address this significant need, and contribute to ongoing efforts

to increase reproducibility and robustness of brain graph theoretic

analyses in Neuroscience, this study aimed to elucidate differences

between types of community detection methods applied to incom-

pletely developed brain networks of early adolescents, and the impact

of specific choices on correlational analyses using modularity as the

topological measure of interest. The study focused on classes of

methods that use distinct approaches for community detection, based

on edge-removal, modularity optimization, statistical inference, and

geometric analysis of the graph topology. It also focused specifically

on maturating, inherently noisy, and heterogeneous developing brains,

where community detection methods with different sensitivity to net-

work noise and weak/redundant connections can lead to disparate

results and method-dependent inferences. Investigated methods were

applied to both a large dataset of heterogeneous graphs estimated

from resting-state (rs) fMRI data from a sample of n>5000 early ado-

lescents, and a large dataset of data-inspired synthetic graphs with

controlled and systematically varied parameters. The latter were used

to investigate the impact of topological changes associated with

extensive reorganization of brain networks during development and

neural maturation on method performance and differences between

modularity estimates. Finally, in real-data analyses, modularity esti-

mates and their similarity were correlated with cognitive measures

and other individual youth characteristics. These mappings aimed to

further highlight the impact of method choice on biological associa-

tions between brain and behavior/cognition (and related inferences),

and the need to confirm research findings with multiple methods in

order to maximize their biological relevance.

2 | MATERIALS AND METHODS

Coordinated functional activity between brain areas can be described

mathematically by a graph G E,Vð Þ, in which discretized brain regions

represent nodes V and functional interactions between their edges E.

Brain graphs are typically estimated from regional measurements of

electrical/electromagnetic activity (EEG and MEG) or blood oxygena-

tion (fMRI) using various correlation techniques, from simple pairwise

correlation in the time or frequency domains (e.g., peak cross-

correlation and coherence) to probabilistic (information theoretic)

methods (Bastos & Schoffelen, 2016; Li et al., 2009; Rossini

et al., 2019), and directional techniques for effective connectivity

(Harush & Baruch, 2017; Lopez-Madrona et al., 2019; Stephan &

Friston, 2010). Connectivity matrices are further processed (e.g., via

thresholding or model-related approaches (Bielczyk et al., 2018)) to

eliminate edges that represent weak and/or artifact-related regional

interactions and obtain binary or weighted adjacency matrices, based

on which communities and other topological graph characteristics can

be estimated.

2.1 | Community detection algorithms

Three types of community detection methods were investigated and

compared: (1) modularity maximization-based, including Newman

and Louvain methods, (2) a model-based probabilistic approach based

on stochastic block modeling (SBM) (Holland et al., 1983) and Bayes-

ian inference, and (3) a geometric approach (Ni et al., 2019), based on

Ricci flow (Hamilton, 1982; Ollivier, 2007). Their respective mecha-

nisms, computational cost, and examples of previous applications to

real and synthetic brain networks are summarized in Table 1. The first
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two are state-of-the-art methods that have been used extensively in

Neuroscience for community detection in structural and functional

brain networks, whereas SBM and Ricci flow are much less frequently

used in the field. Each method's advantages and shortcomings are dis-

cussed in terms of accuracy, computational cost, and interpretability.

Their methodological differences are also highlighted below. Finally, in

a secondary set of comparisons, the Infomap method (Rossval &

Bergstrom, 2008), which is gaining popularity in brain network studies

(Sporns & Betzel, 2016), was also applied to the analyzed data.

Although it uses a different optimization metric for community detec-

tion, this method is not fundamentally different than the Louvain

method. Both are greedy algorithms but Louvain uses modularity max-

imization whereas Infomap minimizes the description length of a ran-

dom walk in the network for partitioning.

2.1.1 | Girvan–Newman method

The Newman method is one of the most widely used community

detection algorithms (Newman, 2004), and is based on progressive

removal of network edges based on betweenness centrality. The latter

quantifies a node's importance in a network based on how many short-

est paths between pairs of nodes pass through it. Mathematically,

betweenness centrality Cb is defined as:

Cb vð Þ¼
X
s,t � V

σ s,tjvð Þ
σ s,tð Þ , ð1Þ

where σ s,tð Þ is the total number of shortest paths between nodes s

and t and σ s,tjvð Þ is the number of those paths that cross node v

(Brandes, 2008). As edges are progressively removed, betweenness

centrality is recalculated for nodes affected by the previous removal,

and these steps are repeated until no edges are left in the graph. Dur-

ing this process, groups of nodes become disconnected and commu-

nity structure is unveiled. This structure is inherently hierarchical.

In this study, the following definition of modularity Q was used

(Arenas et al., 2008; Newman, 2016):

Q γð Þ¼ 1
2m

X
ij

Aij� γ
kikj
2m

� �
δgigj , ð2Þ

where m is the total number of edges within the network, Aij the adja-

cency matrix, ki ¼
P

jAij the degree of a node i, and similarly for kj, δij

the Kronecker delta, gi, gj community assignments of nodes i, j, and γ a

resolution parameter. When γ¼1, Equation (2) corresponds to the

traditional definition of modularity. For γ >1, the network partitioning

favors the detection of a larger number of smaller communities,

whereas γ <1 leads to fewer but larger communities. In this study, the

modularity estimation was performed using a range of gamma values

(0.8–1.3, with increment of 0.02). The results are based on the γ value

at the first inflection point (Khambati et al., 2015). Though simple and

widely used, the Newman method is computationally expensive, par-

ticularly for large networks. The optimization of γ also increases

computational cost.

2.1.2 | Louvain method

The Louvain method aims to optimize modularity as an objective func-

tion. It begins by assigning each node to its own community and then

aggregates communities together based on change in modularity

(Blondel et al., 2008). Similarly to several other methods, it has the

advantage of being aparametric, thus not requiring a priori assump-

tions on the number of communities. It uncovers primarily assortative

community structure via modularity maximization, comparing the

number of edges connecting nodes within a community to the num-

ber of edges connecting nodes between two different communities.

Recently, a major shortcoming of this approach has been discovered,

in that it may yield arbitrarily disconnected or badly connected com-

munities (i.e., disjoint, island-like groups of nodes). This flaw has been

TABLE 1 Community detection methods analyzed in the study, and corresponding approach, computational cost, and previous application to
brain networks.

Method Time complexity Mechanism Examples of prior brain applications

Girvan-Newman O m2n
� �

or O n3
� �

Edge removal Meunier et al. (2009)

Bordier et al. (2017)

Louvain O nlognð Þ Modularity maximization Bassett et al. (2013)

Rudie et al. (2013)

Ji et al. (2019)

SBM O nlog2n
� �

Bayesian inference Betzel et al. (2018)

Faskowitz and Sporns (2020)

Ricci flow O mn lognð Þ Geometric approach Weber et al. (2017)

Infomap O mð Þ Minimization of description length Sporns and Betzel (2016)

Seitzman et al. (2020)

Note: n corresponds to number of nodes, and m the number of edges.
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addressed via a new formulation of Louvain called the Leiden method

(Traag et al., 2019), which guarantees that communities remain con-

nected. The algorithm attempts to maximize difference between the

“true” number of intracommunity edges and the expected number of

these edges. Similarly, to the Newman method, the resolution param-

eter γ was varied for the Louvain algorithm, too. Because the algo-

rithm is non-deterministic, we performed 10 repetitions at each

gamma value, using the median modularity value to select community

affiliations, a process that also increased computational cost.

2.1.3 | Bayesian inference and stochastic block
modeling

SBM is often used to generate synthetic graphs. The number of nodes

and blocks (communities), and a probability matrix are provided as

inputs, and graphs are generated with a topological structure dictated

by the probability matrix (Faust & Wasserman, 1992; Holland

et al., 1983; Lee & Wilkinson, 2019). This matrix effectively governs

the group membership of the nodes, which is specified by a partition

b. Because of the probabilistic generation of b, SBM does not limit the

resulting graph's community structure to a single type. Thus, it may be

assortative, as is detected by Girvan–Newman and Louvain algo-

rithms, core-periphery, disassortative, or a combination of these

(Guimera & Sales-Pardo, 2009). For community detection in real net-

works, SBM is also used to identify optimal partitions (communities).

Assuming that the real graph has been generated by a process similar

to that assumed by the SBM, Bayesian inference is used to find an

optimal graph partitioning and assign each node to a community.

Thus, Bayesian inference is applied within the SBM framework, and

the two together become a community detection tool. This probabilis-

tic framework ensures that detected communities are rooted in the

statistics of the real network's structure.

Degree correction and nested SBM

In the most basic SBM, edge placement within a community is ran-

dom. Thus, communities tend to contain nodes of similar degrees,

which are unlikely to occur in real-world networks. This bias is

accounted for in the degree-corrected SBM, wherein additional

parameters are included to permit degree heterogeneity within groups

(Karrer & Newman, 2011; Yan et al., 2014). In this study, the degree-

corrected variant of SBM was used. Another variant used in this study

is the degree-corrected nested SBM (nSBM), a hierarchical extension

of SBM that utilizes a hierarchy of priors and hyperpriors and

improves the SBM's resolution (Amini et al., 2019). First, a set of com-

munities is detected for the network via SBM. Then, the detected set

is treated as its own graph, so that each community is a node. This

recursive process continues until a single community is obtained.

Thus, the information gleaned from coarser levels is considered prior

information in more granular levels (Peixoto, 2014b). nSBM allows for

the detection of smaller communities by circumventing the maximum

group scaling associated with the regular SBM and can detect multile-

vel hierarchy within the network.

Bayesian inference

This approach is used to identify node partitioning into communities

(Peixoto, 2016), based on maximization of the posterior distribution

of possible partitions:

P bjAð Þ¼P Ajθ,bð ÞP θ,bð Þ
P Að Þ , ð3Þ

where A is an adjacency matrix, b a partition, and θ a model parameter

controlling the partition. An equivalent information-theoretic perspec-

tive is the minimization of description length, Σ:

Σ¼� lnP Ajθ,bð Þ� lnP θ,bð Þ: ð4Þ

Thus, the optimal partition is one that describes a given network

with as little information as possible. In this study, the minimum

description length (MDL) was used both for model selection and for

choosing representative partitions for each brain. A Markov chain

Monte Carlo (MCMC) agglomerative algorithm (Peixoto, 2014a) was

implemented for this analysis. The MCMC sampling is asymptotically

exact and is thus more accurate than other approaches, such as

variational inference, which use appropriate distributions (Lange

et al., 2022). The algorithm's time complexity is O nlog2n
� �

, making

this approach computationally feasible for large-scale (in number of

graphs and number of nodes per graph) network analyses. Because

this method is stochastic, an optimal partition cannot be guaranteed.

