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Innate immunity is the front-line defense against infectious microorganisms, including
viruses and bacteria. Type I interferons are pleiotropic cytokines that perform antiviral,
antiproliferative, and immunomodulatory functions in cells. The cGAS–STING pathway,
comprising the main DNA sensor cyclic guanosine monophosphate/adenosine
monophosphate synthase (cGAS) and stimulator of IFN genes (STING), is a major
pathway that mediates immune reactions and is involved in the strong induction of
type I IFN production, which can fight against microbial infections. Autophagy is an
evolutionarily conserved degradation process that is required to maintain host health and
facilitate capture and elimination of invading pathogens by the immune system. Mounting
evidence indicates that autophagy plays an important role in cGAS–STING signaling
pathway-mediated type I IFN production. This review briefly summarizes the research
progress on how autophagy regulates the cGAS–STING pathway, regulating type I IFN
production, with a particular focus on the crosstalk between autophagy and cGAS–STING
signaling during infection by pathogenic microorganisms.
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INTRODUCTION

Innate immunity is the first line of host defense against infectious pathogenic microorganisms.
Host cells recognize invading pathogens through interactions between pattern-recognition
receptors (PRRs) and pathogen-associated molecular patterns (PAMPs), which can further
trigger innate immune responses (Akira et al., 2006). Five different families of PRRs that are
speculated to be germline-encoded proteins have been identified. These families include the
Toll-like receptors (TLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs), retinoic
acid-inducible gene (RIG)-I-like receptors (RLRs), and DNA sensors (Kawai and Akira, 2009;
Hardison and Brown, 2012; Hoving et al., 2014). Some TLRs and CLRs located on the surface of
the cell membrane are the main sensors for extracellular pathogens. The NLRs, RLRs, DNA
receptors, and other TLRs are cytoplasmic proteins that help to recognize cytoplasmic PAMPs.
The interaction between PRRs and PAMPs can activate multiple signaling pathways in immune
cells and induce the production of type I interferons (IFNs) and proinflammatory cytokines to
remove pathogenic microorganisms.
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Autophagy is an evolutionarily conserved stress response that
regulates the decomposition and recycling of superfluous or
potentially dangerous cytosolic entities to protect cells from
toxic protein accumulation, organelle dysfunction, and
pathogen invasion. Given that autophagy has these special
functions, a number of studies have attempted to establish a
link between autophagy and immune responses. Several relevant
proteins in autophagy, such as autophagy-related 16-like 1
(ATG16L1), ATG12-ATG5, BECN1, ULK1, and ATG9, have
been confirmed to directly regulate type I IFN antiviral
responses. Several key immune regulatory factors involved in
type I IFN signaling, such as RIG-I, MAVS, cyclic guanosine
monophosphate/adenosine monophosphate synthase (cGAS),
and stimulator of IFN genes (STING), are also regulated by
autophagy, which in turn can affect type I IFN production.
cGAS is an important DNA sensor that detects
microbiological DNA, host mitochondrial DNA, or genomic
DNA in the cytosol and then triggers a signaling cascade that
leads to the production of type I IFNs and inflammatory
cytokines. Moreover, Gui et al. recently revealed that
autophagy induction is an ancient and highly conserved
function of the cGAS–STING pathway that evolutionarily
predated the emergence of the type I IFN pathway in
vertebrates (Gui et al., 2019). During infection by a pathogenic
microorganism, type I IFNs and autophagy can work
synergistically or inhibit each other, and they play important
roles in regulating pathogen clearance, tissue damage, and
immune response. Impaired autophagy contributes to the
aberrant activation of STING signaling, thereby leading to
uncontrolled inflammation and cell death in sepsis (Hu et al.,
2019). It has been demonstrated that STING agonists, such as
diABZI, have potent antiviral activity against the respiratory RNA
viruses human parainfluenza type 3 virus, rotavirus, and severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the
causative agent of COVID-19, dependent on the IFN pathway
(Zhu et al., 2020; Zhu et al., 2021). Therapeutics such as
chloroquine and its derivatives, which inhibit the autophagic
pathway, have been suggested for treatment of COVID-19 (Wang
et al., 2020), suggesting these is a close connection between
autophagy and cGAS–STING signaling in the fight against
pathogens. However, other researchers reported that
chloroquine has no significant effect on COVID-19. Whether
chloroquine helps treat COVID-19 remains controversial, and
many of these studies have significant limitations
(Gavriatopoulou et al., 2021). The differences in these results
may be due to the fact that autophagy is a double-edged sword for
the host, especially during infection by some pathogenic
microorganisms (Choi et al., 2018). When autophagy is
inhibited, pathogenic microorganisms, damaged organelles,
and denatured proteins cannot be effectively degraded.
However, excessive autophagy causes host immune cell death
and leads to disease (Lavandero et al., 2015). In addition, the
mechanisms by which different pathogenic microorganisms, and
even the same pathogen under different infection conditions,
induce autophagy are different (Huang and Brumell, 2014; Choi
et al., 2018). Clearly, autophagy is a complex process, which partly
explains the differences between studies. In this minireview, to

