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Idiopathic rapid eye movement sleep behavior disorder (iRBD) is an important

non-motor complication of Parkinson’s disease. At the same time, iRBD

is considered to be the prodromal stage of α-synucleinopathy. This high

risk of conversion suggests that iRBD becomes a nerve It is a window

for early research on degenerative diseases and is the best candidate for

neuroprotection trials. A wide range of neuroimaging techniques has improved

our understanding of iRBD as a prodromal stage of the disease. In addition,

neuroimaging of abnormal iRBD is expected to be a potential biomarker for

predicting clinical phenotypic transformation. This article reviews the research

progress of neuromolecular imaging in patients with iRBD from the perspective

of iRBD transforming synucleinopathies.
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Introduction

Idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) is a

parasomnia mainly characterized by the loss of muscular atonia and dream enacting

behaviors during REM sleep (1, 2). The pathogenesis is related to the dysfunction of the

locus coeruleus and the ventral nucleus of the medulla oblongata, which have a role in

regulating muscle tone during the REM period (3). Longitudinal studies have reported

that 80% of clinically diagnosed iRBD patients can develop neurodegenerative disorders

after 10-year follow-up, especially α-synucleinopathies, such as Parkinson’s disease (PD),

dementia with Lewy bodies, and multiple system atrophy (MSA) (1, 4, 5). Accordingly,

iRBD is considered to be a powerful prodromal state of α-synucleinopathies (6) and has

become the most important clinical symptom for predicting neurodegenerative diseases

(7). However, the time course of iRBD conversion to α-synucleinopathy is highly variable

(8), and the search for early biomarkers of iRBD conversion becomes a preferred problem

(9), which could contribute to delaying disease progression in its earliest stages.

Currently, more and more studies are looking for early neuroimaging

evidence of iRBD transformation in order to detect structural and functional

abnormalities in the iRBD brain earlier (10). Among neuroimaging markers,

radionuclide imaging is a widely used molecular imaging technique because

of its precise localization and specific labeling (11), mainly including Positron
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emission tomography (PET), Single photon emission computed

tomography (SPECT), and 123Iodine-metaiodobenzylguanidine

(123I-MIBG) cardiac imaging.

Considering all these factors, we review the latest research

on molecular imaging between iRBD and α-synucleinopathies.

The molecular neuroimaging markers that predict the early

transformation of iRBD were the place we pay the closest

attention to in this article. A comprehensive understanding

and review of neuroimaging techniques to explore phenotypic

conversion in iRBD will be able to guide future research in

this field and further facilitate the clinical management of

this disease.

The pathophysiology of iRBD

The exact pathophysiology of iRBD is not fully established.

Animal models of RBD with damage to the sublaterodorsal

tegmental nucleus (SLD) showed behavioral abnormalities

during REM sleep similar to those of human RBD (12). Previous

studies have confirmed that the SLD is the key brain structure

that triggers muscle retardation in REM sleep and that selective

blockade of glutamatergic transmission in the SLD leads to

REM sleep without atonia (RSWA) (13). During REM sleep,

SLD inhibits skeletal muscle movement and dystonia during

REM sleep by activating direct and indirect inhibitory pathways

(13). SLD neurons act on interneurons via a direct pathway.

Intermediate neurons in turn inhibit glycinergic and gamma-

aminobutyric acidergic neurons via spinal anterior horn motor

neurons, resulting in skeletal during REM sleep skeletal muscle

movements being inhibited during REM sleep (14). In addition,

glutamatergic neurons in the SLD can also activate the ventral

medial reticular formation (VMD) of the medulla oblongata

through an indirect pathway, leading to a relaxation of skeletal

muscle tone (15). Under normal waking conditions, direct

stimulation of the VMM can effectively trigger REM sleep and

lead to motor inhibition during REM sleep. SLD and VMM

together form a complete brainstem circuit, and damage to any

part of this circuit may lead to RBD (16).

