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A B S T R A C T

Objective: To analyze and validate differential genes in the cytokine-cytokine receptor interaction 
CCRI pathway in laryngeal squamous cell carcinoma (LSCC) using bioinformatics and Mendelian 
randomization (MR) to find potential biomarkers for LSCC.
Methods: Five sets of LSCC-related gene chips were downloaded from the GEO database, and four 
sets of combined datasets were randomly selected as the test set and one set as the validation set 
to screen for differential genes in the CCRI pathway; two-way Mendelian randomization was 
performed to analyze the causal relationship between cytokine receptor as the exposure factor 
and LSCC as the outcome variable; and the causal relationship was analyzed by DGIdb, Miranda, 
miRDB, miRWalk, TargetScan, spongeScan, and TISIDB databases to analyze the relationship 
between differential genes and drugs, immune cell infiltration, and mRNA-miNA-lncRNA 
interactions.
Results: A total of 7 differentially expressed genes CD27, CXCL2, CXCL9, INHBA, IL6, CXCL11, and 
TNFRSF17 were screened for enrichment in the CCRI signaling pathway; MR analysis showed that 
the CCRI receptor was a risk factor for LSCC (IVW: OR = 1.629, 95 % CI:1.060–2.504, P = 0.026); 
Seven differential genes were correlated with drugs, immune cells and mRNA-miNA-lncRNA, 
respectively; the CCRI differential gene expression analysis in the validation set was consistent 
with the test set results.
Conclusion: This study provided CCRI differential gene expression by bioinformatics, and MR 
analysis demonstrated that cytokine receptors are risk factors for LSCC, providing new ideas for 
the pathogenesis and therapeutic targets of LSCC.

1. Introduction

Laryngeal cancer is one of the most common malignancies in otolaryngology-head and neck surgery, with an incidence rate second 
only to nasopharyngeal carcinoma and nasal cavity cancer [1]. Laryngeal squamous cell carcinoma (LSCC) is the most common 
histological subtype of laryngeal cancer, accounting for about 85 % ~ 95 % of cases [2].It is closely associated with smoking and 
alcohol consumption, and its pathogenesis is not yet fully elucidated [3].Due to the anatomical complexity and specificity of the 
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laryngeal region, tumor growth is concealed and difficult to detect in early stages, with approximately 60 % of patients diagnosed at an 
advanced stage of cancer [4].Current treatment options for laryngeal cancer primarily involve multidisciplinary approaches, including 
surgery, radiation therapy, chemotherapy, biological therapy, and immunotherapy; however, the 5-year survival rate and prognosis 
remain suboptimal [5].Postoperative patients often suffer from impaired swallowing, respiratory, and phonatory functions, signifi-
cantly affecting their quality of life [6].Therefore, identifying new potential target genes in laryngeal cancer to explore the patho-
genesis and guide treatment is of great importance.

Cytokines are a group of biologically active signaling molecules synthesized and secreted by immune cells and some non-immune 
cells, including interleukins, tumor necrosis factors, colony-stimulating factors, interferons, chemokines, and growth factors [7]. 
Cytokines exert their biological effects by binding to specific cytokine receptors. Through cytokine-receptor interactions, they induce 
cell apoptosis, regulate cell development and differentiation, modulate the immune response, mediate inflammatory reactions, and 
promote tissue repair [8]. Studies have found that there may be common signaling pathways between cytokine receptor systems and 
oncogenes that stimulate tissue cells to proliferate, differentiate, and even transform into cancer cells [9]. With advances in under-
standing the biology of cytokines and receptors, cytokine therapy and anti-cytokine therapy are increasingly being successfully applied 
in clinical settings [10].Mendelian randomization is a causal inference method that has been widely used in recent years, It takes 
advantage of the randomness of alleles at meiosis and the irreversibility of genetic variations before the onset of a disease and uses the 
genetic variation as an instrumental variable to infer the causal relationship between the exposure factor and the outcome of the study 
(disease), which largely reduces the bias and confounding by confounding factors.With the development of bioinformatics technol-
ogies and Mendelian randomization analysis methods, analyzing key genes in tumor development and exploring their causal re-
lationships to unravel the mechanisms of tumor pathogenesis and therapeutic targets has become one of the current research hotspots.