further improve our understanding of the regulatory mechanisms
of autophagy and the cGAS–STING signaling pathway, we
discuss 1) the multifaceted crosstalk between autophagy and
the cGAS–STING signaling pathway in type I IFN production
and 2) models of their mutual regulation during pathogen
infection, providing a new perspective for studying the
mechanisms of host resistance to pathogenic microbial infection.

ROLE OF TYPE I INTERFERONS IN
INFECTION BY PATHOGENIC
MICROORGANISMS
IFNs and their receptors are type 2 alpha-helical cytokines, which
are ubiquitous in vertebrates. According to their cellular origin,
genetic structure, biological function, and receptor signaling
pathways, IFNs can be divided into three different families:
type I IFNs, type II IFNs, and type III IFNs. Almost all cells
can produce type I IFNs after their PRRs recognize PAMPs. DNA
sensors detect microbial DNA, host mitochondrial DNA, or
genomic DNA in the cytosol and then trigger a signaling
cascade that leads to the production of type I IFNs and
inflammatory cytokines. It has been confirmed that the DNA
sensors TLR9, cGAS, STING, DHX9, DHX36, DDX41, IFI16, and
RNA polymerase III mediate type I IFN production through
different mechanisms (Parvatiyar et al., 2012; Zhang et al., 2013).
Generally, once PAMPs are recognized, these PRRs induce the
downstream signaling pathway and activate transcription factors
(such as IRF3 or IRF7) to enter the nucleus to initiate the type I
IFN production. Then, the IFN-α/β receptor (IFNAR) recognizes
type I IFN and forms the IFNAR1–IFN-α/β–IFNAR2 ternary
complex to phosphorylate TYK2 and JAK1. In addition, STAT1/2
is recruited and phosphorylated to form three STAT complexes,
which induce downstream IFN-stimulated gene (ISG) expression
(Platanias, 2005).