Altered intracranial metabolism in
iRBD

Changes in glucose metabolism in the
brain

[18F] fluorodeoxyglucose (FDG) positron emission

tomography (PET) is an assay targeting glucose metabolism

visualization in the brain, with higher metabolic rates presenting

high signal changes (17), reflecting the metabolic activity of

neurons in the brain. The first 18F-FDG-PET scan was

performed on nine patients with iRBD, and four patients were

found to have decreased glucose metabolism in the occipital

cortex, especially in the primary visual cortex (PVC), which

is the priority area for patients with MSA. In contrast, the

other five patients showed hypermetabolic changes in the left

cingulate gyrus, right frontal lobe and right temporal lobe,

which are the preferentially affected regions of PD patients

(18). The differences in metabolic profiles between regions

suggest heterogeneity of clinical conversion in patients with

iRBD. Another study reported that 63. 6% of people with

decreased occipital cortex glucose metabolism converted

to iRBD after an average of 3 years (19), suggesting that

decreased occipital glucose metabolism is an early intracerebral

change in iRBD. iRBD patients also have increased glucose

metabolism in the hippocampus, cingulate gyrus, pons and

posterior cerebellum, while decreased glucose metabolism in

the lingual gyrus (20), and iRBD with significant decreased

occipital cortex glucose metabolism is often associated with mild

cognitive impairment (19). Hypermetabolism in the pontine

region of the brain in patients with iRBD may be an early

alteration in the dystonia regulatory area, and hypermetabolism

in the cingulate and hippocampal regions may be due to

abnormal neuronal generation and an early alteration in the

conversion of iRBD to α-synucleinopathy (21–23). A previous

longitudinal study found that all patients with iRBD developed

cognitive impairment after 6.4 years, and there was a significant

correlation with decreased glucose metabolism in the PVC

region, suggesting that decreased metabolism in the PVC region

may be responsible for their cognitive impairment (24).

The iRBD metabolic pattern (RBD-related pattern, RBDRP)

was determined using 18F-FDG-PET and was characterized by

increased metabolic activity in the pons, cerebellum, thalamus,

hippocampus, medial frontal area, superior limbic gyrus, and

inferior temporal gyrus, while decreased metabolic activity in

the occipital and superior temporal gyrus. This pattern was

significantly expressed in the early stages of PD and correlated

with the severity of PD (25). Expression of both PDRP and

iRBDRP was higher in patients with a more severe form

of PD (PD-MCI), which indicates that expression of the 2

patterns increases with disease severity (26). Therefore, it can

predict the future regression of patients with iRBD and has

clinical applications.

Changes in intracerebral blood perfusion

Single photon emission computed tomography is a

neuroimaging tool to measure regional cerebral blood flow

(rCBF) (27). Using SPECT, it was demonstrated that patients

with iRBD had decreased perfusion in the bilaterally frontal,

temporal, and parietal lobes, while increased perfusion in

the hippocampus, putamen, and pons (28), and the extent

of this cerebral perfusion change was more pronounced in

patients with iRBD with cognitive impairment (22). However,
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no correlation was found between changes in local cerebral

blood flow and the duration of RBD symptoms in patients

(28). Another study found that the cerebral perfusion in the

parietal occipital and parietal temporal regions was decreased in

patients with iRBD, and this decreased level of perfusion could

be used to predict the conversion of iRBD to α-synucleinopathy

(29). A longitudinal study found that increased frontal and

occipital temporal perfusion returned to normal control levels

as the duration of iRBD patients progressed (30), suggesting

that compensation may have occurred. We hypothesized that

this change in brain perfusion pattern is an intermediate

link between iRBD and neurological symptoms and that

longitudinal exploration of local cerebral blood flow levels in

different brain regions with iRBD can help to understand the

pathophysiological mechanisms underlying the transformation

to α-synucleinopathy.

Changes in striatal dopamine
transporter protein

The main pathological alteration in PD is degeneration

of the substantial nigra-striatal dopaminergic pathway (31).

