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Abstract. The rat bladder carcinoma cell line NBT-II 
exhibits two completely different responses to acidic 
FGF (aFGF): at high cell density, aFGF is a potent 
mitogen whereas at low cell density, aFGF acts as a 
scattering agent that can convert the epithelial NBT-II 
cells into fibroblastic-like, motile cells. The basis of 
the dual action of aFGF has been approached by using 
substances interfering with the transducing pathways 
known to be activated by growth factors. Genistein 
and tyrphostin, two inhibitors of tyrosine kinases, in- 
hibit both cell scattering and mitogenesis induced by 
aFGE Conversely, sodium orthovanadate, a potent in- 
hibitor of tyrosine phosphatases can reproduce the two 
effects of aFGF, indicating that protein tyrosine phos- 
phorylations are determinant in the two pathways. In 
contrast, transforming growth factor (TGF)-/51 is a 
strong inhibitor of DNA synthesis induced by aFGF 
but has no effect on cell scattering, providing evidence 
that the two pathways are divergent. In an attempt to 

determine the specificity of the pathways of aFGF we 
found that the level of cAMP, which can be externally 
elevated, is of pivotal importance in distinguishing be- 
tween the two transducing pathways leading to either 
DNA replication or cell dispersion. Forskolin, 
8-bromo cAMP, dibutyryl-cAMP, and cholera toxin 
are all capable of potentiating the mitogenic effect of 
aFGF while strongly inhibiting its scattering action. 
Moreover, addition of any of these substances to NBT- 
II cells converted into fibroblasts immediately induces 
their reversion towards an epithelial phenotype. These 
findings support a role for cAMP as a modulator of 
the effects of aFGE Moreover, basal cAMP synthesis, 
which is not affected by aFGF, is higher in sparse than 
in dense cultures indicating that the level of cAMP de- 
pends on the status of the cell. Altogether, these 
results suggest that establishment and maintenance of 
the epithelial state require a precise regulation of 
cAMP level. 

C 
ELL migrations have been described as a major event 
in tissue formation and remodeling that take place 
during embryonic and adult life. They are also com- 

ponents of certain pathological situations such as invasion 
and metastasis of tumor cells (27). Even though the cellular 
mechanisms responsible for the acquisition of cell motility 
are not yet fully understood, it is clear that they are multiple, 
depending in part on the state of differentiation of the cells 
induced to migrate. One of the most puzzling examples of 
cellular transformations leading to cell motility is provided 
by the epithelial-mesenchymal transition (EMT), J which 
has been characterized in many morphogenetic processes (13, 
23, 37). In such cases, the acquisition of cell motility corre- 
lates with dramatic changes in the program of cell differen- 
tiation: the cohesive epithelial cells lose their epithelial fea- 
tures and are converted into individual, motile fibroblastic 
cells. Because of the general importance of EMT, several 
groups have established in vitro model systems, using well- 

1. Abbreviations used in this paper: aFGE acidic FGF; DE desmoplakin; 
EMT, epithelium-mesenchyme transition; IBMX, 3-isobutyl-l-methylxan- 
thine; TGE transforming growth factor. 

defined cell cultures to approach the individual steps of such 
complex processes (17). The search for inducer molecules of 
these processes has led to the discovery that growth factors, 
primarily known as regulators of cell proliferation, can also 
stimulate in vitro cell motility (2, 17, 34, 45, 47) and control 
in vivo embryonic EMT (8, 35). Among them, scatter factor 
(SF), which is identical to hepatocyte growth factor (HGF) 
and therefore elicits scattering as well as mitogenic func- 
tions, is a morphogenetic factor for aggregates of MDCK 
cells (29). These results suggest that factors that have been 
described in vitro as scattering agents promoting EMT-like 
changes of epithelial cells could act in vivo as morphogens 
involved in the plasticity of epithelial tissues. 

Because many growth factors, such as SF/HGF, are mul- 
tifunctional it is important to understand the mechanisms 
that trigger the specificity of the cellular response to a given 
growth factor. Although this question is far from being eluci- 
dated (9) there is a growing body of evidence indicating that 
signal transduction generated by a given growth factor can 
follow multiple pathways (40). The choice of the pathways 
that are activated may be dictated in part by the cell itself. 