This study utilizes bioinformatics combined with multiple relevant databases to screen for differentially expressed genes in the 
CCRI signaling pathway. Through Mendelian randomization analysis, the causal relationship between cytokine receptor pathways and 
LSCC is investigated. Based on the pathway genes, potential drugs, miRNAs, and immune cells related to LSCC are predicted, providing 
new theoretical references for the pathogenesis and targeted therapy of LSCC.

2. Materials and methods

2.1. Data sources and processing

We conducted a search in the GEO database for "laryngeal squamous cell carcinoma," with selection criteria based on the data type 
being experimental research and the study type being expression microarray. The samples were human tissue specimens. This search 
yielded five gene expression datasets: GSE201777, GSE2379, GSE29330, GSE84957, and GSE39400. We processed these datasets using 
the limma package in R. We randomly selected GSE84957 as the validation set, while the remaining four datasets were combined to 
form the test set. The test set included 36 normal tissue samples adjacent to carcinoma (control group) and 86 tumor tissue samples 
(experimental group); the validation set included 9 normal tissue samples adjacent to carcinoma (control group) and 9 tumor tissue 
samples (experimental group). To avoid affecting the reliability and accuracy of the datasets due to differences in experimental 
conditions, technical platforms, sample sources, and other factors. Firstly, the normalizeBetweenArrays function [11] in the limma 
package of R software (version 4.3.2) was used to perform log2 conversion and normalization on the five datasets to ensure consistency 
between the arrays. Next, the ComBat function in the sva package [12]of the R software was utilized to perform batch correction on the 
merged data sets. Finally, the statistical method of Principal Component Analysis PCA was utilized visualized and evaluated [13]. See 
Fig. 1A before batch correction and Fig. 1B after batch correction.

2.2. Methods

2.2.1. Differential gene screening
Using R packages such as limma, dplyr, pheatmap, and ggplot2, differential expression analysis is performed on the combined 

dataset from the test sets. Filtering criteria are set to adjusted P-value (P.adj) < 0.05 and |log2 fold change (FC)| ≥ 1.5 to select 

Fig. 1. A Before batch correction. B After batch correction.
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differentially expressed genes in the test sets. Heatmaps and volcano plots are generated to visualize these genes, with heatmaps 
showing the top 50 significantly upregulated and downregulated genes. The volcano plots use log2FC as the x-axis and -log10(adjusted 
P-value) as the y-axis.

2.2.2. GO and KEGG pathway enrichment analysis
Gene Ontology (GO) enrichment analysis categorizes gene functions into three components: Cellular Component (CC), Molecular 

Function (MF), and Biological Process (BP), which describe the cellular context, molecular functions, and biological processes the gene 
products are involved in Ref. [14]. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis systematically 
examines the metabolic pathways and biological functions of gene products in cells [15]. The R package clusterProfiler [16] is used for 
conducting GO and KEGG enrichment analyses, and results are visualized using ggplot2. Criteria for GO analysis are P < 0.05; the same 
criteria apply to KEGG analysis.

2.2.3. Bidirectional two-sample MR analysis of CCRI and laryngeal squamous cell carcinoma
Mendelian randomization (MR) is a causal inference method that has been widely used in recent years, which uses genetic variation 

as an instrumental variable to infer causal relationships between exposure factors and study outcomes.MR takes advantage of the 
randomness of alleles at meiosis and the irreversibility of genetic variation before the onset of disease, which allows MR to reduce 
confounders and reverse interference, compensating for the difficulty of traditional observational studies in determining causal re-
lationships between exposure factors and outcome variables. Currently, the causal relationship between CCRI receptors and laryngeal 
squamous cell carcinoma has not been well studied. Therefore, the present study evaluated the causal relationship between the two by 
two-sample bidirectional MR analysis, which provides new ideas for early identification, prediction, and targeted therapy of laryngeal 
squamous cell carcinogenesis.

2.2.3.1. Data sources. The CCRI pathway in KEGG pathway enrichment analysis was selected as the main study in this study. The data 
related to CCRI receptor and laryngeal squamous cell carcinoma in this study were obtained from the genome-wide association studies 
(GWAS) database (https://gwas.mrcieu.ac.uk/) [17]. The exposure variable is cytokine-cytokine receptor interactions, with the 
outcome variable being laryngeal squamous cell carcinoma. Cytokine-cytokine receptor interaction receptor data from Sun et al. 
published in a large scale study in Nature Genetics, cytokine-cytokine receptor interaction receptor data comprising approximately 
3301 European population patients and 10,534,735 single nucleotide polymorphisms (SNPs) loci for association analysis with the data 
set ’prot-a-1520’ [18]. The laryngeal squamous cell carcinoma dataset, ’finn-b-C3_LARYNX’, contains approximately 220,000 Euro-
pean population patients and 16,380,466 single nucleotide polymorphisms (SNPs) loci.