One of the important functions of type I IFNs is activating
antiviral immune response. Under virus infection and IFN
production, the expression levels of hundreds of ISGs rapidly
change to induce an antiviral state within the cell. Translational
inhibition is a common mechanism of ISG-mediated antiviral
action against hepatitis C virus (HCV), sindbis virus,
chikungunya virus, and venezuelan equine encephalitis virus
(Schoggins et al., 2011). For example, ISG54 can cooperate
with ISG60 to promote apoptosis through the mitochondrial
pathway and further interacts with eukaryotic initiation factor
3 to inhibit virus transcription (Stawowczyk et al., 2011). IFN
signaling also induces activation of 2′–5′ oligo-adenylate
synthetase, catalysis of ATP polymerization, and activation of
endonuclease RNase L, which degrades viral mRNA and thus
blocks viral protein synthesis upon infection with viruses
including encephalomyocarditis virus, reoviruses, semliki forest
virus, HCV, and herpes simplex virus 2 (Silverman, 2007;
Drahushchenko et al., 2012). IFN-inducible transmembrane
protein 3 inhibits viral invasion by blocking the fusion of the
virus and the endosomal membrane during infection with
influenza A virus or reoviruses but does not inhibit human
papillomavirus, cytomegalovirus, and adenovirus infection
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(Feeley et al., 2011; Anafu et al., 2013; Warren et al., 2014; Ingle
et al., 2018). Furthermore, IFNs sensitize cells to apoptosis, which
is an important process in antiviral defense (Stark et al., 1998; Seet
et al., 2003). In addition, the IFN system is linked to a variety of
effector responses of the innate and adaptive immune systems.
One characteristic shared by IFN-regulated effector responses is
that their activation ultimately results in the elimination of virus-
infected cells (Stetson and Medzhitov, 2006). However, during
bacterial infection, the function of type I IFNs is still enigmatic.
Depending on the bacterium, IFNs exert seemingly opposite and
capricious functions. During Listeria infection, type I IFNs
promote the dissemination and proliferation of the bacteria
through accelerating macrophage and lymphocyte apoptosis
(Carrero et al., 2004). Moreover, type I IFNs have also been
found to aggravate Francisella tularensis, Salmonella,
Mycobacterium tuberculosis, and Listeria infection through
different routes (Storek et al., 2015; Boxx and Cheng, 2016).
Listeria infection can induce a strong type I IFN response, which
makes the host more susceptible to bacteria. Listeria that escape
into the cytoplasm can be recognized by cGAS, IFI16, and RIG-I,
which promote dissemination and proliferation of the bacteria via
induction of DAXX and TRAIL (O’Connell et al., 2004; Hansen
et al., 2014). IFNAR1 or IRF3 knockout protects the host from
Listeria infection (O’Connell et al., 2005). However, type I IFNs
protect against Legionella pneumophila, Streptococcus pyogenes,
and Streptococcus pneumoniae infection (Damjanovic et al., 2014;
Boxx and Cheng, 2016; Naujoks et al., 2016). STING recognizes
Legionella pneumophila in the cytoplasm and triggers IRF3-
dependent IFN production, which can inhibit the proliferation
of Legionella by inducing the expression of intrinsic cellular ISGs
(Plumlee et al., 2009; Lippmann et al., 2011; Naujoks et al., 2016).
Based on the above, type I IFNs play a key role in controlling the
pathogen infection process and maintaining the homeostasis of
the organism during interactions between the pathogen and the
host. Meanwhile, autophagy, inflammation, and other responses
are also involved in pathogen infection.

ROLE OF AUTOPHAGY IN INFECTION
CAUSED BY PATHOGENIC
MICROORGANISMS
Autophagy is the process of the degradation of cellular
components using autolysosomes. This process is unique to
eukaryotic cells. Autophagy is also a highly conserved
intracellular degradation process for the elimination of
damaged organelles, protein aggregates, and invading
pathogens (Levine et al., 2011). According to the differences in
the mode of cargo delivery to the lysosome, autophagy mainly
includes the following three forms: molecular chaperone-
mediated autophagy, microautophagy, and macroautophagy.
Macroautophagy is generally referred to as autophagy, which
includes the following key steps: vesicle nucleation (formation of
the isolation membrane/phagophore), membrane elongation
(LC3 lipidation), autophagosome formation, autophagosome
fusion with the lysosome to form an autolysosome, and
autophagic degradation.