Striatal dopamine levels can be reflected by selective binding

of dopamine transporter (DAT) using specific tracers. Several

studies have shown that patients with iRBD have abnormal

DAT imaging (8, 32–34), and are at high risk for short-term

conversion to α-synucleinopathy (35, 36). However, a meta-

analysis noted that while abnormal DAT imaging supports the

conversion to α-synucleinopathy, there was high heterogeneity

among neuroimaging methods and multicenter studies were

needed to determine the diagnostic validity of DAT-SPECT

(37). The results of a multicenter study that included 1,280

patients with iRBD suggested a 1.98-fold risk of conversion to

α-synuclein in patients with iRBD with abnormal DAT imaging

at baseline (38), with a low effect size. We speculated that the

value of DAT imaging as a predictive marker may have been

severely underestimated because only some patients in the study

underwent DAT imaging and the imaging methods were not

uniform. Notably, multiple predictors identified by the study

were non-specific (36), for which the results of the quantitative

DAT-SPECT study suggest that reduction of FP-CIT uptake

in putamen greater than 25% can predict synucleinopathy

during an average follow-up of 3 years (35). A growing body

of evidence had demonstrated that abnormal DAT binding

can predict the future short-term risk of clinically-defined α-

synucleinopathy diagnosis (34). Previous studies showed that

iRBD patients with mild cognitive impairment (MCI) who

had abnormal DAT manifestations had a higher transformation

to α-synucleinopathy risk was higher in iRBD patients with

abnormal DAT imaging (HR = 25.05) (39). Therefore, the

presence of abnormal DAT imaging in patients with iRBD

suggests that patients have developed pathological changes of

neurodegenerative disease and their neuronal loss has not yet

reached the clinical diagnostic threshold. Therefore, abnormal

DAT imaging may be used as a predictor of conversion to α-

synucleinopathy.

Changes in the
5-hydroxytryptaminergic and
noradrenergic systems in the brain

Previous studies have confirmed the involvement

of the mesencephalic 5-hydroxytryptaminergic and

norepinephrinergic systems of the locus coeruleus in the

pathophysiology of α-synucleinopathy (40). Thalamic

monoaminergic dysfunction was found in patients with

iRBD (41), reflecting abnormalities in the terminals of neurons

originating from the raphe nucleus and locus coeruleus

projections. Although 5-hydroxytryptaminergic reuptake

inhibitors can induce RBD symptoms (42), no imaging evidence

of impaired an 5-hydroxytryptaminergic system in patients

with iRBD has been found (37, 42–44). It was found that

the norepinephrine-rich blue spot nuclei in the brainstem

of PD patients were abnormally visualized and preceded by

dopaminergic (45), which confirms the Braak staging theory

of PD, a bottom-up pathological damage process (46). In

vivo study of noradrenergic changes in 17 patients with iRBD

using 11C-MeNER as a tracer revealed that tracer uptake levels

were decreased in the locus coeruleus to the thalamus and red

nucleus regions in patients with iRBD compared to normal

controls (47). Compared with PD patients, the uptake level of
11C-MeNER tracer in the hypothalamus, red nucleus, and locus

coeruleus of PD patients with RBD decreased. Moreover, the

abnormal noradrenergic level of PD patients with RBD was

positively correlated with abnormal muscle activity during REM

sleep (48). Therefore, it was suggested that norepinephrine

plays an important role in the pathogenesis of iRBD. A recent

study found that the uptake level of 11C-MeNER in the primary

sensorimotor cortex of iRBD patients decreased (49), and it was

speculated that there was nerve fiber projection damage from

the locus coeruleus to the primary sensorimotor cortex. These

evidences indicated that the norepinephrine system in locus

coeruleus may become the target of early intervention of iRBD,

but there was still a lack of longitudinal research to prove the

application value of norepinephrine.

Changes in microglia

Microglia are widely distributed immune cells in the

central nervous system and are closely associated with

neuronal inflammatory responses, and long-term activation

of microglia may be involved in the development and

progression of neurodegenerative diseases (50). Previous studies

Frontiers inNeurology 03 frontiersin.org

https://doi.org/10.3389/fneur.2022.1009907
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Geng and Zhang 10.3389/fneur.2022.1009907

TABLE 1 Main findings of each neuromolecular imaging studies in iRBD patients.

Authors [Ref] Method RBD/controls Results and conclusion

Iranzo et al. (65) 123I-FP-CIT-SPECT 20 iRBD/20 control participants •
123I-FP-CIT-SPECT can monitor the progression of the

nigrostriatal damage in iRBD patients.

• Nigrostriatal dopaminergic dysfunction can predict the

conversation from iRBD to PD after 3 years.

Iranzo et al. (35) 123I-FP-CIT-SPECT 87 iRBD/20 control participants • Reduction more than 25% in the putamen can discriminate

iRBD patients who converted to a synucleinopathy after

3 years.

Iranzo et al. (66) 123I-FP-CIT-SPECT 43 iRBD/18 control participants • Hyperechogenicity of the substantia nigra and lower striatal

presynaptic DAT can accurately predict the conversion of iRBD

patients to a synucleinopathy after 2.5 years.

Li et al. (36) 99mTC-TRODAT-1 SPECT 43 iRBD • Decreased DAT in the putamen and striatum had the predictive

value after 5 years.

Dang-Vu et al. (21) 99mTc-ECD SPECT 20 iRBD • iRBD patients who converted to a synucleinopathy had

increased perfusion in the hippocampus.