2.2.3.2. MR analysis and sensitivity analysis. The analyses use R software and the TwoSampleMR package [19], employing methods 
such as Inverse Variance Weighted (IVW), MR-Egger regression, Weighted Median (WM), Simple mode, and Weighted mode to explore 
the causal relationship between cytokine-cytokine receptor interactions and laryngeal squamous cell carcinoma[20,21,22,23]. Further 
robustness and stability of results are enhanced by Cochran’s Q test, MR-Egger regression test, and MR-Egger intercept to detect 
heterogeneity and pleiotropy. A leave-one-out approach is used to test the stability of the data by gradually removing individual SNPs 
and calculating the combined effect of the remaining SNPs. Scatter plots, forest plots, and funnel plots are created for visual assessment 
of pleiotropy in MR analysis.

2.2.3.3. Reverse MR analysis. We used laryngeal squamous cell carcinoma as an exposure factor, CCRI receptor as an outcome var-
iable, and SNPs associated with laryngeal squamous cell carcinoma (an exposure factor) as instrumental variables for reverse MR 
causal analysis, and the screening criterion was still based on IVW, and MR-Egger regression, weighted median method, simple model 
method and weighted model method were used as complementary methods, and the reverse MR results were used for sensitivity 
analysis by Cochran Q test, MR-Egger regression test, MR-Egger-intercept method and leave-one-out test for sensitivity analysis to 
further analyze whether laryngeal squamous cell carcinoma affects CCRI receptors.

2.2.3.4. Validation of differential gene expression on the CCRI pathway. The expression of differential genes CD27, CXCL2, CXCL9, 
INHBA, IL6, CXCL11, and TNFRSF17 on the CCRI pathway in laryngeal squamous cell carcinoma was also visualized with the R 
language dplyr package, and the screening conditions were corrected P.adj <0.05 and |log2FC| ≥ 1.5.

2.2.4. CCRI pathway gene-drug interaction analysis
The Drug-Gene Interaction database (DGIdb) provides information on known and potential drug-gene interactions, including over 

40,000 genes, 10,000 drugs, and more than 100,000 drug-gene interaction relations across 42 drug categories and at least 49 inter-
action types such as inhibitors, activators, cofactors, ligands, and vaccines [24].This study predicted cytokine-cytokine receptor 
pathway differential gene-drug interactions with the help of the DGIdb database (https://dgidb.genome.wustl.edu/), and seven dif-
ferential genes, CD27, CXCL2, CXCL9, INHBA, IL6, CXCL11, and TNFRSF17, were placed in the Genes search box, Preset Filters filtered 
on Default Approved, Antineoplastic, and Immunotherapies, and Advanced Filters filtered on Source Databases (22 of 22), Gene 
Categories (43 of 43), Interaction Types (43 of 43), and Genes.), Interaction Types (31 of 31), and the filter results were imported into 
Cytoscape software to construct gene-drug interaction networks for visualization and analysis.
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2.2.5. Prediction of CCRI pathway differential gene ceRNA regulatory network
Differential miRNAs for mRNA binding of cytokine-cytokine receptor interaction pathway genes were first predicted using 

miRanda, miRDB, miRWalk, and TargetScan target gene prediction databases, and the predicted differential miRNAs were taken as 
intersections with the mRNAs to construct pairs of mRNA-miRNA interactions. Perl was used to process the data, and the screening 
criteria were positive miRNAs in all four databases. Secondly, the spongeScan database was used to predict lncRNAs interacting with 
differential miRNAs, and pairs of miRNA-lncRNA interactions were obtained. Cytoscape software will be integrated to get the ceRNA 
network of mRNA-miNA-lncRNA interactions, and visualized.

2.2.6. CCRI pathway gene Immune Cell Infiltration Analysis
The CIBERSORT algorithm performs deconvolution analysis based on the principle of linear support vector regression to analyze 

the relative abundance of various immune cell subtypes in complex mixed cell samples [25]. The algorithm CIBERSORT was used to 
predict the composition of infiltrating immune cells in pathway differential genes, retain data of P < 0.05, and then analyze the 
differential infiltration levels of CCRI genes and 22 immune cells in laryngeal tumor tissues (test group) and adjacent normal tissues 
(control group). The correlation analysis and visualization of immune cell infiltration were performed using the R language tidyverse 
package, ggplot2 package and linkET package.