In recent years, research on the interactions between host and
pathogen has revealed that autophagy can eliminate invading
pathogenic microorganisms and regulate infection-induced innate
and adaptive immune responses (Mao and Klionsky, 2017; Jang
et al., 2019). The recognition of pathogens is the key step in initiating
pathogen elimination. The host PRRs can recognize PAMPs and
trigger innate immune responses and autophagy. TLRs recognize
pathogenic PAMPs, recruit TRIF or MyD88, and then activate
TRAF6, NF-κB, MyD88, and MAPK signaling, which further
triggers Beclin-1 to dissociate from the BCL-2 complex and
induce autophagy (Choi et al., 2018). In addition, M. tuberculosis
is recognized by TLR4 and induces (i) the production of various
inflammatory cytokines and (ii) SIRT3-dependent autophagy (Kim
et al., 2019). Inflammatory cytokines have been found to regulate
autophagy. IL-1 promotes autophagy via increasing autophagic flux.
TNF-α induces autophagy through the ERK1/2 pathway.
Furthermore, these inflammatory cytokines also induce the
production of reactive oxygen species and reactive nitrogen
species (RNS) and activation of NF-κB and MAPK8/c-Jun kinase,
which are involved in the initiation of autophagy (Qin et al., 2011;
Yuan et al., 2018). During RNA virus infection, RIG-I and MDA5
take part in IRF3 activation and further induce the production of
IFNs, which promotes activation of the VPS34 complex and eIF2α
and further triggers autophagy (Talloczy et al., 2002). During DNA
virus infection, cGAS competes with Rubicon for Beclin-1 binding,
thereby further leading to autophagy and triggering viral DNA
degradation to eliminate persistent stimulation (Liang et al.,
2014b). However, pathogens have evolved various mechanisms to
escape autophagic degradation or to use autophagy to promote their
intracellular survival. Some pathogens can inhibit or escape
autophagy (Sorbara et al., 2018; Xu et al., 2019). The Eis gene of
M. tuberculosis acts as an N-acetyltransferase and can induce JNK
inactivation via acetylating JNK-specific phosphatase and MAPK7.
Blocking JNK signaling triggers autophagy inhibition (Shin et al.,
2010; Kim et al., 2012). Burkholderia pseudomallei uses its type 3
secretion system to escape from the autolysosome into the
cytoplasm, where it spreads and replicates (Gong et al., 2011). In
contrast, pathogens such as Zika virus (ZIKV), HCV, SARS-CoV,
and foot-and-mouth disease virus use autophagy to promote their
own survival and infection (Berryman et al., 2012; Wang et al., 2015;
Cortese et al., 2017; Miller et al., 2020). HCV induces the formation
of autophagosomes but inhibits lysosomal fusion. HCV NS4B helps
the virus to replicate in autophagosomes by inducing the expression
of Rubicon, which inhibits the maturation of autophagosomes
(Guevin et al., 2010). In addition, autophagy is also involved in
regulating pathogen-induced inflammation and antigen
presentation (Levine et al., 2011; Germic et al., 2019). Above all,
autophagy is closely linked to infection by pathogenic
microorganisms.

CGAS–STING SIGNALING INDUCES TYPE I
INTERFERON PRODUCTION AND
TRIGGERS AUTOPHAGY
Canonical cGAS–STING signaling is an important type I IFN
production pathway of innate immunity (Figure 1). cGAS is a
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broad-spectrum DNA receptor located in the cytoplasm, the
inner leaflet of the plasma membrane, and the nucleus (Barnett
et al., 2019; Volkman et al., 2019; Hopfner and Hornung, 2020).
It can efficiently recognize a variety of DNAs in the cytoplasm,
including viral, retroviral, and bacterial DNA and the host’s own
DNA (mitochondrial DNA or genomic DNA from dead or
damaged cells), and then triggers a signaling cascade that leads
to the production of type I IFNs and inflammatory cytokines.
cGAS consists of a two-lobed catalytic domain and an extended
N-terminal domain. In the absence of DNA stimulation, cGAS
is in a self-inhibition state. After binding with single-stranded
DNA or double-stranded DNA (dsDNA), the conformation of
cGAS changes and it forms a tetramer composed of two cGAS
and two DNAmolecules. This tetramer catalyzes the reaction of
adenosine triphosphate (ATP) and guanosine triphosphate
(GTP) to form GMP-AMP (cGAMP) (Gao et al., 2013; Sun
et al., 2013). cGAMP serves as a second messenger and leads to
STING conformational changes and self-activation by binding
to the c-diGMP-binding domain (CBD) of STING (Ablasser
et al., 2013; Diner et al., 2013). Cyclic dinucleotides (CDNs)
(e.g., c-dGMP, c-dAMP, and cGAMP) produced by bacteria can
also directly bind to and activate STING independently of cGAS
to induce immune responses (Jenal et al., 2017; Cohen et al.,
2019). The activated STING migrates from the endoplasmic