Thus, as best practice, the algorithm was called 10 times for each

graph, and the partition yielding the lowest MDL (i.e., the best fit) was

selected.

2.1.4 | Ricci flow

The Ricci flow approach is based on the geometric notion of curva-

ture, which quantifies how spaces are bent at each point. Ricci flow

(Hamilton, 1982) deforms the metric of a Riemannian manifold in a

way formally analogous to the diffusion of heat, smoothing out irregu-

larities in the metric. Under the Ricci flow, regions in a space of large

positive curvature shrink to points, whereas regions of very negative

curvature spread out. Discretized curvature (Ollivier, 2007) and Ricci

flow have been developed to study graphs, for example, to identify

bottleneck edges and discover community structures in social net-

works (Ni et al., 2015, 2019). The discrete Ollivier–Ricci curvature on

a network edge x,yð Þ� E is defined as:

κxy ¼1�W mx,myð Þ
d x,yð Þ , ð5Þ

where W mx,myð Þ is the minimum total weighted travel distance (opti-

mal transport distance, or Wasserstein distance) to move a distribu-

tion mx on the neighbors of vertex x to a distribution my on the

neighbors of vertex y, and d x,yð Þ is the distance between x and y in

the graph. The curvature of an edge x,yð Þ is positive if the two verti-

ces have a well-connected/overlapping neighborhood, and negative if

x,yð Þ's neighborhood are largely disjoint.
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Discrete Ricci flow is a process that deforms the metric (i.e., edge

length) by its Ricci curvature until edge curvature evolves to be uni-

form everywhere. For any pair of adjacent nodes x and y on a graph

G¼ V,Eð Þ, weight w x,yð Þ of edge x,yð Þ is adjusted by the curva-

ture κ x,yð Þ:

wiþ1 x,yð Þ¼wi x,yð Þ�ϵ � κi x,yð Þ �wi x,yð Þ,8 x,yð Þ� E, ð6Þ

where κi x,yð Þ is computed using the current edge weight wi x,yð Þ. The
step size is controlled by ϵ>0. After each iteration edge weights are

rescaled so the total edge weight in the graph remains the same. The

Ricci flow process expands negatively curved edges and shrinks posi-

tively curved edges. Eventually, nodes connected by intra-

community edges are condensed, and inter-community edges are

stretched. Network “surgery” is performed to remove edges with

large weights, in order to separate the network into different com-

munities. The threshold used to remove edges can be chosen by

either the evaluating threshold insensitivity or maximizing graph

modularity (Ni et al., 2019). For networks with hierarchical commu-

nity structures, multiple rounds of network surgery and Ricci flow

can be performed to further separate communities at different

scales. Running time of the discrete Ricci flow is dominated by two

factors: (a) the search of shortest paths distances between nodes

that are three hops away in the network, which is at most

O mn lognð Þ for a graph of n vertices and m edges; (b) the number iter-

ations and surgeries. Typically the number of iterations and surgery

operations are both small constants (Ni et al., 2019). Given the geo-

metric nature of the method, community detection by Ricci flow

favors dense graphs. It also assumes that edges across communities

are less dense than edges within communities. In graphs when this

assumption does not hold, the method does not detect multiple com-

munities, that is, considers the entire graph as a single community (Sia

et al., 2019, 2022). This assumption is not necessary in other methods,

for example, SBM.

It is important to note that like most, if not all, community detec-

tion algorithms, there are both detectability and resolution limits that

impact the investigated methods. Regardless of the algorithm, the

detectability limit depends of the graph characteristics, including num-

ber of intercommunity connections, density, and degree distribution

(Richardt & Leone, 2008). Furthermore, the resolution limit is
ffiffiffiffi
m

p
for

Newman and Louvain,
ffiffiffi
n

p
for SBM, and n

logn for nSBM. Based on the

real and synthetic data analyzed in this study, these translate to hun-

dreds of communities and thus resolution limits that are much higher

than the typical number of communities in (even high-resolution)

brain networks. In the Ricci flow method, the number of communities

is controlled by the threshold used in the surgery step for edge

removal. When graphs are sufficiently sparse, Ricci flow may remove

edges and reach multiple singleton communities. Finally, in theory, all

investigated methods are scalable to higher-resolution networks.

However, in practice, scalability will depend on each method's time

complexity.

2.2 | Datasets

2.2.1 | Networks estimated from real fMRI data

The study analyzed minimally preprocessed rs fMRI data from the

adolescent brain cognitive development (ABCD) study, a longitudinal

investigation of almost 12,000 children (Casey et al., 2018), measured

at 21 sites across the United States. A cohort of 5251 participants in

pre/early adolescence (from the ABCD baseline dataset, median

age = 120.0 months, inter-quartile range (IQR) = 13.0 months) was

selected for analysis, following exclusions based on poor-quality imag-

ing data, homogeneously high connectivity across the brain (likely

associated with motion and other artifacts), clinical findings in the

structural MRI, or history of bipolar disorder or attention deficit

hyperactivity disorder (ADHD). Both disorders have been associated

with aberrant functional connectivity that could impact the estimation

of community organization (Chase & Phillips, 2016; Konrad &

Eickhoff, 2010). All imaging data were from Release 2.0.1. Additional

details on inclusion criteria for connectivity analysis, and imaging sys-

tems and protocols used by the ABCD are provided in (Brooks

et al., 2021) and (Hagler et al., 2019), respectively. All neuroimaging

data from this release were acquired with 3T Siemens or GE scanners.

T1w acquisition (1 mm isotropic) included scanner-based motion cor-

rection. Repetition time (TR) for fMRI (2.4 mm isotropic) was 0.8 s,

and thus sampling rate was 1.25 samples/s. Preprocessing included

correction for B0 distortion. Further custom processing is outlined

below.

The Next-Generation Neural Data Analysis (NGNDA) platform

(https://github.com/cstamoulis1/Next-Generation-Neural-Data-Analysis-

NGNDA) was used to further process the fMRI data. Processing

included structural MRI (T1w) segmentation, coregistration of each

participant's fMRI to their structural MRI, normalization to MNI space,

initial frame removal, and slice-time correction. These steps were per-

formed using a combination of the SPM12 software package (Friston

et al., 1994, 2007) and the NGNDA. They were followed by motion

and artifact suppression and denoising of fMRI voxel time series. Also,

nuisance signals were regressed out. Breathing and other artifacts in

the frequency range 0.28–0.46 Hz were removed from these signals

using a third-order elliptical bandstop filter. Signals were filtered in

both directions to eliminate potential distortions associated with the

nonlinear phase of the IIR filter. Frames with displacement >0.3 mm

were censored. The statistical modeling approach of Power et al. was

used to regress motion-related contributions out of voxel time series

(Power et al., 2014). To reduce the very high voxel resolution for fur-

ther analysis, images were parcellated (Siegel et al., 2014), using the

high-resolution Schaefer-1000 cortical atlas (1000 parcels), Mel-

bourne subcortical atlas (54 parcels), and a probabilistic MR cerebel-

lar atlas (34 parcels). This resulted in a reduction of the spatial

dimension from �300,000 voxels to 1088 voxel-averaged parcels

(Diedrichsen et al., 2009; Schaefer et al., 2018; Tian et al., 2020). A

third-order elliptical bandpass filter with cutoffs 0.01 and 0.25 Hz
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(typical physiological frequency range of the BOLD signals), respec-

tively, was then applied to each parcel time series (Yuen et al., 2019),

to suppress high-frequency artifacts. Time series were further

denoised through time-domain signal decomposition (using a varia-

tion of the ensemble empirical mode decomposition) (Torres

et al., 2011; Wu & Huang, 2009) and component exclusion based on

their amplitudes and characteristic frequencies. Scanner effects on

signal amplitude were finally assessed, and all signals were harmo-

nized through amplitude normalization (by the median of the abso-

lute signals).

Each participant included in this study had up to 4 five-minute rs

fMRI runs. The cohort of n = 5251 included participants with at

least one run in which ≤10% of frames had been censored for

motion (with a displacement cutoff of 0.3 mm). A subcohort had

more than one run that met this criterion. To test reliability and

reproducibility of method performance and similarity across data-

sets, a subcohort of n = 3820 participants with a second run that

met the frame censoring cutoff was also analyzed. Best and second

best runs are referred to as first and second run hereafter. Note that

each run represents a snapshot of rs activity during a 5-min period.

The two selected (quality-based) runs were not necessarily consecu-

tive. In addition, the ABCD study protocol is such that, to avoid

fatigue, falling asleep, and compliance issues, a movie clip (�20 s

long) is shown between runs.

Connectivity was calculated as the peak cross-correlation

between signal pairs, resulting in a 1088�1088 connectivity matrix.

Although a number of measures can be used to obtain edge weights,

this estimator explicitly accounts for time-dependent similarity

between signals, and the peak corresponds to maximal similarity.

Statistical and percolation thresholds were estimated, and a cohort-

level threshold (estimated via bootstrapping) corresponding to the

moderate outlier of peak cross-correlation (defined as median+

1:5� IQR) was selected. It was then applied to all connectivity matri-

ces to obtain corresponding weighted and binary adjacency matrices.

Correlation values below this threshold were set to 0. For each par-

ticipant, in addition to imposing a threshold for frame censoring, the

run with the lowest median nonzero connectivity was selected at

the best-quality run, under the assumption that the brain at rest is

weakly coordinated (with the exception of select networks such as

the default mode network (Greicius et al., 2003)). In most brains, this

run also coincided with that with the lowest number of frames cen-

sored for motion (median= 1.6% of censored frames, interquartile

range (IQR)= 4.53%). Additional details on threshold estimation and

selection of fMRI runs for analysis are provided in (Brooks

et al., 2021). The same criteria were used to select the second best-

quality run (median= 1.6% of censored frames, IQR= 4.0%). Statis-

tics of network characteristics were: median (IQR) degree= 40

(52) and 56 (78) for the two runs, clustering was 0.33(0.06) and 0.35

(0.06) for the two runs, and median weight was 0.65(0.08) for both

runs. Community structure of each brain, from each run and each

method was estimated using the parallel processing resources of the

high-performance computing (HPC) clusters in the collaborating

institutions.