2.2.7. Validation of differential genes in the CCRI pathway
Expression of 7 differential genes of the CCRI signaling pathway in laryngeal tumor tissues was verified using the dataset GSE84957 

as a validation set.The gene expression profile dataset of GSE84957 was obtained from the GEO database, with 9 cases of para-
cancerous normal tissue samples (control group) and 9 cases of tumor tissue samples (test group). The expression of 7 differential genes 
of CCRI signaling pathway in the dataset GSE84957 was analyzed using the R software limma, reshape2 and ggpubr packages and 
Wilcoxon test, and the expression of the 7 differential genes in the test group and the control group was suggested by * suggesting P <
0.05, ** suggesting P < 0.01, and *** suggesting P < 0.001 to indicate the expression of the 7 differential genes of the test group and 
the control group significance, and box-and-line diagram visualization.

3. Results

3.1. Differential Gene screening

In the test dataset, differential genes were selected using the filtering criteria of adjusted P-value (P.adj) < 0.05 and |log2 fold 
change (log2FC)| ≥ 1.5. A total of 105 differential genes were identified, including 74 downregulated genes and 31 upregulated genes. 
According to |log2FC|, the top 50 up-regulated differential genes and the top 50 down-regulated differential genes were represented by 
a heat map(Fig. 2A), which shows that the differential gene expression was in opposite directions in the test and control groups, i.e., the 
differential genes were down-regulated in the control group when they were highly expressed in the test group. The volcano plot with 
log2FC as the horizontal coordinate and -log10(adj.P.Val) as the vertical coordinate can show the magnitude and confidence of the 
difference in differential gene expression(Fig. 2B).

Fig. 2. 2A Heatmap of test set differential genes: red indicates upregulation of gene expression, blue indicates downregulation of gene expression; 
2B Differential gene volcano plot of the test set: red indicates up-regulation, blue indicates down-regulation, and gray indicates non-significant 
difference, the horizontal coordinate Log2FC value is the magnitude of the expression difference of the gene in the two samples, and the larger 
value represents the larger difference, and the vertical coordinate adj.P.Val value is the corrected P value, and the larger value represents the higher 
confidence level.
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3.2. GO and KEGG analysis

The results of the GO enrichment analysis show that differentially expressed genes are enriched in 60 biological processes (BP) such 
as epidermal development, humoral immune response, and organization of external encapsulating structures. They are also enriched in 
14 cellular components (CC) including gelatinase granules, tertiary granule membranes, and collagen extracellular matrix, as well as in 
17 molecular functions (MF) such as cytokine activity, endopeptidase activity, and serine-type hydrolase activity. Fig. 3A Bar Chart; 
Fig. 3B Circle Graph; Fig. 3C Bubble Chart.

The KEGG pathway enrichment analysis results indicate that the differentially expressed genes are mainly enriched in 26 signaling 
pathways, including cytokine-cytokine receptor interaction, IL-17 signaling pathway, and Staphylococcus aureus infection. On the 
cytokine-cytokine receptor interaction pathway, 7 differentially expressed genes are enriched: CD27, CXCL2, CXCL9, INHBA, IL6, 
CXCL11, and TNFRSF17. Refer to bar Fig. 4A and bubble Fig. 4B.

3.3. Cytokine-cytokine receptor interaction and bidirectional two-sample MR analysis results for laryngeal squamous cell carcinoma

3.3.1. Results of two-way MR analysis and sensitivity analysis
This study utilizes IVW (Inverse Variance Weighted) as the "gold standard" for assessing the causal relationship between cytokine- 