reticulum (ER) to the nucleus via the Golgi apparatus and
gathers around the nucleus. Upon binding with cGAMP or
CDNs, several STING molecules are oligomerized by lateral
connections that make the CTT domain of STING better
accessible to TANK-binding kinase 1 (TBK1) and
phosphorylate TBK1 at serine 365 (Ergun et al., 2019; Shang
et al., 2019; Zhang et al., 2019; Zhao et al., 2019). It has been
demonstrated that the oligomerization of STING is crucial for
the activation of TBK1 and causes it to migrate away from the
ER (Shang et al., 2019). The activated TBK1 phosphorylates the
CTT pLxIS motif (Ser366) of the STING dimer (Liu et al., 2015).
In addition, IRF3 is also recruited to the pLxIS motif of the
phosphorylated STING (Shang et al., 2019). Subsequently, the
activated TBK1 phosphorylates IRF3 and induces the
dimerization of IRF3, which enters the nucleus to promote
type I IFN production (Figure 1) (Tanaka and Chen, 2012;
Liu et al., 2015). Moreover, cGAS–STING signaling also
activates the kinase IKK and stimulates the expression of
proinflammatory cytokines through NF-κB. Furthermore,
cGAS and STING play important roles in the resistance and
elimination of invasive pathogens. It has been suggested that
cGAS- or STING-deficient mice fail to produce IFNs and are
more susceptible to DNA viruses than wild-type mice, such as
HSV-1, murine gamma-herpesvirus virus 68, or vaccinia virus

FIGURE 1 | Crosstalk between cGAS–STING signaling and autophagy in type I IFN production. (1) The cyclic guanosine monophosphate/adenosine
monophosphate synthase (cGAS)–stimulator of interferon genes (STING) pathway of type I interferon (IFN) production. cGAS recognizes cytosolic DNA and catalyzes the
formation of cGAMP. cGAMP serves as a second messenger that binds to the CBD domain of STING. Upon binding with cGAMP, the conformation of STING changes,
and oligomerized STING then migrates away from the endoplasmic reticulum (ER). The oligomerization of STING activates TBK1 by phosphorylation at serine 365.
The activated TBK1 then phosphorylates the CTT pLxIS motif (Ser366) of STING to recruit IRF3. TBK1 in turn phosphorylates IRF3 and induces the IRF3 dimer to enter
the nucleus, where it promotes type I IFN production. (2) cGAS–STING triggers autophagy. Once STING is activated by cGAMP, STINGmigrates from the ER to the Golgi
apparatus via the ER–Golgi intermediate compartment (ERGIC). At the ERGIC, STING has been implicated in autophagy induction. STING-containing ERGIC serves as a
membrane source of LC3 lipidation and triggers the formation of autophagosomes. Finally, autophagosomes fuse with lysosomes, where their content is degraded.
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(Li et al., 2013; Ma and Damania, 2016; Liu et al., 2021). Even
during RNA virus infection, cGAS- and STING-deficient mice
are also more susceptible to the virus than wild-type ones,
although the level of IFNs is the same (Schoggins et al.,
2014). In addition, the cGAS–STING pathway can be
induced by various intracellular bacteria, such as Listeria,
Shigella, Mycobacteria, Legionella, Francisella, Chlamydia,
Neisseria, and group B Streptococcus, and participates in the
host innate immune response.