2.2.2 | Synthetic networks

Network generation algorithm

Given that the true community structure (the ground truth) of net-

works estimated from real brain data is unknown, synthetic networks

with controllable properties, including community structure, were

generated. The Lancichinetti–Fortunato–Radicchi (LFR) algorithm

(Lancichinetti et al., 2008) was used for this purpose. A prior study on

functional brain network modularity also used this model (Bordier

et al., 2017). The algorithm allows the variation of multiple graph

parameters. Here, these were varied based on the topological proper-

ties of the real rs networks. The Python library Networkx (https://

networkx.org/documentation/stable/reference/generated/networkx.

generators.community.LFR_benchmark_graph.html) was used to gen-

erate the synthetic graph dataset. This algorithm was chosen because

its parameters are biologically interpretable and can be mapped to

topological characteristics of brain networks that vary as a function of

age, for example, during development.

The LFR takes several inputs that define the characteristics of the

graph. The number of nodes is controlled by a parameter n. The node

degree and community size are assumed to follow a power law distri-

bution. Power law exponents τ1 and τ2 influence degree and commu-

nity size, respectively. The parameter μ� 0,1½ �, determines the ratio of

inter-community edges for each node. A value of μ¼1 results in a

graph where all edges are between nodes belonging to different com-

munities, and μ¼0 in a graph where only nodes within the same

community are connected. The average node degree can also be spec-

ified. To generate a graph, each node is assigned a degree by drawing

from the power law distribution with exponent τ1. Each community's

size is assigned based on the power law distribution with exponent τ2.

Median node degree must be equal to the average degree that was

given as input, and the sum of the community sizes must equal the

total number of nodes n. Each node is added to a community ran-

domly. In communities that become too large, nodes are randomly

removed and reassigned. After community assignments are complete,

each node u is given 1�μð Þ�degree uð Þ edges within its community

and μ�degree uð Þ edges outside of its community.

3 | DATA-DRIVEN NETWORKS

Synthetic networks were generated using model parameters that were

statistically derived from the real data. Based on modularity estimated

using the Newman method, the number of communities and median

community size were calculated for each participant. Bootstrapping

with replacement was used to obtain cohort-wide community statistics

(25th and 75th percentiles) for number of communities, median com-

munity size, median node degree, and median ratio of inter-community

connections. Based on these estimates, the number of communities in

synthetic graphs was varied in the range [2, 22]. As shown in Table 2,

when applied to real data, both Newman and Louvain methods yielded

a relatively small number of functional communities, in the range of

those reported in prior work (Tooley et al., 2022).
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To represent the variability of the real connectomes in the syn-

thetic graphs, as well as vary their topological properties so that they

reflect developmental changes in functional circuits (Venon, 2013), a

range of average degree, μ, τ1, and τ2 inputs were used based on the

estimated real network statistics. First, average degree and μ were

varied within the range of real estimates of these parameters' 25th

and 75th percentiles. Since appropriate ranges for τ1 and τ2 were not

a priori known, initially a wide range of values were used. However,

only ranges of τ1 and τ2 that consistently produced biologically plausi-

ble numbers of communities were used to select a final set of syn-

thetic graphs. Once all input ranges were set, each parameter was

individually varied (holding others constant) so that every combination

of parameters would generate a distinct graph. Some combinations

failed to produce a graph, likely because one or more distribution

assumptions had been violated. Furthermore, some graphs were dis-

carded because they contained an unrealistic large number of commu-

nities. Following these exclusions, a total of 2669 valid binary graphs

were used in further analyses.

To create weighted graphs, a range of correlation values (the edge

weights) based on statistical thresholds estimated from the real rs net-

works were used. Brain circuits in pre/early adolescence are differen-

tially maturated. Some are fairly well-developed (e.g., those

supporting sensory processing), but others are underdeveloped

(e.g., frontoparietal control and DMN). In this study, the large-scale

networks identified by Yeo et al. (2011), were considered. For simplic-

ity, they were classified as developed, partially/moderately developed,

and underdeveloped, so that ranges of correlation values could be

established for these categories. For example, visual networks were

assumed to represent fairly well-developed circuitry, the somatomo-

tor network moderately developed circuitry, and the frontoparietal

control and limbic networks under-developed circuitry. For each par-

ticipant, median edge weights were calculated in each of these three

categories of networks. Then, in each synthetic graph, communities

were classified as fully developed, moderately developed, or under-

developed, and within-community edge weights were randomly sam-

pled from the corresponding median connectivity distributions of

three categories of real networks. Weights between communities

were also assigned based on a classification of low/high connectivity

estimated from the real data. This approach simplified method com-

parisons as a function of graph parameters, given an already complex

space of multiple parameter variations. It also maximized the repre-

sentation of differentially developed communities in the synthetic

graphs, similar to real brain networks. For each graph with a specific

intra-community connectivity, two graphs were generated, for high

and low inter-community connectivity. Median values for the two

were 0:639 and 0:730, respectively. Based on this approach, a total of

5338 weighted synthetic graphs (twice the original dataset size) were

generated and further analyzed. The synthetic data were generated

using the parallel processing resources of the HPC cluster at Harvard

Medical School.

3.1 | Statistical analysis

Modularity was compared across methods using real and synthetic

networks and two commonly used measures of similarity, the

adjusted Rand index (ARI)—adjusted for similarity by chance, and

normalized mutual information (NMI), which was unadjusted. Both

statistics were estimated at the graph level. In real data, only inter-

method comparisons were possible, as the ground truth was

unknown. In synthetic networks, absolute comparisons were possi-

ble, given each network's known community structure (the ground

truth). Inter-method differences in community structure and modu-

larity, and differences in associations between method-specific mod-

ularity and individual demographic, physiological, and cognitive

measures were also investigated. Simple (unadjusted) statistical com-

parisons of ARI and NMI in between groups of participants used the

nonparametric Wilcoxon rank sum test for unpaired samples and

ordinary linear regression models with ARI and NMI as the depen-

dent variables, and participant characteristics as independent vari-

ables. Additional multivariate regression models were developed

with appropriate adjustments for age, race, ethnicity, family income,

and experimental site, to assess correlations between method-

specific modularity and cognitive task measures. Correlograms were

generated as visual representations of correlations between

methods and topological network properties. Box plots were gener-

ated to compare ARI and NMI in individual topological properties'

quartiles. Given the non-normal distribution of most variables,

median and IQR were used as the relevant summary statistics.

Across models and comparisons, all p-values were adjusted for the

false discovery rate (Benjamini & Hochberg, 1995).

TABLE 2 Summary statistics (minimum, maximum, median, and
inter-quartile range (IQR)) for number of communities detected
with each method, applied to brain networks estimated from two
fMRI runs.

Number of communities—first run Modularity

Method Minimum Maximum Median (IQR) Median (IQR)

Newman 2 22 5 (2) 0.522 (0.166)

Louvain 2 17 6 (3) 0.534 (0.167)

SBM 9 87 48 (17) 0.197 (0.164)

nSBM 10 124 89 (13) 0.126 (0.097)

Ricci flow 2 103 42 (38) 0.298 (0.198)

Infomap 2 47 18 (13) 0.467 (0.213)

Number of communities—second run Modularity

Method Minimum Maximum Median (IQR) Median (IQR)

Newman 2 20 4 (3) 0.471 (0.188)

Louvain 2 16 6 (3) 0.483 (0.191)

SBM 13 87 52 (19) 0.149 (0.146)

nSBM 21 132 89 (11) 0.097 (0.086)

Ricci flow 2 96 31 (35) 0.249 (0.267)

Infomap 1 50 16 (11) 0.422 (0.292)

Note: Corresponding median and IQR for modularity and also included.
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4 | RESULTS

Summary statistics for the number of communities estimated by

each method for connectomes derived from the first and second

fMRI runs are provided in Table 2. Overall, both Newman and Lou-

vain estimated on average a relatively small number of communities

(<10), whereas SBM, nSBM, and Ricci, estimated over 10 times

more communities. Finally, infomap estimated a higher number of

communities than those obtained with the Louvain method but a

lower number than SBM.

4.1 | Comparisons between methods applied to
real data

Pairwise ARI and NMI statistics for modularity estimated from both

sets of fMRI runs with each of the investigated methods are sum-

marized in Table 3. At least modest similarity (based on ARI and

NMI >0.5) was estimated between the Newman and Louvain

methods, both modularity optimization approaches, and SBM and

nSBM. Otherwise, inter-method similarity was overall low to mod-

erate (ARI ≤0.25, NMI ≤0.68). For Infomap, its highest similarly was

to Louvain in both runs (0.55 (0.25) and 0.54 (0.32) respectively),

and lowest similarity to nSBM (0.08 (0.08) and 0.07 (0.08), respec-

tively for the two runs).

Intra-method modularity similarity was also estimated in the n

=3820 brains with two rs fMRI runs. Corresponding statistics are

summarized in Table 4. Similarity measured with either ARI or NMI

was low for Newman, Louvain, and Ricci (ARI=0.15–0.34;

NMI=0.32–0.48). For SBM and nSBM, ARI was low (0.17–0.20),

but NMI was moderate (0.54–0.61). Similar results were estimated

for Infomap (see Table S1), with median (IQR) ARI=0.27 (0.22), and

median (IQR) NMI=0.41 (0.19). Note that modularity of rs net-

works may vary substantially between runs.