We have used the rat bladder carcinoma-derived cell line 
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NBT-II (38) as a convenient in vitro model  for studying the 
multifunctionality of acidic F G F  (aFGF).  On addition of  
a F G E  subconfluent cultures of NBT-II cells dissociate and 
give rise to individual, elongated, actively migrating cells 
(41), whereas confluent cultures enter mitosis in response to 
the same factor (42). Similarly, EGF had already been 
reported to induce confluent cultures of  rat intestinal epithe- 
lial cells to proliferate and subconfluent cultures to migrate 
(6). Here, we have analyzed the two biological responses of  
NBT-II cells stimulated by aFGF after treatment with agents 
known to synergize or antagonize second messenger mole- 
cules. Although the transducing pathways activated by the in- 
teraction of peptide hormones, referred to as growth factors, 
with their cognate receptors remain poorly defined, there 
are three major  enzymatic activities potentially important  in 
the signaling cascades. First,  tyrosine-specific protein ki- 
nases have been shown to play a role in transducing signals 
of several growth factors which directly bind to receptors 
harboring a tyrosine kinase activity (40). Second, activation 
of  phospholipase (PLC) has also been proposed as a pr imary 
event in signal transduction in response to several growth 
factors (4). The third pathway involves the production of cy- 
clic A M P  (cAMP) by stimulated adenylate cyclase (14). Our 
results demonstrate that tyrosine-specific kinase activity is 
central in the two biological responses to a F G E  Further- 
more, a sustained elevation of  cAMP level antagonizes the 
dispersing response to aFGF while potentiating the mito- 
genie action of  aFGE These results strongly support the ex- 
istence of  second messenger molecules restricted to each bi- 
ological response to aFGE 

Materials and Methods 

Reagents 

Mouse mAb against vimentin was purchased from Amersham International 
(Buckinghamshire, UK). Mouse mAb against desmosomal proteins des- 
moplakins (DPs) I and II was the generous gift of Professor W. W. Franke 
(German Cancer Research Center, Heidelberg, FRO). Texas red-coupled 
goat anti-mouse IgG (lmmunotech, Marseille, France) was used as second- 
ary antibody. Human recombinant aFGF (22) was kindly provided by Dr. 
M. Jaye (Rh6ne-Poulenc, King of Prussia, PA). FCS was from Biological 
Industries (Kibbutz Beth Haemek, Israel). Forskolin, pertussis toxin, and 
sodium orthovanadate were purchased from Sigma Chemical Co. (St. 
Louis, MO), cholera toxin from Calbiochem Corporation (La Jolla, CA), 
and genistein from ICN Biochemicals (Cleveland, OH). Transforming 
growth factor (TGF)-81 was obtained from British Biotechnology Limited 
(Oxford, UK). Tyrphostin AG18 was the generous gift of Dr. A. Levitzki 
(The Alexander Silberman Institute of Life Sciences, Jerusalem, Israel). 

Cell Culture 
The NBT-II cell line, originally established by Tohoshima and colleagues 
(38), was obtained from Prof. M. Mareei (University Hospital, Ghent, Bel- 
gium). The original tumor from which NBT-II cell line was derived is a 
squamous bladder carcinoma induced by carcinogenesis. Under standard 
conditions of culture, the cells assume an organization and morphology typ- 
ical of epithelial cells. The cells were routinely grown (37~ in 5% CO2) 
in DME containing 10% heat-inaedvated FCS (standard medium), as 
described previously (7). Sparse/subconfluent/Iow-density cultures are 
delined by 30-50% cell density, compared with 100% cell density for 
confluenffhigh-density cultures. 

Cell motility assay was done using videocinematography as described 
previously (41). 

In Vitro Wound Model 

NBT-II cell monolayers were obtained after 48 h of culture in standard 

medium. They were gently scratched with a Gilson pipette yellow tip, and 
extensively rinsed with DME to remove all cellular debris. The procedure 
left a ceU-frce area of substratum (~wound"). The cultur~ were then allowed 
to grow overnight in the presence or absence of various factors and reagents. 
The next morning, cultures were rinsed with PBS, stained with Coomassie 
blue, and photographed on T-MAX 100 film (Eastman Kodak Co., Roches- 
ter, NY) with an Olympus camera mounted on an inverted microscope 
(l_~itz, Wetzlar, FRG). 

Indirect Immunofluorescence Microscopy 
N'BT-II cells were seeded on glass coverslips. 2 d after plating, standard 
medium was replaced by DME. aFGF (10 ng/ml) plus heparin (10/~g/mi), 
or various reagents were added for 8 h. Subsequently, cells were fixed and 
processed for irnmunocytochemistry as described previously (7). 