Recent studies have found that cGAS–STING is also involved
in the regulation of autophagy. Waston et al. found that
extracellular M. tuberculosis DNA could induce autophagy by
activating STING, which suggested there might be an unexpected
link between STING and autophagy (Watson et al., 2012). In
2017, Bhatelia et al. reported that STING regulates autophagy flux
and mitochondrial turnover through mitophagy (Bhatelia et al.,
2017). Moretti et al. (2017) provided evidence that STING is
present on autophagosomal membranes and senses live Gram-
positive bacteria to mediate ER-phagy and the type I IFN
response. Autophagy is induced by STING as follows
(Figure 1). Upon binding to cGAMP, the conformation of
STING changes. The oligomerized STING then migrates from
the ER to the Golgi apparatus via the ER–Golgi intermediate
compartment (ERGIC). At the ERGIC, STING is closely associated
with the initiation of autophagy induction. The process of STING
translocation is dependent on the COP-II complex andARFGTPases.
STING-containing ERGIC serves as a membrane source of LC3
lipidation and subsequently induces autophagosome formation. At
last, the autophagosome fuses with the lysosome and degrades the
content (Gui et al., 2019). Gui et al. revealed that LC-3-interacting
regions (LIRs) of STING could directly interact with LC3 and induce
ATG5-dependent non-canonical autophagy. Another very important
piece of evidence is that STING from invertebrates induces autophagy,
but not IFN, in response to cGAMP stimulation, which implies that
the induction of autophagy may be a basic function of the
cGAS–STING signaling pathways (Gui et al., 2019). It has
therefore been suggested that STING might be an autophagy
receptor, but its substrate is still unknown. Clarifying the
relationship between STING and p62 will help researchers to
understand this process. First, Saitoh et al. found that STING co-
localized with p62 and LC3 upon activation (Saitoh et al., 2009).
DuringM. tuberculosis infection, STING-induced selective autophagy
is dependent on p62 to eliminateM. tuberculosis (Watson et al., 2015).
However, STING induces non-canonical autophagy, which is
dependent on ATG5 but not on p62 (Liu et al., 2019). Further
study has shown that STING can be degraded by autophagy in a
process that requires TBK1 and p62, which prevents immune damage
that would be caused by the continued activation of STING
(Prabakaran et al., 2018). Another study has shown that activated
STING-induced LC3 lipidation is dependent on WIPI2 and ATG5,
but not on ULK and VPS34–Beclin kinase complexes—the most
important autophagic signaling complexes (Gui et al., 2019).
Moreover, blocking the activity of TBK1, IRF3, and IKK did not
affect STING-induced autophagy (Gui et al., 2019). In other cases,
bacterial CDNs directly activated STING, leading to ER stress, and
then triggered selective autophagy of the ER via the mTOR-BECN1
pathway (Moretti et al., 2017). Therefore, the specific mechanism by

which STING regulates autophagy under different conditions should
be evaluated carefully. Drosophila STING, which lacks the CTT,
triggers an innate immune response to restrict microbial pathogens
(Martin et al., 2018). It can be inferred that STING is an evolutionarily
conserved antimicrobial effector both in arthropods and mammals.
Sea anemones, as ancient creatures, can promote autophagy responses
through a STING homolog that lacks the C-terminal TBK1 activation
domain (Gui et al., 2019). Therefore, triggering autophagy is a
primordial function of the cGAS–STING pathway that might have
evolutionarily predated the emergence of the type I IFN pathway in
vertebrates. STING-dependent autophagy plays an active role in
resistance to pathogen infection as IFNs. Liu et al. (2018) reported
that ZIKV-induced NF-κB activation promoted the expression of
Drosophila STING and triggered autophagy to clear the virus. It is
noteworthy that during HSV-1 infection, autophagy activation rather
than type I IFN signaling seems to be the main effector function of
STING in regulating viral infection (Tan and Xia, 2020; Yamashiro
et al., 2020). A similar function of STING-dependent autophagy was
also found in infections with pathogenic bacteria such as M.
tuberculosis, Listeria innocua, and Staphylococcus aureus (Watson
et al., 2012; Moretti et al., 2017). It has been shown that STING-
induced autophagy helps to clear pathogens from the cytoplasm.
However, a recent study has suggested that autophagy induction by
STING alone is insufficient to protect mice from HSV-1 infection in
vivo (Yum et al., 2021). This appears to be inconsistent with most
findings given that autophagy often helps to degrade pathogenic
microorganisms. STING-S365A mutant mice, which disrupt IRF3
binding and IFN induction but not NF-κB activation or autophagy
induction, are resistant to HSV-1 infection. STING-L373A/ΔCTT
mutant mice, which disrupt IRF3 and NF-κB activation but not
autophagy induction, are susceptible to HSV-1 infection. Hence,
TBK1 recruitment to STING and subsequent NF-κB activation
may play an important role in restricting viral infections. NF-κB-
driven expression of CXCL1/2 can result in the recruitment of
monocytes and neutrophils to the infected site to perform their
antiviral immune function (Iijima et al., 2011). However, owing to
the lack of an autophagy-mutant mouse model in this study, the
positive role of autophagy in the antiviral response cannot be excluded.
The findings also suggest that we may need to pay more attention to
the synergistic effects of autophagy and inflammation in future anti-
infection studies. Taken together, STING is a key link between type I
IFN production and autophagy during infection with pathogenic
microorganisms.