To assess the impact of overall graph topology on the similarity

of modularity estimates, eight global network properties were calcu-

lated from each adjacency matrix: degree assortativity, mean con-

nectivity, median connectivity, natural connectivity (a measure of

network robustness), smallworldness, efficiency, global clustering

coefficient, and topological stability. Correlograms were generated

for both ARI and NMI and showed variable correlations between

method agreement and topological characteristics. Correlations

were estimated using Spearman's ρ given the non-normal distribu-

tion of some of these parameters. Overall, for each property, the

direction of correlation was similar across methods, except for

SBM–nSBM and Newman–Louvain pairs, which showed either no

correlation or weak correlation in the opposite direction for all prop-

erties. Similarly, correlations between Ricci-Newman (and Ricci–

Louvain) ARI and topological properties were also low (ρ = �0.17 to

0.26). For all other pairs, negative correlations were estimated

between ARI (and similarly for NMI) and topological robustness (ρ =

�0.60 to �0.86) global efficiency (ρ = �0.59 to �0.88), and global

clustering (ρ = �0.55 to �0.83). Correlations between ARI (and T
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NMI) and degree assortativity and smallworldness were in the oppo-

site direction. Specifically, there was a moderate positive correlation

between degree assortativity and ARI, and similarly for NMI

(ρ =0.49–0.70) and similarly for small-worldness (ρ =0.54–0.80) for

most method pairs. Across methods, median connectivity was weakly

correlated with ARI and NMI (positively or negatively, ρ = �0.08 to

0.15). These statistics are summarized in Figure 1. Similar correlations

were found using the second fMRI run, and corresponding correlo-

grams are shown in Supplemental Figure S1.

ARI and NMI values were also clustered based on quartiles of

each topological measure, to assess the impact of network topology

on method agreement at a more granular level. In other words, NMI

and ARI quartile membership was determined by the statistics of the

network property of interest, rather than the NMI or ARI statistics.

Boxplots for NMI based on each property-specific statistic are shown

in Figure 2 for the first run, and Figure 3 for the second second run.

Corresponding box plots for ARI are shown in Supplemental

Figures S2 and S3. NMI for SBM–nSBM was consistently highest

(compared to other methods) across quartiles and topological proper-

ties, followed by Newman-Louvain. In the third and fourth quartiles of

degree assortativity and small-worldness, NMI for the nSBM-Ricci

was also high (comparable to that for SBM–nSBM), followed by NMI

for SBM-Ricci, and the same was the case for the first and second

quartile of topological robustness, stability, efficiency, and global clus-

tering. Similar patterns were estimated in data from the second run.

No other consistent patterns of NMI as a function of topological prop-

erty statistics were identified, and NMI was overall lower (≤0:5) for

most other pairs of comparisons. ARI for the Newman–Louvain com-

parison was highest across quartiles and properties, followed by the

SBM–nSBM comparison. ARI for the nSBM-Ricci and SBM-Ricci com-

parisons was highest in the bottom quartile of topological robustness,

stability, efficiency, and global clustering.

4.2 | Impact of method choice and inter-method
agreement on associations between functional
network modularity and other participant data

4.2.1 | Demographic, anthropometric, and
physiological data

ARI and NMI were grouped as a function of demographic data, includ-

ing sex [first run: n = 2509 males and n = 2741 females; second run:

n = 1782 males and n = 2038 females], race [dichtomized as white

(first run: n = 3499; second run: n = 2587) vs. nonwhite (first run:

n = 1680; second run: n = 1187), given the unbalanced ABCD cohort

in terms of race], and ethnicity [Hispanic (first run: n = 1032; second

run: n = 737) vs. non-Hispanic (first run: n = 4162; second run:

n = 3052)]. Summary statistics for ARI and NMI in each of these

groups were separately estimated. In addition, in previous work, body

mass index (BMI) status has also been associated with the topological

organization of functional networks in a sample from the ABCD

cohort (Brooks et al., 2021, 2023). Participants were thus grouped by

BMI status as well (based on growth curves for age and sex (Centers

for Disease Control)), first dichotomized as with obesity (first run:

n = 681; second run: n = 456) versus without obesity (first run:

n = 4570; second run: n = 3364), but also based on a more granular

categorization: with underweight (first run: n = 279; second run:

n = 209), normal BMI (first run: n = 3545; second run: n = 2611),

overweight (but not with obesity; first run: n = 746; second run:

n = 544), and with obesity. Participants were also classified based on

sleep length [recommended amount for age (first run: n = 2582; sec-

ond run: n = 1897) vs. less than recommended (first run: n = 2669;

second run: n = 1923)], aspects of sleep quality, specifically frequency

of snoring and gasping for air, which in prior work has been shown to

impact the topologies of functional networks in this cohort (Brooks

et al., 2022), and pubertal stage (pre early, mid puberty). Prior work in

this cohort has identified differences in modularity as a function of

pubertal stage (Brooks et al., 2021). Median (IQR) values for pairwise

method similarity in each of these groups are summarized in Supple-

mental Tables S2 and S3.

To assess statistical differences in ARI and NMI between groups,

simple comparisons were first performed using the nonparametric

Wilcoxon rank sum test for unpaired samples, and then simple ordi-

nary linear regression models. ARI was statistically associated with

race for all but three method pairs (Ricci–Newman, Ricci–Louvain, and

SBM–nSBM), p< :01, and NMI was statistically associated with race

for all method pairs p< :01. ARI and NMI were higher for Ricci-SBM,

and Ricci-nSBM comparisons in nonwhite participants, and higher for

Ricci–Newman, Ricci–Louvain, and Newman–Louvain comparisons in

white participants. Similar associations with race were estimated for

ARI and NMI estimated from method comparisons based on the sec-

ond fMRI run.

Based on the first run, NMI for all (but Newman–Louvain) method

pairs was statistically higher in youth with obesity (p<.02). ARI was

also correlated with obesity status but only for some pairs (p<.01).

Based on the second run, consistent associations between obesity

status and ARI for some methods were estimated, but none for NMI.

TABLE 4 Summary statistics for intra-method modularity similarity between the two fMRI runs.

Newman Louvain nSBM SBM Ricci Infomap

Adjusted Rand index Median 0.281 0.341 0.174 0.198 0.146 0.271

IQR 0.148 0.133 0.066 0.071 0.165 0.216

Normalized mutual information Median 0.321 0.462 0.605 0.537 0.480 0.413

IQR 0.112 0.116 0.050 0.052 0.335 0.187
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Statistical associations between sleep length and ARI and NMI were

estimated for multiple method pairs (p< :03) and were fairly consis-

tent across runs (though fewer associations were estimated for ARI in

the second run). There were no differences between Hispanic and

non-Hispanic participants for any comparison using ARI (p>.32). All

adjusted p-values are provided in Tables 5 and 6. Corresponding

p-values based on statistical models are summarized in Tables S4

and S5.

F IGURE 1 Correlograms showing
correlations (estimated using
Spearman's ρ) between topological
network properties and method
agreement based on ARI (top) and NMI
(bottom), using best-run data. Red and
blue colors represent positive and
negative correlations, respectively, and
the size of squares reflects correlation

strength.
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To assess the impact of method selection on biological associations

of interest, ordinary linear regression models were developed to exam-

ine the relationship between method-specific modularity estimates (the

dependent variables) and independent parameters related to sleep

length and quality, BMI (a continuous variable), BMI category, and obe-

sity status (dichotomous). Across methods, and both fMRI runs, modu-

larity was statistically associated with BMI and obesity status (p≤ :01).

Similarly consistent (across methods) statistical associations were esti-

mated between modularity and sleep length, difficulty breathing, snor-

ing, gasping for breath, and daytime sleepiness, in the fMRI run

(p< :03) but not the second, possibly an issue of the smaller sample

size for that run. These results are summarized in Tables 7 and 8.

4.2.2 | Cognitive outcomes

The ultimate goal of network analyses is to map the topology of

functional brain circuits onto the cognitive processes they support.

Therefore, associations between method-specific modularity esti-

mates and cognitive outcomes were investigated using a subset of

tasks from the ABCD neurocognitive battery (Luciana et al., 2018),

including the Flanker, List Sorting Working, Dimensional Card Sort,

Cash Choice, Matrix Reasoning, and Rey Auditory Verbal Learning

Tasks. Together, these measure cognitive flexibility, information

processing, attention, working memory, learning, inhibitory control,

impulsivity, and problem-solving, all processes that continue to

develop throughout adolescence and may be associated with com-

munity structure in the brain. Depending on the task outcome, lin-

ear or logistic regression models were developed, with modularity

estimated by each method as the primary independent variable and

task scores/performance measures as the dependent variables.

Models were adjusted for age, sex, race, ethnicity, and family

income. p-values were adjusted for false discovery, across methods.

Modularity estimated with all methods (except nSBM) was statisti-

cally associated with performance in the List Sorting task (p≤ :04).

Modularity estimated with SBM and nSBM but no other methods was

F IGURE 2 Boxplots for NMI (based on data from the best fMRI run), at each quartile of the estimated topological properties.
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associated with performance in the dimensional card sort

task (p≤ :01).

4.3 | Method comparison based on synthetic
graphs

Synthetic graph modularity (the ground truth) was compared across

methods, as model parameters were systematically varied. Of particu-

lar interest was the impact of varying μ on method performance. This

is the model parameter that can be directly varied in a way that simu-

lates developmental changes in the connections within and across

communities, as the brain acquires its small-world topology, a hallmark

of the fully-developed connectome in adulthood. In the real data,

median (IQR) values of μ were 0.14 (0.12) and 0.17 (0.14) for the two

runs. Figure 4 shows the variation of ARI as a function of μ, for each

method compared to the ground truth (top plot). Pairwise ARI for

comparisons of Ricci, SBM, and Louvain methods with all others (left,

middle, and right panels, respectively) are also shown (bottom plots).

Overall, at μ< �0:14 (which approximately corresponds to con-

nectomes that are more developed than those in the real dataset, and

are highly connected within communities with relatively sparse con-

nections between communities—a characteristic of the adult brain),

SBM, nSBM, Newman, and Louvain performed similarly with median

ARI with the ground truth > �0:95, and Ricci flow had median ARI

�0:7. Modularity estimates based on SBM/nSBM had high agree-

ment with the ground truth at higher μ ranges (up to �0:3) as well.

Beyond these μ values, their agreement progressively decreased to

median ARI �0:6, which remained fairly constant across high μ values.

Performance of Newman and Louvain methods decreased more rap-

idly in the μ range �0:3to�0:5, with ARI ≤0:5 at higher μ values,

and almost no agreement with the ground truth (ARI < 0:1) at very

high μs. Ricci followed a similar trend, but its almost complete dis-

agreement with the ground truth occurred at lower μ values (�0:4).