cytokine receptor interactions and laryngeal squamous cell carcinoma. MR analysis indicates a positive causal association between 
cytokine-cytokine receptor interactions and laryngeal squamous cell carcinoma, identifying these interactions as risk factors for the 
development of the carcinoma (IVW: OR = 1.629, 95 % CI: 1.060–2.504, P = 0.026). The reverse MR analysis did not show significant 
correlation (IVW: P = 0.47 > 0.05), as shown in Fig. 5A and B. The Cochran Q test within IVW (Q = 16.87, P = 0.394 > 0.05) and MR- 
Egger regression test (Q = 15.96, P = 0.385 > 0.05) indicate no heterogeneity in the study results; the Egger-intercept (P = 0.369 >
0.05) suggests no presence of horizontal pleiotropy. The leave-one-out test analysis demonstrates that the link between cytokine- 
cytokine receptor interactions and laryngeal squamous cell carcinoma is not dominated by single SNPs. The method of exclusion 
did not reveal any SNPs that significantly impacted the causal estimate, as shown in Fig. 6A. The funnel plot results display a sym-
metrical distribution of the included SNPs, and the MR analysis does not show pleiotropy or heterogeneity, as illustrated in Fig. 6B. 
Scatter plots employing five algorithms (IVW, MR-Egger regression, weighted median method, simple mode, and weighted mode) for 
the regression of metabolite SNPs demonstrate a significant positive causal relationship between cytokine-cytokine receptor in-
teractions and laryngeal squamous cell carcinoma, with stability in the SNPs included in the study, as shown in Fig. 6C.

3.3.2. Differential gene expression results on the CCRI pathway
On the CCRI pathway, five differential genes (CXCL2, CXCL9, INHBA, IL6, CXCL11) are upregulated in laryngeal squamous cell 

carcinoma, while two differential genes (CD27, TNFRSF17) are downregulated. These results are consistent with the MR findings, as 
shown in Fig. 7.

3.4. Pathway gene-drug interactions

The results show that there are 20 drugs that interact with IL6, 5 drugs that interact with CXCL2, 1 drug that interacts with CD27, 1 
drug that interacts with INHBA, and 1 drug that interacts with TNFRSF17. These selected drugs are all related to the functional 
regulation of differential genes, and their discovery provides more options for the future prevention and treatment of laryngeal 
squamous cell carcinoma. Red elliptical nodes represent key genes, and blue rectangular nodes represent targeted drugs. Fig. 8.

Fig. 3. GO Enrichment Analysis: 3A Bar Chart where the length of each bar represents the number of genes enriched in that category, with the color 
from blue to red reflecting the smaller P value; 3B Circle Grapht, the outermost circle is the id of GO, the 3 colors represent the 3 categories CC, MF 
and BP; the 2nd circle is the number of genes distributed in GO entries, the 3rd circle is the number of differentially differentiated genes enriched on 
GO categories, and the innermost circle reflects the Rich Factor value; 3C Bubble Chart, where the size of each bubble reflects the number of genes 
enriched in that category, with the color from blue to red reflecting the smaller P value.
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Fig. 4. KEGG Pathway Enrichment Analysis:4A is a bar graph, where the length of each bar represents the number of genes enriched in that 
signaling pathway. The redder the color, the smaller the P-value. 4B is a bubble chart, where the size of each bubble reflects the proportion of genes 
enriched in that signaling pathway. The redder the color, the smaller the P-value.

Fig. 5. A is the forest plot for the forward Mendelian randomization (MR) analysis; Fig. 5B is the forest plot for the reverse MR analysis.

Fig. 6. A shows the forest plot of the leave-one-out test analysis results for cytokine-cytokine receptor interaction receptors in laryngeal squamous 
cell carcinoma MR analysis; Fig. 6B is the funnel plot for MR analysis of cytokine-cytokine receptor interactions in laryngeal squamous cell car-
cinoma; Fig. 6C is the scatter plot for the risk of laryngeal squamous cell carcinoma based on cytokine-cytokine receptor interactions.
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3.5. Construction of the ceRNA network

Using miRanda, miRDB, miRWalk, and TargetScan databases for predicting target genes, miRNAs interacting with mRNAs asso-
ciated with the CCRI pathway were identified. The results were intersected with differentially expressed miRNAs, yielding 50 inter-
acting miRNAs. Interactions with differentially expressed miRNAs were also predicted for lncRNAs using the spongeScan database, and 
the intersecting results of miRNAs and differentially expressed lncRNAs resulted in 32 interacting lncRNAs. miRNAs and mRNAs not 
involved in these interactions were removed. This led to the integration of an mRNA-miRNA-lncRNA interaction network within the 
ceRNA framework. In this network, as shown in Fig. 7, key gene mRNAs are represented by red elliptical nodes, miRNAs by green 
triangular nodes, and lncRNAs by purple diamond-shaped nodes. The network comprises 48 nodes (5 mRNAs, 11 miRNAs, and 32 
lncRNA nodes) and 46 edges, each edge representing interactions between mRNA and miRNA or miRNA and lncRNA. Among them, 
lncRNA LINC00689 is involved in binding with both hsa-miR-877-3p and hsa-miR-671-5p, while RP11-384K6.6 can bind with miRNAs 
hsa-miR-185-5p and hsa-miR-214-5p.Fig. 9.