AUTOPHAGY REGULATES SIGNAL
TRANSDUCTION OF CGAS–STING

Constant DNA stimulation results in the aberrant activation of
the cGAS–STING pathway and the production of type I IFNs and
other cytokines, which further induce immune damage to the
host. Generally, moderate autophagy helps to prevent the body
from producing excessive inflammatory cytokines. In addition,
autophagy plays an important role in regulating the activation of
STING to maintain immune homeostasis. Accumulating
evidence suggests that several ATG proteins are involved in
the cGAS–STING signaling pathway (Table 1). Liang et al.
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(2014a) found that the autophagy regulatory protein BECN1
directly interacts with cGAS and enhances the autophagy-
mediated degradation of cytosolic microbial DNAs to suppress
type I IFN production. The ATG16 complex mediates the
conjugation of ATG8 phosphatidylethanolamine to the
ubiquitin-like molecule LC3 in a process that is essential for
the proper formation and function of the autophagosome (Lystad
et al., 2019; Fracchiolla et al., 2020). In addition, ATG16 also
participates in the regulation of IL-22. It has been found that
epithelial IL-22 stimulation leads to the release of cytosolic
dsDNA and the consecutive self-activation of the
cGAS–STING–IFN-I pathway and necroptosis in the intestinal
epithelium, which could be aggravated by autophagy and ER
stress deficiency. In small intestinal organoids of villin, the loss of
ATG16L1 promotes IL-22-induced IFN-I expression via the
STING-dependent recognition of cytosolic dsDNA (Table 1)
(Aden et al., 2018). Interestingly, the WD40 domain of
ATG16L1 mediates the activation of the STING-dependent
V-ATPase-dependent LC3B lipidation onto single-membrane
perinuclear vesicles (Table 1) (Fischer et al., 2020). ATG1,
also known as serine/threonine UNC-51-like kinase (ULK1/
ATG1), is involved in cGAS–STING negative-feedback
regulation. cGAS-generated cGAMP can regulate ULK1
activity by separating it from AMP-activated protein kinase.
Then, ULK1 phosphorylates STING and suppresses IRF3
function to inhibit the persistent transcription of innate
immune-related genes and to prevent inflammatory cytokine
dysregulation (Table 1) (Konno et al., 2013). The cargo
receptor serves as a bridge to mediate selective autophagy and
the cGAS–STING pathway. The K48-linked ubiquitination of
cGAS is a recognition signal for p62-dependent selective
autophagic degradation, which further inhibits cGAS–STING
signaling (Chen et al., 2016). STING degradation following the
activation of the cGAS–STING pathway is also mediated by the
selective autophagy receptor p62 (p62/SQSTM1). The TBK1-
mediated phosphorylation of p62 leads to ubiquitination of
STING to trigger autophagy-mediated degradation and the
attenuation of type I IFN expression (Table 1) (Prabakaran
et al., 2018). In addition, the downstream signaling of
cGAS–STING can be regulated by autophagy to affect innate
immune signaling. It has been found that ATG9a negatively
regulates the cGAS–STING pathway by reducing the assembly