F IGURE 3 Boxplots for NMI (based on data from the second-best fMRI run), at each quartile of the estimated topological properties.
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Statistics on estimated number of communities across methods (and

ground truth) are summarized in Table 9. In these simulations, the

number of communities was inherently constrained by the range of

communities in the real data, based on the Newman method. Median

number of communities estimated with SBM and nSBM was closest

to the ground truth, followed by the Louvain method. In contrast, in

the real (and thus unconstrained in number of communities) data,

SBM and nSBM estimated large, and potentially biologically implausi-

ble, numbers of communities. In synthetic graphs, both Newman and

Ricci methods underestimated the number of communities. In the real

data, Newman estimated a relatively low number, but Ricci estimated

almost 10 times as many communities. On average, Infomap also

underestimated the number of communities in the synthetic graphs

(median=1 community, range=1–33).

Based on inter-method ARI estimates, agreement between SBM

and all but Ricci methods, and similarly for Louvain was high at

μ≤ �0:3, but rapidly decreased in the μ range 0:3�0:6, with very

low agreement at higher μ values. High μ values reflect networks

topologies in which communities are difficult to detect, corresponding

to connectomes at earlier developmental stages, in which the brain

has a high number of redundant connections and not well-defined

modular organization. The performance of the Ricci flow method was

lower than other methods across μ values, and poor at high μ regimes.

Increasing μ values are reflected in topologies where the difference in

density of edges within and across communities is decreasing, ulti-

mately resulting in networks that have weak or no community struc-

ture. For such topologies, the Ricci flow method keeps all vertices in a

single community, recognizing that there is no meaningful community

TABLE 5 P-values (adjusted for the false discovery rate) for Wilcoxon rank sum test comparisons of ARI and NMI (first run) across distinct
groups of participants, dichotomized based on sex (male vs. female), race (white vs. nonwhite), ethnicity (Hispanic vs. non-Hispanic), obesity
status (with vs. without obesity) and sleep length (recommended amount for age vs. less than recommended).

Ricci and

SBM

Ricci and

nSBM

Ricci and

Newman

Ricci and

Louvain

SBM and

nSBM

SBM and

Newman

SBM and

Louvain

nSBM and

Newman

nSBM and

Louvain

Newman

and Louvain

Adjusted Rand index (ARI)

Sex - - - 0.037 - - - - 0.022 -

Race <0.001 <0.001 - - - <0.001 <0.001 <0.001 <0.001 <0.001

Ethnicity - - - - - - - - - -

Obesity

Status

0.003 0.003 - - - 0.002 0.003 0.002 - -

Sleep Length <0.001 <0.001 0.005 0.033 - <0.001 <0.001 <0.001 0.005 -

Normalized mutual information (NMI)

Sex - - - - - - - - - -

Race <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Ethnicity - - - - - - - - - -

Obesity status 0.015 0.015 0.015 0.015 0.018 0.017 0.015 0.020 0.016 -

Sleep length <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 -

TABLE 6 P-values (adjusted for false discovery) for Wilcoxon rank sum test comparisons of ARI and NMI (second run) across distinct groups
of participants, dichotomized based on sex (male vs. female), race (white vs. nonwhite), ethnicity (Hispanic vs. non-Hispanic), obesity status (with
vs. without obesity) and sleep length (recommended amount for age vs. less than recommended).

Ricci and

SBM

Ricci and

nSBM

Ricci and

Newman

Ricci and

Louvain

SBM and

nSBM

SBM and

Newman

SBM and

Louvain

nSBM and

Newman

nSBM and

Louvain

Newman

and Louvain

Adjusted Rand index (ARI)

Sex - - - - - - - - - -

Race 0.002 <0.001 - - 0.034 0.002 <0.001 0.009 0.029 <0.001

Ethnicity - - - - - - - - - -

Obesity status 0.036 0.036 0.049 0.036 - 0.036 0.036 0.036 - -

Sleep length - 0.027 - - - 0.021 0.024 0.022 - 0.021

Normalized mutual information (NMI)

Sex - - - - - - - - - -

Race <0.001 <0.001 0.002 <0.001 <0.001 - <0.001 - <0.001 <0.001

Ethnicity - - - - - - - - - -

Obesity status - - - - - - - - - -

Sleep length 0.024 0.017 0.017 0.024 0.008 0.046 0.017 - 0.013 0.046
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partitioning. Median number of communities estimated with this

method in synthetic graphs was indeed 1 (IQR=4). This statistic was

further impacted by the distribution of μ in synthetic graphs. Finally,

when a method estimates only one community in a network that what

more than one community, by definition, the ARI value is 0, although,

by the power law distribution of the community size in the generative

model, there may be a large overlap of the (single) community with

the largest community in the graph.

To examine the impact of other model parameters on method

accuracy and inter-method similarity, synthetic graphs were dichoto-

mized based on μ, μ≤0:4 versus μ>0:4. The cutoff was based on the

ARI curves in Figure 4. Each method was then compared to the

ground truth as a function of the number of communities and median

node degree. The variation of ARI as a function of these parameters is

shown in Figure 5. For μ≤0:4, agreement with the ground truth

increased for all methods for graphs with 2 to �10 communities. For

those with a higher number of communities (up to 20 communities),

ARI was ≥0:9 for Louvain, SBM, and nSBM, �0.5 to �0.8 for New-

man, and �0.5 to �0:6 for Ricci flow. The opposite trend was identi-

fied as a function of median node degree. Louvain, SBM, and nSBM

had higher agreement (ARI > 0:8) with the ground truth for median

node degree ≤ �60�70, and lower agreement for higher node

degree. Similar trends were estimated for Newman and Ricci flow, but

both methods performed statistically worse even in graphs with lower

degree <50. SBM and nSBM performed better overall even in highly

connected graphs (median node degree 100), followed by Louvain,

Newman, and Ricci flow. For μ>0:4, all methods except SBM and

nSBM had very low agreement with the ground truth (ARI < 0:2),

across number of communities and median node degree. SBM and

nSBM-based modularity estimates were in moderate agreement with

the ground truth (ARI �0.7 to �0.8) for ≤6 communities, but ARI rap-

idly decreased for higher numbers of communities. For graphs with

more than �10 communities, SBM and nSBM had very low agree-

ment with the ground truth, statistically similar to the other methods.

The opposite trend was identified for ARI as a function of median

node degree. All methods had low ARI for graphs with degree � <50.

SBM and nSBM had significantly higher ARI in graphs with higher

median node degree (up to �0:7 even for degree >100).

Finally, ARI was examined as a function of median inter-

community connection strength, dichotomized as low versus high,

TABLE 7 Statistics (regression coefficients and corresponding p-values—adjusted for false discovery) for linear regression models testing the
association between method-specific modularity estimates from the first fMRI run and sleep quantity and quality parameters (from the Sleep
Disturbance Scale for Children (SDSC)), BMI and obesity status.

Newman Louvain nSBM SBM Ricci

Sleep length Beta 0.040 0.037 0.043 0.046 0.049

p-value 0.009 0.013 0.007 0.006 0.006

Difficulty breathing Beta 0.035 0.036 0.037 0.037 0.030

p-value 0.015 0.015 0.015 0.015 0.030

Gasping for breath Beta 0.041 0.040 0.035 0.040 0.040

p-value 0.006 0.006 0.013 0.006 0.006

Snoring Beta 0.047 0.045 0.046 0.047 0.044

p-value 0.002 0.002 0.002 0.002 0.002

Daytime sleepiness Beta 0.039 0.038 0.037 0.038 0.034

p-value 0.010 0.010 0.011 0.010 0.015

BMI Beta 0.066 0.064 0.065 0.064 0.071

p-value <0.001 <0.001 <0.001 <0.001 <0.001

Obesity status (binary) Beta (non-standardized) 0.019 0.019 0.013 0.019 0.023

p-value <0.001 <0.001 <0.001 <0.001 <0.001

BMI category Beta 0.058 0.054 0.058 0.056 0.062

p-value <0.001 <0.001 <0.001 <0.001 <0.001

TABLE 8 Statistics (regression
coefficients and corresponding p-values—
adjusted for false discovery) for linear
regression models testing the association
between method-specific modularity
estimates from the second fMRI run and
sleep quantity and quality parameters
(from the Sleep Disturbance Scale for
Children (SDSC)), BMI and obesity status.

Newman Louvain nSBM SBM Ricci

BMI Beta 0.052 0.053 0.060 0.057 0.043

p-value 0.002 0.002 0.002 0.002 0.012

Obesity status (binary) Beta 0.021 0.021 0.011 0.018 0.022

p-value <0.001 <0.001 <0.001 <0.001 0.002

BMI category Beta 0.058 0.057 0.057 0.058 0.052

p-value <0.001 <0.001 <0.001 <0.001 0.002
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based on cutoffs estimated from the real data (bottom 10% and top

10% of connectivity values in the real adjacency matrices). The param-

eter μ was held constant at 0.35. In the low connectivity group,

median (IQR) ARI was 0.84 (0.40) for SBM, 0.84 (0.38) for nSBM, 0.76

(0.50) for Louvain and 0.44 (0.37) for Newman. In the high connectiv-

ity group, median ARI was approximately the same for SBM, slightly

higher for nSBM (0.87 (0.39)), but lower for Louvain (0.59 (0.59)) and

Newman (0.32 (0.31)), suggesting an inverse relationship between

similarity with ground truth and connectivity for these two methods.

SBM of nSBM performed equally well in both connectivity regimes.

Ricci could not be compared to these methods, since the implementa-

tion uses only graph topology, not the connection strength (i.e., was

applied to binary graphs).

5 | DISCUSSION

Graph theoretic analyses are increasingly used to investigate the

topological characteristics of structural and functional brain networks.

These analyses have repeatedly revealed a modular connectome, in

which community structure represents a fundamental characteristic of

the brain's organization that is critical for efficient information proces-

sing and integration, robustness to perturbations (e.g., stressors), rapid

response to cognitive demands, and learning (Bullmore &

Sporns, 2012; Sporns & Betzel, 2016). Modularity of brain networks

has been correlated with cognitive function across domains and

may be abnormally altered by neurological, neuropsychiatric, and

neurodevelopmental diseases and disorders (Fornito et al., 2015;

F IGURE 4 Median ARI as a function of μ. Top Plot: ARI comparing each method to ground-truth communities. Bottom plots: ARI comparing
Ricci, SBM, Newman, and Louvain (respectively) to each other and to the ground truth.

TABLE 9 Summary statistics (minimum, maximum, median, and
inter-quartile range (IQR)) for ground truth number of communities as
well as those detected with each method from synthetic graphs.