3.6. Analysis of immune cell infiltration of pathway genes

Immune infiltration analysis based on 22 immune-related genes showed that the laryngeal tumor pathway gene CD27 was posi-
tively correlated with 5 immune cells and negatively correlated with 4 immune cells; the gene CXCL2 was positively correlated with 2 
immune cells; the gene CXCL9 was positively correlated with 3 immune cells and negatively correlated with 1; the gene INHBA was 
positively correlated with 3 immune cells and negatively correlated with 1 immune cells; gene IL6 is positively correlated with 2 

Fig. 7. The figure represents a volcano plot displaying the differential gene expression on the cytokine-cytokine receptor interaction pathway. Red 
indicates up-regulation, blue indicates down-regulation, and gray indicates no significant difference. The x-axis represents the Log2 fold change 
(Log2FC) values, which quantify the difference in gene expression between two samples; the larger the value, the greater the difference. The y-axis 
represents the adjusted P-value (adj.P.Val), with smaller values indicating higher reliability.

Fig. 8. Represents the differential gene and drug interaction network of the CCRI signaling pathway. Red indicates pathway genes, and blue 
represents drug names. Lines indicate the interactions between genes and drugs.
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immune cells; gene CXCL11 is positively correlated with 3 immune cells and negatively correlated with 2 immune cells; gene TNFRSF1 
is positively correlated with 1 immune cell and negatively correlated with 2 immune cells. Horizontal and vertical coordinates 
represent 22 types of immune cells, the lower left graph represents the correlation between cells, blue reflects the negative correlation 
between immune cells, red reflects the positive correlation between immune cells, the upper right graph shows the correlation between 
7 differential genes of cytokine-cytokine receptor interaction pathway and 22 types of immune cells in laryngeal tumor tissues, and 
positive correlation between differential genes and immune cells is represented by red line segment, negative correlation is represented 
by green. Positive correlations between differential genes and immune cells are represented by red lines, negative correlations are 
represented by green, and irrelevant correlations are represented by gray. The thicker the line and the larger the rectangle, the stronger 
the correlation.Fig. 10A.

3.7. Validation of group differences analysis

To further verify the accuracy of the seven differential genes in the CCRI pathway identified from Test Set 7 in laryngeal tumor 
tissues, differential genes in the CCRI pathway were analyzed from the validation set GSE84957, using R language to construct boxplot 
visualizations. The results indicate that the expression levels of the genes CD27, CXCL2, CXCL9, INHBA, IL6, CXCL11, and TNFRSF17 in 
the validation set GSE84957 are consistent with those in Test Sets GSE201777, GSE2379, GSE29330, and GSE39400 (P < 0.05). The 
genes CD27 and TNFRSF17 show low expression, while CXCL2, CXCL9, INHBA, IL6, and CXCL11 exhibit high expression in laryngeal 
tumor tissues. Fig. 9 shows the boxplots, with the experimental group in red and the control group in blue.Fig. 10B.

Fig. 9. Presents the construction of a ceRNA network. The red nodes represent pathway gene mRNAs, the green nodes represent miRNAs, and the 
purple diamonds represent lncRNAs. Each line indicates the interaction between mRNA and miRNA, as well as between miRNA and lncRNA.

Fig. 10. A illustrates the interaction graph between pathway genes and immune cells in throat tumor tissues. The lower left graph displays the 
associations between cells, where blue indicates a negative correlation among immune cells, and red indicates a positive correlation. The upper right 
section shows the relationships between pathway genes and immune cells; red lines represent positive correlations, green lines indicate negative 
correlations, and gray lines signify no correlation. Thicker lines and larger rectangles suggest stronger correlations. Fig. 10B is a box plot, with the x- 
axis labeled with pathway gene names and the y-axis showing gene expression levels. Red represents the experimental group, and blue represents 
the control group. An asterisk (*) indicates p < 0.05, two asterisks (**) indicate p < 0.01, and three asterisks (***) indicate p < 0.001.
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4. Discussion

Laryngeal cancer accounts for about 20 % of malignant tumors in the head and neck region, making it the second most common 
malignant tumor of the respiratory tract after lung cancer [26]. It is characterized by high incidence, high mortality, and low cure 
rates. Laryngeal squamous cell carcinoma (LSCC) is the most common histological type of laryngeal cancer, with the incidence in men 
approximately ten times higher than in women. With advances in treatment methods, the 5-year survival rate for early-stage laryngeal 
cancer patients reaches 90 %, while it is only about 30%–40 % for late-stage patients [27]. Therefore, early diagnosis and treatment of 
LSCC are crucial for improving prognosis. Studies have shown that the development of resistance in late-stage laryngeal cancer patients 
is a significant cause of recurrence and treatment failure, making it essential to explore highly accurate and precise biomarkers or 
therapeutic targets [28].