Holtbernd et al. (67) 18F-FDG PET 10 iRBD/10 control participants • Latent network abnormalities in iRBD patients were associated

with the probability of conversion.

Kogan et al. (68) 18F-FDG PET 20 iRBD • PD-related brain pattern will be used to as a prodromal PD

biomarker after 3.7 years.

Arnaldi et al. (69) 123I-beta-CIT-SPECT 263 iRBD/243 control participants • Constipation, age over 70 years, and putamen dopaminergic

dysfunction will the best combination of risk factors to

predict conversion.

Janzen et al. (70) 123I-MIBG 37 iRBD • 78.4% iRBD patients showed a pathological 123I-MIBG.

• Combination hyposmia and pathological 123I-MIBG can

identify iRBD patients in an early prodromal stage of PD/DLB

after 4 years.

had demonstrated that peripheral immunity contributes to

PD development (51). Several studies have shown microglial

activation in patients with α-synucleinopathy, suggesting that

neuroinflammation may be a causal mechanism for α-

synucleinopathy (52). Controlling microglia activation in the

early stages of the disease could provide a potential therapeutic

strategy to slow down disease progression. Using 11C-PK11195

as a tracer, an in vivo study of 20 patients with iRBD revealed

that microglia activation was elevated in the nigrostriatal region

and higher than in the striatal region in patients with iRBD

compared to normal controls (53), and that elevated levels

of 11C-PK11195 uptake in the nigrostriatal region correlated

with decreased levels of 18F-DOPA uptake in the striatum,

and that caudate nucleus involvement was consistent with

impairment of Lewy body dementia (54), suggesting that

synaptic dysfunction of striatal dopamine neurons in patients

with iRBD is accompanied by an inflammatory response in

the substantia nigra. The observation of microglia activation

in the striatal region revealed a significantly higher level of

activation than in the substantia nigra (52), probably due to

the size of the tissue structure in both regions. Recent studies

have found significantly higher levels of microglia activation

in the occipital lobe of patients with iRBD (41), suggesting

that neuroinflammation in the occipital lobe is involved in the

pathogenesis of iRBD. However, whether the level of microglia

activation in iRBD can be used as a biomarker for conversion

to α-synucleinopathy needs to be further investigated and

demonstrated due to the lack of relevant studies.

Changes in cardiac sympathetic
never function

An increasing number of clinical studies have focused

on the evaluation of cardiac sympathetic nerve function in

iRBD. [123I] metaiodobenzylguanidine (123I-MIBG) cardiac

imaging is a commonly used imaging technique to diagnose

cardiac sympathetic function (55). It was found that 123I-

MIBG uptake levels were decreased in the heart of PD

patients (56), and more significantly in PD patients with RBD

(57). Studies have shown that patients with iRBD also have

decreased 123I-MIBG uptake levels (58, 59), and are similar

to Lewy body dementia. Previous studies had found that

cardiac sympathetic function was linked with the severity of
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REM in iRBD patients (60). Furthermore, some studies have

shown that abnormal 123I-MIBGmanifestations can precede the

dopaminergic system in patients with iRBD (61, 62). However,

a longitudinal study of iRBD patients followed for 2.8 years

found no significant changes in the level of 123I-MIBG uptake

by the patient’s heart, possibly related to the course of the

disease (57), which was contrary to the findings of other

studies (63). Despite the high sensitivity and specificity of

early autonomic damage in PD to cardiac sympathetic imaging,

whether 123I-MIBG can be a neurobiological marker to predict

disease progression in patients with iRBD needs to be further

validated (64).

Conclusion

Neuroimaging reveals the presence of structural and

functional alterations in iRBD that precede α-synucleinopathy

(Table 1). The use of molecular imaging techniques may

contribute to what may be a sensitive screening tool for

exploring iRBD-transformed α-synucleinopathy, with a

wide range of clinical applications. Compared to other risk

factors for α-synucleinopathy, such as cognitive deficits,

olfactory impairment and dopamine transporter protein

(DAT-SPECT) abnormalities are at much higher predicted risk

in the conversion of iRBD to α-synucleinopathy. Therefore,

a single imaging modality for iRBD does not yet fully reflect

the underlying pathophysiological changes in iRBD or the

different clinical features. Therefore, adopting multiple

complementary neuroimaging examinations and conducting

prospective studies to validate the search for sensitive and

effective biomarkers of iRBD conversion to α-synucleinopathy

will help to accurately identify the clinical conversion

of iRBD.
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