Number of communities

Method Minimum Maximum Median (IQR)

Ground truth 2 20 7 (7)

Newman 1 22 2 (1)

Louvain 1 20 5 (4)

SBM 1 23 6 (4)

nSBM 1 21 6 (4)

Ricci flow 1 38 1 (4)
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Griffa et al., 2013; Koubiyr et al., 2019; Ma et al., 2017). Despite the

role of the connectome's community structure in brain function and

cognition, there is neither a methodological gold standard for its esti-

mation nor a systematic approach for selecting an optimal method.

This has contributed to the reproducibility crisis in the Neuroscience

field in general, and that of connectomics more specifically, and has

limited the interpretation of findings based on method-dependent

brain community structure and modularity. It is also unclear how dif-

ferent methods perform in terms of absolute accuracy and reliability,

as well as relative to each other, as a function of graph topology. It is

further unclear how method-dependent modularity estimates are

mapped onto differences in associations between this topological

property and cognitive, behavioral, and other individual data.

This study has systematically addressed these gaps in knowledge

using a historically large dataset of developing brain connectomes

estimated from over 5000 early adolescents in the ABCD study, and a

large dataset of data-inspired synthetic graphs with controlled param-

eters. It has focused on three classes of methods, including state-of-

the-art and widely used approaches in Neuroscience (the Newman

and Louvain methods, which maximize modularity) and more novel to

the field probabilistic (Bayesian inference within the SBM framework)

and geometric (Ricci flow) methods. In secondary comparisons, it has

also applied Infomap, an increasingly popular method, to the data.

Using synthetic graphs that together represented the topologies of

connectomes from early life (underdeveloped) to adulthood (optimally

developed), the study has investigated the topological parameters that

may impact method performance, and their differential effects on

inference. Using the real data, which captured the inherent heteroge-

neity of the developing connectome, the study has compared modu-

larity estimates from different methods and the consistency of their

associations with physiological, demographic, and cognitive data. To

assess reliability of the findings, all methods were applied to rs data

from two fMRI runs.

The primary study finding is that different types of community

detection methods can yield highly dissimilar modularity estimates,

which raises the issue of method selection, as well accuracy and

reproducibility of results with different approaches. Although there

was modest similarity between modularity estimates obtained with

the Newman and Louvain methods, both of which use modularity

maximization as the basis for community detection, modest similarity

F IGURE 5 Median ARI (compared to ground truth) as a function of true number of communities and degree for synthetic graphs with
μ≤0:40 (left) and all graphs with μ>0:40 (right).
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between Louvain and Infomap, and, as expected, higher

similarity between SBM and its nSBM variant, there was low agree-

ment between all other pairwise method comparisons. These results

were consistent across fMRI runs. In part, this dissimilarity may be

attributed to different approaches and metrics used by these

methods, but also to the underlying characteristics of the graphs. Prior

work on comparison of community detection methods in synthetic

graphs and real networks (mostly unrelated to the brain) has shown

that performance depends on multiple parameters, including node

degree distribution, network connectivity, and size and distribution of

communities (Funke & Becker, 2019; Orman & Labatut, 2009; Taya

et al., 2016; Yang et al., 2016). The synthetic brain graph results are

aligned with prior findings and confirm this dependence.

To understand the role of topology on community estimation,

agreement between methods was examined as a function of each

brain's network topological properties. Results were consistent across

fMRI runs. Moderate positive correlations between method agree-

ment (ARI and NMI) and degree assortativity and small-worldness

were estimated for most methods, which suggests that the higher the

modular organization (reflected in both the affinity of nodes connect-

ing to similar nodes, e.g., within the same community, and high local

(within community) connectivity but sparse inter-community connec-

tivity), the higher the similarity of community structure identified with

different approaches. In turn, this indicates that in developed brain

networks, which are likely to have high assortativity and a small-world

organization, these methods may yield similar results. For such topolo-

gies, community detection analyses are likely to have relatively low

method bias. However, in underdeveloped (or neurodegenerating)

brain networks where, these properties are either not yet optimized

or are no longer optimal, sensitivity and specificity in detecting com-

munities may vary substantially between methods. In weakly and/or

redundantly connected networks, communities may be harder to

detect, and method bias is likely to be high. A range of weak to mod-

erate negative correlations was estimated between method agree-

ment and global efficiency, clustering, and natural connectivity

(a measure of topological robustness). The latter increases with the

number of network connections, and may thus favor edge redun-

dancy, which, in turn, makes it difficult to reliably identify communi-

ties. The negative correlation between global clustering coefficient

and method agreement was surprising. This coefficient is based on

node triplets—the ratio of closed triplets to all triplets, which reflects

clustering within the network. The negative correlation suggests that

for networks that cluster to a higher degree, community detection

methods are more likely to differ in the partitions they generate. It is

possible that small clusters may negatively impact method agreement,

that is, a higher number of small communities may lower the probabil-

ity of community overlap and matching between methods.

In a dataset of over 5000 developing connectomes, topological

network heterogeneity is expected to be high. Thus, method agree-

ment was also examined in stratified subcohorts, based on demo-

graphic, anthropometric, and physiological parameters previously

reported as significant contributors to this heterogeneity, and

modulators of the organization of the early adolescence connectome

(Brooks et al., 2021, 2022). Several method pairs had higher agree-

ment in subcohorts of participants with obesity and than those who

obtained less than the recommended sleep amount. In prior work, we

have reported lower global clustering and topological robustness in

early adolescents who do not obtain sufficient sleep or have

unhealthy excess BMI. Given the negative correlations between these

properties and method agreement, these results are not surprising.

Similarly, sex- and race-related differences in method agreement may

reflect differences in sleep and BMI in these groups. For example, we

have previously identified racial disparities in sleep quantity and qual-

ity in nonwhite participants from this cohort, as well as statistically

higher BMI in some racial groups (Brooks et al., 2022). These findings

suggest that increased cohort homogeneity may be correlated with

higher inter-method agreement.

Given substantial dissimilarity between method types, the impact

of method choice on associations between method-specific modular-

ity and cognitive measures, sleep quantity and quality, BMI, obesity

status, and performance in multiple cognitive tasks that require the

activation of distributed brain networks (and domain-specific commu-

nities) was next assessed. Consistent modularity associations with

sleep, BMI-related measures, and performance in the list sorting task

were estimated across methods (and some of them for both fMRI

runs), which indicates method invariance, at least for these associa-

tions. Inconsistent associations were estimated for the dimensional

card sort task (only with SBM and nSBM-based modularity), which

suggests that method selection could impact the identification of rela-

tionships between modularity and cognitive performance. It is also

possible that some methods may better resolve smaller clusters

(i.e., finer structure and thus a large number of communities), and

these higher-resolution communities correlate with some cognitive

outcomes. However, the Ricci method also estimated a relatively large

number of communities, but the Ricci-based modularity association

with this particular task was nonsignificant. Without a ground truth,

the accuracy of any of these higher-resolution communities are

impossible to assess.

To investigate method accuracy and impact of the underlying net-

work topology on it, a large dataset of synthetic graphs was analyzed.

Topological properties estimated from the data were used to system-

atically vary the parameters of the LFR model used to generate the

graphs. The number of communities was constrained to vary within

the range estimated from the real data, using the Newman method.

Method accuracy and agreement were examined as a function of

within-community connectivity relative to the remaining network,

node degree, and number of communities, all properties that in the

real data analyses emerged as important contributors to method

agreement. Although each parameter was varied separately, the

resulting graphs included complex combinations of topological charac-

teristics. Due to issues of convergence of some graphs, the median

parameter μ in the synthetic graphs was higher than that in the real

data but did span ranges that would correspond to underdeveloped

(early life) to fully developed (young adulthood) brain networks.

The synthetic graph analysis led to several important findings.

First, there are topological regimes, related to the local community
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connections relative to the rest of the network, in which most

methods performed similarly for networks with high numbers of com-

munities and low median node degree, with the exception of Ricci

flow. These regimes correspond to fairly well-developed connectomes

but also overlapped with the μ range in the real data ( < 0:2). In other

topological regimes, corresponding to underdeveloped or degenerat-

ing connectomes, and thus networks with less clearly identifiable

community structure, SBM and its nSBM variant performed signifi-

cantly better than all other methods. SBM uses Bayesian inference for

community detection. The advantage of using statistical inference

within the SBM framework is that the algorithm aims to identify both

the node community assignment and interaction between communi-

ties based on the latent network structure. Being the only probabilistic

method investigated in this study, it may also be more robust to the

uncertainty associated with community structure in noisy (as a result

of incomplete maturation or degeneration) and/or redundantly or

weakly connected networks. The synthetic graph results also further

highlight differences between methods based on their underlying

assumptions. For example, Ricci flow assumes that edges within com-

munities are denser than edges across communities. When this

assumption does not hold (or is reversed), Ricci flow cannot detect

multiple communities. In contrast, SBM does not require such an

assumption and finds a separation when the intra-community and

inter-community probabilities differ.

In real graphs, the estimation of community structure was not

constrained for any of the methods, so that they can be compared

fairly given that Newman and Louvain are entirely unsupervised

approaches. Thus, no upper limit on the estimated number of commu-

nities was imposed on SBM/nSMB and Ricci flow. This led to a

median number of communities by these methods that was on aver-

age �8 to �18 times higher than the number estimated by Newman

and Louvain. Prior work has shown that the number of communities

in brain networks in youth is typically low (Tooley et al., 2022), and

close to the number estimated by Newman and Louvain. In synthetic

graphs, the number of communities was inherently constrained by the

Newman-based estimated range in the real data. In these graphs,

SBM and nSBM estimated numbers of communities that were closest

to the ground truth, whereas all other methods underestimated this

number, with Ricci producing the lowest number of communities.

Therefore, if constrained, by imposing a biologically reasonable upper

limit on the number of communities, SBM may be the most accurate

community detection approach in brain networks.