The CCRI signaling pathway plays a critical role in innate and adaptive inflammatory host defense and cell death processes, and it is 
involved in the composition of the tumor microenvironment and mediates tumor immune responses [29]. Previous research has shown 
that the CCRI pathway is involved in tumor cell invasion, angiogenesis, and metastasis in various cancers such as cervical, colon, 
breast, and pancreatic cancers, and has become a sensitive marker for predicting the prognosis of some malignant tumors and 
monitoring disease progression [30]. This study analyzed laryngeal squamous cell carcinoma gene expression datasets GSE201777, 
GSE2379, GSE29330, and GSE39400 from the GEO database and validated with dataset GSE84957, identifying seven differentially 
expressed genes in the CCRI pathway through GO and KEGG pathway enrichment analysis, including upregulation of CXCL2, CXCL9, 
INHBA, IL6, CXCL11, and downregulation of CD27 and TNFRSF17. Utilizing public data and large-scale genome-wide association study 
data (GWAS), this study employed five Mendelian randomization methods, including inverse-variance weighted method, MR-Egger 
regression, weighted median method, simple mode method, and weighted mode method to investigate the causal relationship be-
tween cytokine receptors and laryngeal malignancy. To ensure the reliability and stability of the results, data were analyzed using 
Cochran Q test, Egger-intercept, leave-one-out test, and reverse MR analysis. The findings indicated a positive causal relationship 
between cytokine receptors and laryngeal malignancy, identifying it as a risk factor (IVW: OR = 1.629, 95 % CI: 1.060–2.504, P =
0.026). The reverse MR showed no significant correlation (IVW: P = 0.47 > 0.05).

This study uses bioinformatics combined with multiple related databases to analyze drug correlations of differentially expressed 
genes in the CCRI signaling pathway, construct mRNA-miRNA-lncRNA regulatory networks, and examine immune cell infiltration. 
Previous research has indicated that IL6 can regulate cancer-related markers and multiple signaling pathways, thereby affecting 
cellular apoptosis, proliferation, angiogenesis, invasiveness, and metastasis, promoting tumor development [31]. Elevated levels of IL6 
correlate with the neutrophil-to-lymphocyte ratio (NLR) in tumor tissues, and in some malignancies, NLR has been identified as an 
independent prognostic factor for overall and progression-free survival [32]. In this study, IL6 is upregulated in laryngeal tumor tissues 
compared to adjacent normal tissues and correlates with 20 drugs, including RITUXIMAB, ETANERCEPT, and ELSILIMOMAB. IL6 
expression positively regulates tumor-infiltrating macrophages M1 and M2.