of STING and TBK1 following dsDNA stimulation (Saitoh et al.,
2009). The activation of IRF3 is the key step to induce type I IFN
production, which is precisely regulated by the host immune
system. It has been found that the autophagy cargo receptor
CALCOCO2/NDP52 promotes IRF3 degradation in a virus load-
dependent manner (Table 1). In contrast, the deubiquitinase
PSMD14/POH1 prevents autophagic degradation of IRF3 by
cleaving the K27-linked poly-ubiquitin chains on IRF3 to
maintain IRF3-mediated type I IFN activation (Wu et al.,
2021). Thus, autophagy acts as a key factor to provide
feedback for the regulation of cGAS–STING-mediated type I
IFN production to avoid deleterious consequences.

CONCLUSION

As an important sensor of innate immunity, cGAS–STING
controls infection caused by pathogenic microorganisms in
multiple ways, including the induction of type I IFN
production, the activation of inflammatory responses, and
triggering autophagy. In this review, we discussed the
relationships between the cGAS–STING pathway and
autophagy in type I IFN production. It is indisputable that the
activation of STING is crucial to type I IFN production and
autophagy activation. In turn, autophagy strictly regulates the
activation of cGAS–STING in a variety of ways, such as
promoting the degradation of cGAS or STING, binding to
adaptor proteins, and regulating the post-transcriptional
modification of key molecules. Several ATGs and autophagy
cargo receptors, such as ATG1, ATG9a, ATG16L1, p62, and
CALCOCO2/NDP52, have been found to participate in this
process (Figure 1). With more in-depth research, it has
become obvious that the autophagy machinery is not as
simple as previously thought. Autophagy-monitoring and
autophagy-deficient mouse models have yielded a huge
amount of data about the functions of autophagy in mammals
(Sandoval et al., 2008; Cheong et al., 2011; Chew et al., 2015;
Tsuboyama et al., 2016). The combination of these STING- or
cGAS-deficient mouse models will likely help researchers discover
other molecules and new mechanisms involved in the regulation of
autophagy. The study of cGAS–STING and autophagy crosstalk
will deepen our understanding of the regulation of IFNs and the

TABLE 1 | Regulation of transcription of genes involved in cGAS–STING signaling by autophagy proteins.

Protein Site Type of regulation Function References

BECN1 cGAS Directly interacts with cGAS and promotes cytosolic microbial
DNA degradation by autophagy

Suppresses type I IFN production Liang et al. (2014a)

ATG16 Cytosolic dsDNA
release

Inhibits IL-22 to suppress cytosolic dsDNA release and
cGAS–STING activation; activates the STING-dependent
V-ATPase-dependent LC3B lipidation

Suppresses type I IFN
production; promotes autophagy

Aden et al. (2018); Fischer
et al. (2020)

STING
ULK1/ATG1 STING Phosphorylates STING and suppresses IRF3 function Suppresses type I IFN production Konno et al. (2013)
p62 cGAS; STING Recognizes the K48-linked ubiquitination of cGAS and promotes

its degradation by selective autophagy; phosphorylated p62
recognizes STING and promotes its degradation

Suppresses type I IFN production Chen et al. (2016);
Prabakaran et al. (2018)

ATG9a STING Reduces the assembly of STING and TBK1 Suppresses type I IFN production Saitoh et al. (2009)
CALCOCO2/
NDP52

IRF3 Promotes IRF3 degradation in a virus load-dependent manner Suppresses type I IFN production Wu et al. (2021)
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interactions between pathogens and hosts. This review provides a
new perspective for studying host resistance mechanisms to
pathogenic microbial infection. Since cGAS–STING plays a
critical role in both IFN production and autophagy, it may serve
as a therapeutic target to stimulate host resistance to pathogens.
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