Despite its strengths, including the investigation of several types

of methods and application to large and topologically heterogeneous

real and synthetic network datasets, this study also had some limita-

tions. First, an exhaustive comparison of available community detec-

tion methods was not performed and was beyond the scope of this

study. Prior work has compared a large number of methods

(Dimitriadis et al., 2021). Instead, the goal of the study was to com-

pare classes of methods. Representative approaches from each class

were selected based on their popularity in the Neurosciences

(Newman and Louvain), increasing applications in other fields, and

type (probabilistic—SBM, and geometric—Ricci flow). There are other

emerging methods, for example, based on deep learning (Jin

et al., 2021; Kipf & Welling, 2017; Yang et al., 2018), that hold prom-

ise to improve community detection in complex networks such as

brain connectomes. These methods continue to be optimized but may

also have shortcomings due to the volume of data needed to train the

associated models. Furthermore, deep learning techniques often have

limited interpretability and transparency. In secondary comparisons,

we also examined the Infomap algorithm. Results from both the real

data and synthetic graphs further highlighted the high disparity of

community detection estimates and method dependence.

Another limitation of this study is that given that the generative

model used to generate the synthetic graphs is inherently similar to

SBM (though not the same). Thus, the superior performance of SBM

could be biased by the generative model choice. However, there are

differences between the LFR and SMB models, and the former was

chosen specifically because its parameters could be mapped onto

topological properties that could be estimated from the real data. Fur-

thermore, despite a systematic, data-driven approach for varying the

graph parameters, resulting models had complex topologies, with

topological characteristics that were inherently correlated with each

others. This is a limitation of all generative graph models. Also, the

performance of Ricci flow rapidly decreases when ground truth com-

munity structure drops. A context-specific optimization of this

approach at the low modularity range could be separately designed,

but this optimization was outside the scope of the present study.

Finally, it is possible that the metrics of similarity (ARI and NMI) used

in this study may, in some cases, be influenced by the skewness of

community size and number of communities distributions. Although

these are well-established and widely used metrics, additional future

investigations using other similarity measures could be valuable

(Gates et al., 2019).

Interrogation and characterization of the brain's circuit topology

across scales has been the focus of a wide range of human and animal

studies. Circuit-level experimental investigations and, more recently,

manipulations, have called for appropriate analytic tools to character-

ize the organizational complexity and fundamental properties

(e.g., community structure) of neural circuits. However, these tools

need to be carefully selected, to maximize reliability of estimated

topological properties. To the best of our knowledge, this is the first

study to systematically assess performance of different classes of

community detection methods using a large, topologically heteroge-

neous dataset of incompletely maturated human connectomes from

early adolescents, and a large dataset of data-inspired synthetic

graphs. Beyond method comparisons, this study also has assessed the

impact of method selection on associations between method-specific

modularity and individual data of interest, including cognitive mea-

sures. Thus, despite some limitations, this study makes a significant

contribution to the field and raises awareness of potential advantages

and shortcomings of different types of community detection methods.

It also provides quantitative evidence that some community detection

methods may yield relatively similar results in networks with specific

characteristics, including clearly identifiable communities and parsimo-

nious connections between communities, but disparate results in
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other topological regimes, particularly those corresponding to highly

underdeveloped brain networks.

This study has also provided new insights into similarities of com-

munity estimates as a function of graph topology, particularly degree

assortativity, small-worldness, and sample homogeneity (based on

individual demographic, physiological, and/or anthropometric charac-

teristics), as well as insights into method performance as a function of

connectivity, number of connections within and across communities

and overall number of communities in a graph. However, it has also

provided evidence that associations between method-specific modu-

larity estimates and other data (demographic, physiological, cognitive)

could be method-dependent. Associations between some individual

characteristics, such as sleep quantity and quality, BMI and select cog-

nitive measures and modularity were found to be method-invariant,

but one association with a cognitive outcome was method-dependent.

On one hand, this may be due to higher sensitivity of some methods

to identify smaller communities that are associated with a parameter

of interest. However, method dependence may also suggest lack of

reproducibility and thus limited biological relevance. These findings

highlight the importance of reliability analysis of all modularity-related

findings, using multiple methods to ensure their consistency. Finally, it

also highlights the robustness and accuracy of Bayesian inference

within the framework of SBM (and nSBM), and thus the potential util-

ity of this method for community detection in brain networks, across

topological regimes.

6 | CONCLUSION

The topological organization and characteristics of brain networks

plays a critical role in the accuracy, reliability, and similarity of commu-

nity detection methods, with relatively low bias, high similarity, and

comparable accuracy in networks with well-defined community struc-

ture and sparse inter-community connections, but low similarity and

differential accuracy in redundantly and/or weakly connected net-

works with difficult to detect communities. A probabilistic approach,

such as Bayesian inference in the framework of SBM, may provide

robust estimates of community structure independent of topological

characteristics and may be more appropriate than widely used

methods in Neuroscience, such as Newman and Louvain. Finally, to

ensure biologically meaningful inferences, findings based on analyses

of brain network community structure should be confirmed with mul-

tiple reliable detection methods.
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(2019). Mapping the human brain's cortical-subcortical functional net-

work organization. NeuroImage, 185, 35–57.
Jin, D., Huo, C., Liang, C., & Yang, L. (2021). Heterogeneous graph neural

network via attribute completion. Proceedings of WWW, 1, 391–400.
Karrer, B., & Newman, M. E. (2011). Stochastic blockmodels and commu-

nity structure in networks. Physical Review E, 83, 016107.

Khambati, A. N., Davis, K. A., Oommen, B. S., Chen, S. H., Lucas, T. H.,

Litt, B., & Bassett, D. S. (2015). Dynamic network drivers of seizure

generation, propagation and termination in human epilepsy. PLoS Com-

putational Biology, 11, 1–19.
Kipf, T., & Welling, M. (2017). Semi-supervised classification with graph

convolutional networks. Proceedings of ICLR, 1, 1–14.
Konrad, K., & Eickhoff, S. (2010). Is the adhd brain wired differently? A

review on structural and functional connectivity in attention deficit

hyperactivity disorder. Human Brain Mapping, 31, 904–916.
Koubiyr, I., Besson, P., Deloire, M., Charre-Morin, J., Saubusse, A.,

Tourdias, T., Brochet, B., & Ruet, A. (2019). Dynamic modular-level

alterations of structural-functional coupling in clinically isolated syn-

drome. Brain, 142, 3428–3439.
Laender, A. H. F., Leão, J. C., & Melo, P. O. S. V. D. (2020). Overcoming

bias in community detection evaluation. Journal of Information and

Data Management, 11, 265–280. https://www.researchgate.net/

publication/346098433

Lancichinetti, A., Fortunato, S., & Radicchi, F. (2008). Benchmark graphs

for testing community detection algorithms. Physical Review E, 78,

046110.

Lange, R., Benjamin, A., Haefner, R., & Pitkow, X. (2022). Interpolating

between sampling and variational inference with infinite stochastic

mixtures. Proceedings of Machine Learning Research, 180, 1063–1073.
Lee, C., & Wilkinson, D. J. (2019). A review of stochastic block models and

extensions for graph clustering. Applied Network Science, 4, 1–50.
https://doi.org/10.1007/s41109-019-0232-2

Leskovec, J., Lang, K. J., & Mahoney, M. W. (2010). Empirical compari-

son of algorithms for network community detection. In Proceedings

of the 19th international conference on world wide web (pp. 631–
640). Association for Computing Machinery. http://arxiv.org/abs/

1004.3539

Li, K., Guo, L., Nie, J., Li, G., & Liu, T. (2009). Review of methods for func-

tional brain connectivity detection using fMRI. Computerized Medical

Imaging and Graphics, 22, 131–139.
Lopez-Madrona, V., Matias, F., Mirasso, C., Canals, S., & Pereda, E. (2019).

Inferring correlations associated to causal interactions in brain signals

using autoregressive models. Scientific Reports, 9, 17041.

Lorenz, D. M., Jeng, A., & Deem, M. W. (2011). The emergence of modu-

larity in biological systems. Physics of Life Reviews, 8, 129–160.
Luciana, M., Bjork, J., Nagel, B., Barch, D., Gonzalez, R., Nixon, S., &

Banich, M. T. (2018). Adolescent neurocognitive development and

impacts of substance use: Overview of the adolescent brain cognitive

development (ABCD) baseline neurocognition battery. Developmental

Cognitive Neuroscience, 32, 67–79.
Ma, Q., Huang, B., Wang, J., Seger, C., Yang, W., Li, C., Wang, J., Feng, J.,

Weng, L., Jiang, W., & Huang, R. (2017). Altered modular organization

of intrinsic brain functional networks in patients with Parkinson's dis-

ease. Brain Imaging and Behavior, 11, 430–443.
Meunier, D., Achard, S., Morcom, A., & Bullmore, E. (2009). Age-related

changes in modular organization of human brain functional networks.

NeuroImage, 44, 715–723.
Newman, M. (2016). Equivalence between modularity optimization and

maximum likelihood methods for community detection. Physical

Review E, 94, 052315.

Newman, M. E. (2004). Fast algorithm for detecting community structure

in networks. Physical Review E, 69, 066133.

Ng, A. S. L., Wang, J., Ng, K. K., Chong, J. S. X., Qian, X., Lim, J. K. W.,

Tan, Y. J., Yong, A. C. W., Chander, R. J., Hameed, S., Ting, S. K. S.,

Kandiah, N., & Zhou, J. H. (2021). Distinct network topology in alzhei-

mer's disease and behavioral variant frontotemporal dementia.

Alzheimer's Research & Therapy, 13, 1–16.
Ni, C. C., Lin, Y. Y., Gao, J., Gu, X. D., & Saucan, E. (2015). Ricci curvature

of the internet topology. In 2015 IEEE conference on computer commu-

nications (INFOCOM) (pp. 2758–2766). IEEE.
Ni, C. C., Lin, Y. Y., Luo, F., & Gao, J. (2019). Community detection on net-

works with ricci flow. Scientific Reports, 9, 1–12.
Ollivier, Y. (2007). Ricci curvature of metric spaces. Comptes Rendus Math-

ematique, 345, 643–646.
Onoda, K., & Yamaguchi, S. (2013). Small-worldness and modularity of the

resting-state functional brain network decrease with aging. Neurosci-

ence Letters, 556, 104–108.
Orman, G., & Labatut, V. (2009). A comparison of community detection

algorithms on artificial networks. Scientific Reports, 5805, 242–256.
Pedersen, M., Omidvarnia, A. H., Walz, J. M., & Jackson, G. D. (2015).