Increasing evidence has revealed that chemokines play a crucial role in cancer development, progression, and prognosis [33]. The 
study discovered that CXCL2, by modulating tumor epithelial-stromal interactions, enhances tumor growth and infiltration, with high 
expression associated with poor prognosis in breast, prostate, bladder, and colorectal cancers [34]. CXCL9, induced by 
gamma-interferon, regulates the tumor microenvironment to exert anti-tumor effects and is expressed higher in various cancer tissues 
such as gastric, esophageal, urothelial, and head and neck squamous cell carcinoma, potentially related to longer survival periods. It is 
already considered a good prognostic marker and therapeutic target in breast cancer [35]. CXCL11, an interferon-induced T-cell alpha 
chemokine, under normal circumstances, participates in the transport of immune cells and induces cell proliferation and apoptosis. 
However, in tumor tissues, it binds to CXCR3 to regulate cancer cell proliferation, invasiveness, and metastasis, adversely affecting 
prognosis [36]. In this study, the chemokines CXCL2, CXCL9, and CXCL11 are upregulated in laryngeal tumor tissues. CXCL2 is 
associated with five drugs including DEFEROXAMINE and BATIMASTAT, and three lncRNAs (LINC00940, RP1-253P7.1, LINC00689) 
compete to bind with hsa-miR-877-3p, with CXCL2 also positively regulating monocytes and macrophages M1.No drugs interacting 
with CXCL9 were identified through the DGIdb database, but 22 LncRNAs competed with CXCL9 on the mRNA-miRNA-lncRNA 
regulatory network for binding to five miRNAs (hsa-miR-671-5p, hsa-miR-16-1-3p, has-miR-297, has-miR- 92a-1-5p, and 
hsa-miR-185-5p), and in immune cell infiltration, CXCL9 was able to positively regulate macrophage M1, macrophage M2, and resting 
mast cells, and negatively regulate monocytes; CXCL11 competed with LL22NC03-2H8.5 for binding to hsa-miR-1322, and with 
RP11-397O4.1 for binding to hsa-miR-9-5p, CXCL11 is involved in positive regulation of eosinophils, macrophage M1 and macrophage 
M2, and negative regulation of resting NK cells and regulatory T cells.INHBA, a member of the transforming growth factor-beta su-
perfamily, is involved in the synthesis of inhibitors and activators and plays a significant role in the development and progression of 
cancer and other diseases [37]. Studies show that INHBA is overexpressed in cervical, gastric, esophageal, colorectal, and lung cancers, 
participating in tumor development and closely related to clinical prognosis [38]. In this study, INHBA is upregulated in laryngeal 
cancer tissues and correlates with the drug SOTATERCEPT, also competitively binding with seven lncRNAs to three miRNAs (hsa--
miR-205-5p, hsa-miR-509-3-5p, hsa-miR-214-5p), positively regulating plasma cells, macrophages M1, M2, and negatively regulating 
resting dendritic cells.

CD27 and TNFRSF17 were downregulated among genes with differential CCRI signaling pathways. CD27 belongs to a trans-
membrane glycoprotein of the tumor necrosis factor receptor superfamily, and binding to its ligand CD70 is able to enhance immune 
cell function [39]. Some studies have reported that the low expression of CD27 in multiple myeloma may predict rapid disease 
progression, poor prognosis, and poor response rate to chemotherapeutic drugs [40]. In this study, CD27 was associated with the drug 
sarilumab, competing with RP3-470B24.5 for binding to hsa-miR-509-3-5p, and was able to positively regulate CD8 + T cells, plasma 
cells, helper T cells, regulatory T cells and activated NK cells, and negatively regulate memory CD4 + cells, resting NK cells, neutrophils 
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and activated mast cells. TNFRSF17 Is a member of the tumor necrosis factor receptor superfamily 17, also known as CD269 and B cell 
mature antigen (BCMA), in the proliferation, differentiation, and apoptosis of participant cells in vivo. Song et al. [41]in a study on 
colon cancer found that TNFRSF17 showed low expression in colon cancer patients, and first confirmed that TNFRSF17 is a tumor 
suppressor gene in vitro experiments, and provided immune-related prognostic markers of colon cancer, immunotherapy sensitivity 
markers, and effective targets for the clinical treatment of colon cancer patients. In this study, TNFRSF17 showed interaction with the 
drug iivilxel, and TNFRSF17 expression was positively correlated with tumor-infiltrating plasma cells and negatively with monocytes 
and macrophages M1. Finally, the validation of CCRI signaling pathway differential genes using the validation set GSE84957 and the 
validation results were consistent with the training set.

5. Conclusion

In conclusion, this study, biological information technology, and multiple databases were used to analyze seven differentially 
expressed genes in the CCRI signaling pathway in LSCC. In the genetic aspect, MR analysis was used to illustrate the causal relationship 
between cytokine receptors and laryngeal malignancy, which laid the foundation for further exploring the causal relationship between 
LSCC and cytokines. Gene-drug interaction to explore the potential therapeutic drugs and therapeutic targets of LSCC can provide new 
ideas and clues for the therapeutic exploration of LSCC. To construct the mRNA-miRNA-lncRNA interaction in the ceRNA network to 
explore the potential regulation mechanism of LSCC and provide a new reference for future clinical diagnosis and treatment, prognosis, 
and rehabilitation strategies. Immune cell infiltration analysis of differential genes in cytokine-cytokine receptor interaction pathway 
in LSCC provides new ideas and biological markers for immune-related therapeutic targets. However, the results of this study are all 
based on data analysis, and a large number of clinical experimental data still need to be verified in the future.
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