Increased segregation of brain networks in focal epilepsy: An fMRI

graph theory finding. NeuroImage: Clinical, 8, 536–542.
Peixoto, T. P. (2014a). The graph-tool python library. Figshare. http://

figshare.com/articles/graph_tool/1164194 https://doi.org/10.6084/

m9.figshare.1164194

Peixoto, T. P. (2014b). Hierarchical block structures and high-resolution

model selection in large networks. Physical Review X, 4, 011047.

Peixoto, T. P. (2016). Nonparametric bayesian inference of the microcano-

nical stochastic block model. Physical Review E, 95, 012317.

Peng, D., Shi, F., Shen, T., Peng, Z., Zhang, C., Liu, X., Qiu, M., Liu, J.,

Jiang, K., Fang, Y., & Shen, D. (2014). Altered brain network modules

induce helplessness in major depressive disorder. Journal of Affective

Disorders, 168, 21–29.
Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., &

Petersen, S. E. (2014). Methods to detect, characterize, and remove

motion artifact in resting state fMRI. NeuroImage, 84, 320–341.

22 of 23 BROOKS ET AL.

https://doi.org/10.1073/pnas.0908366106
https://www.researchgate.net/publication/346098433
https://www.researchgate.net/publication/346098433
https://doi.org/10.1007/s41109-019-0232-2
http://arxiv.org/abs/1004.3539
http://arxiv.org/abs/1004.3539
http://figshare.com/articles/graph_tool/1164194
http://figshare.com/articles/graph_tool/1164194
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.6084/m9.figshare.1164194


Pradhan, N., Dasgupta, S., & Sinha, S. (2011). Modular organization

enhances the robustness of attractor network dynamics. Europhysics

Letters, 94, 38004.

Qian, X., Castellanos, F. X., Uddin, L. Q., Loo, B. R. Y., Liu, S., Koh, H. L.,

Poh, X. W. W., Fung, D., Guan, C., Lee, T. S., Lim, C. G., & Zhou, J.

(2019). Large-scale brain functional network topology disruptions

underlie symptom heterogeneity in children with attention-

deficit/hyperactivity disorder. NeuroImage: Clinical, 21, 101600.

Richardt, J., & Leone, M. (2008). (un)detectable cluster structure in sparse

networks. Physical Review Letters, 101, 1–4.
Rossini, P., di Iorio, R., Bentivoglio, M., Bertini, G., Ferreri, F., Gerloff, C.,

Ilmoniemi, R. J., Miraglia, F., Nitsche, M. A., Pestilli, F.,

Rosanova, M., Shirota, Y., Tesoriero, C., Ugawa, Y., Vecchio, F.,

Ziemann, U., & Hallett, M. (2019). Methods for analysis of brain

connectivity: An IFCN-sponsored review. Clinical Neurophysiology,

130, 1833–1858.
Rossval, M., & Bergstrom, C. (2008). Maps of random walks on complex

networks reveal community structure. Proceedings of the National

Academy of Sciences of the United States of America, 105, 1118–
1123.

Rudie, J. D., Brown, J., Beck-Pancer, D., Hernandez, L., Dennis, E.,

Thompson, P., Bookheimer, S., & Dapretto, M. (2013). Altered func-

tional and structural brain network organization in autism. NeuroImage:

Clinical, 2, 79–94.
Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X. N.,

Holmes, A. J., Eickhoff, S. B., & Yeo, B. T. (2018). Local-global parcella-

tion of the human cerebral cortex from intrinsic functional connectiv-

ity mri. Cerebral Cortex, 28, 3095–3114.
Seitzman, B., Gratton, C., Marek, S., Raut, R., Dosenbach, N., Schlaggar, B.,

Petersen, S., & Greene, D. (2020). A set of functionally-defined brain

regions with improved representation of the subcortex and cerebel-

lum. NeuroImage, 206, 116290.

Sia, J., Jonckheere, E., & Bogdan, P. (2019). Ollivier-ricci curvature-based

method to community detection in complex networks. Scientific

Reports, 9, 9800.

Sia, J., Zhang, W., Jonckheere, E., Cook, D., & Bogdan, P. (2022). Inferring

functional communities from partially observed biological networks

exploiting geometric topology and side information. Scientific Reports,

12, 9800.

Siegel, J. S., Power, J. D., Dubis, J. W., Vogel, A. C., Church, J. A.,

Schlaggar, B. L., & Petersen, S. E. (2014). Statistical improvements in

functional magnetic resonance imaging analyses produced by cen-

soring high-motion data points. Human Brain Mapping, 35, 1981–
1996.

Simon, H. (1962). The architecture of complexity. Proceedings of the

National Academy of Sciences, 106, 467–482.
Song, J., Birn, R. M., Boly, M., Meier, T. B., Nair, V. A., Meyerand, M. E., &

Prabhakaran, V. (2014). Age-related reorganizational changes in modu-

larity and functional connectivity of human brain networks. Brain Con-

nectivity, 4, 662–676.
Sporns, O., & Betzel, R. F. (2016). Modular brain networks. Annual Review

of Psychology, 67, 613–640.
Stephan, K., & Friston, K. (2010). Analyzing effective connectivity with

functional magnetic resonance imaging. Wiley Interdisciplinary Reviews:

Cognitive Science, 1, 446–459.
Stevens, A. A., Tappon, S. C., Garg, A., & Fair, D. A. (2012). Functional brain

network modularity captures inter-and intra-individual variation in

working memory capacity. PLoS One, 7, e30468.

Takeda, K., Matsuda, H., Miyamoto, Y., & Yamamoto, H. (2017). Structural

brain network analysis of children with localization-related epilepsy.

Brain and Development, 39, 678–686.
Taya, F., de Souza, J., Thakor, N., & Bezerianos, A. (2016). Comparison

method for community detection on brain networks from neuroimag-

ing data. Applied Network Science, 1, 1–20.

Tian, Y., Margulies, D. S., Breakspear, M., & Zalesky, A. (2020). Topo-

graphic organization of the human subcortex unveiled with functional

connectivity gradients. Nature Neuroscience, 23, 1421–1432.
Tooley, U., Basset, D., & Mackey, A. P. (2022). Functional brain network

community structure in childhood: Unfinished territories and fuzzy

boundaries. NeuroImage, 247, 118843.

Torres, M., Colominas, M., Schlotthauer, G., & Flandrin, P. (2011). A com-

plete ensemble empirical mode decomposition with adaptive noise.

ICASSP, 1, 4144–4147.
Traag, V. A., Waltman, L., & van Eck, N. J. (2019). From louvain to leiden:

Guaranteeing well-connected communities. Scientific Reports, 9, 1–12.
Vaessen, M., Braakman, H., Heerink, J., Jansen, J., Debeij-van Hall, M.,

Hofman, P., Aldenkamp, A., & Backes, W. (2013). Abnormal modular

organization of functional networks in cognitively impaired children

with frontal lobe epilepsy. Cerebral Cortex, 23, 1997–2006.
van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human

brain. Trends in Cognitive Sciences, 17, 683–696.
Venon, M. (2013). Developmental pathways to functional brain networks:

Emerging principles. Trends in Cognitive Sciences, 17, 627–638.
Wass, S. (2011). Distortions and disconnections: Disrupted brain connec-

tivity in autism. Brain and Cognition, 75, 18–28.
Weber, M., Stelzer, J., Saucan, E., Naitsat, A., Lohmann, G., & Jost, J.

(2017). Curvature-based methods for brain network analysis. arXiv

preprint arXiv:1707.00180.

Wen, X., Zhang, H., Li, G., Liu, M., Yin, W., Lin, W., Zhang, J., & Shen, D.

(2019). First-year development of modules and hubs in infant brain

functional networks. NeuroImage, 185, 222–235.
Wu, Z., & Huang, N. (2009). Ensemble empirical mode decomposition: A

noise-assisted data analysis method. Advances in Adaptive Data Analy-

sis, 1, 1–41.
Yan, X., Shalizi, C., Jensen, J. E., Krzakala, F., Moore, C., Zdeborová, L.,

Zhang, P., & Zhu, Y. (2014). Model selection for degree-corrected

block models. Journal of Statistical Mechanics: Theory and Experiment,

2014, P05007.

Yang, Y., Chu, L., Zhang, Y., Wang, Z., Pei, J., & Chen, E. (2018). Mining

density contrast subgraphs. Proceedings of ICDE, 1, 221–232.
Yang, Z., Algesheimer, R., & Tessone, C. (2016). A comparative analysis of

community detection algorithms on artificial networks. Scientific

Reports, 6, 30750.

Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D.,

Hollinshead, M., Roffman, J. L., Smoller, J. W., Zöllei, L., Polimeni, J. R.,

Fischl, B., Liu, H., & Buckner, R. L. (2011). The organization of the

human cerebral cortex estimated by intrinsic functional connectivity.

Journal of Neurophysiology, 106, 1125–1165.
Yuen, N. H., Osachoff, N., & Chen, J. J. (2019). Intrinsic frequencies of the

resting-state fMRI signal: The frequency dependence of functional

connectivity and the effect of mode mixing. Frontiers in Neuroscience,

900, 1–17.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Brooks, S. J., Jones, V. O., Wang, H.,

Deng, C., Golding, S. G. H., Lim, J., Gao, J., Daoutidis, P., &

Stamoulis, C. (2024). Community detection in the human

connectome: Method types, differences and their impact on

inference. Human Brain Mapping, 45(5), e26669. https://doi.

org/10.1002/hbm.26669

BROOKS ET AL. 23 of 23

https://doi.org/10.1002/hbm.26669
https://doi.org/10.1002/hbm.26669

	Community detection in the human connectome: Method types, differences and their impact on inference
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Community detection algorithms
	2.1.1  Girvan-Newman method
	2.1.2  Louvain method
	2.1.3  Bayesian inference and stochastic block modeling
	Degree correction and nested SBM
	Bayesian inference

	2.1.4  Ricci flow

	2.2  Datasets
	2.2.1  Networks estimated from real fMRI data
	2.2.2  Synthetic networks
	Network generation algorithm



	3  DATA-DRIVEN NETWORKS
	3.1  Statistical analysis

	4  RESULTS
	4.1  Comparisons between methods applied to real data
	4.2  Impact of method choice and inter-method agreement on associations between functional network modularity and other par...
	4.2.1  Demographic, anthropometric, and physiological data
	4.2.2  Cognitive outcomes

	4.3  Method comparison based on synthetic graphs

	5  DISCUSSION
	6  CONCLUSION
	ACKNOWLEDGEMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