Mitogenic Assay 
Cells were seeded in 24-well Nunc plates and grown to confluency in stan- 
dard medium after which the medium was changed to DME for 24 h. The 
cells were then incubated with growth factors or reagents for 24 h. [methyl- 
3H] thymidine (specific activity, 42 Ci/mmol, Amersham) was added at 
1/+Ci/ml for the last 4 h of the experiment. At the end of the labeling period, 
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Figure 1. l~initiation of DNA synthesis in confluent NBT-II cells 
is dependent on tyrosine phosphorylation. NBT-H cells arrested by 
serum starvation for 24 h were stimulated for 20 h before a 4 h incu- 
bation with [3H]thymidine. The number of counts per minute in- 
corporated was determined as indicated in Materials and Methods. 
Each point represents the mean value of three identical wells + 
standard error. In A, cells were stimulated by increasing concentra- 
tions of sodium orthovanadate alone (=) or in conjunction with 0.1 
ng/ml aFGF (~). In B, cells were incubated with genistcin alone 
(m) or genistein in conjunction with I ng/ml aFGF (D). In C, cells 
were incubated with tyrphostin AG18 alone (m), or tyrphostin 
AG18 and I ng/ml aFGF (D). 
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Figure 2. Induction of Nffr-II cell dispersion is dependent on tyrosine phosphorylation events. (a-e) DP immunolabeling of NBT-II ceils 
incubated for 8 h with 10 ng/ml aFGF (a), 100 t~M tyrphostin AG18 plus 10 ng/ml aFGF (b), 50/~M genistein + 10 ng/ml aFGF (c), 
100 I~M genistein + 10 ng/ml aFGF (at), or 100 pM sodium orthovanadate (e). After the incubation period with the various reagents, 
cell cultures were fixed and processed for immunofluorescence microscopy. Note the partial loss of DP peripheral immunostaining in c, 
and the persistence of DP immunoreactivity in cell contacts in b and d. (f-h) Penetration of isolated N'BT-II cells into wounded areas of 
cell monolayers under standard conditions (f), or with 20 ng/ml aFGF (g), or in the presence of 100/~M sodium orthovanadate (h). Bars: 
(a-e) 20 t~m; (f-h) 200 ~m. 

each culture plate was washed twice with ice-cold PBS followed by the addi- 
tion of 1 ml ice-cold 10% TCA and incubated for 30 rain at 4"C. Alter four 
washes with water, cells were solubilized with 0.I N sodium hydroxide, and 
radioactivity was quantitated by liquid scintillation counting. Experiments 
were conducted in triplicate cultures. 

Binding Studies 
Human recombinant aFGF was labeled by a modification of the chloramine 
T method (21) as described (33). Specific activities of the iodinated ligand 
varied from 960 to 2,150 dpm/fmol of aFGE 

Equilibrium binding assays on NBT-II cells were carried out as previ- 
ously described (41). When appropriate (see Results), cells were prein- 
cubated for 4 h in DME containing the reagents to be tested. 

Cyclic AMP Radioimmunoassay 
Go-arrested NBT-II cells were washed with DME and equilibrated for 30 
rain in this medium before the additions indicated in the legend to Table II. 
At the end of the incubation the medium was removed, the cultures were 
rimed twice with ice-cold PBS, and cells were lyscd for 20 rain at 4"C with 
0.5 ml ethanol/5 mM EDTA (2:1). Cell extracts were evaporated and their 
cAMP content was determined using a radioimmunoassay kit obtained from 
ERIA Diagnostics Pasteur (Marnes-la-Coquette, France), after reconstim- 
tion of the extracts with the sodium acetate buffer, pH 6.2, used in this assay. 

Results 

1~posine Kinases Are of Central Importance in the 
Biological Responses Elicited by aFGF 
As previously described (7, 41), sparse cultures of NBT-II 
cells assume an epithelial organization under standard con- 

ditions of culture. On exposure to aFGE the epithelial clus- 
ters readily dissociate, giving rise to individual, fibroblas- 
tic-like cells that actively migrate. The overall changes in 
NBT-II cell morphology, appearing after addition of aFGF, 
are highly reminiscent of an EMT (i,e., an eventually revers- 
ible process of conversion between the epithelial and mesen- 
chymal states). In our system we have used the term EMT 
to indicate that NBT-1I cells lose some epithelial characteris- 
tics and acquire certain properties of fibroblastic ceils. We 
also demonstrated that aFGF which is a potent mitogen for 
confluent cultures of NBT-II cells, is unable to promote cell 
division under subconfluent conditions of culture. Other fac- 
tors that were found to induce dispersion of NBT-II cells 
(EGF, TGF~ IGF-I) (16 and A. M. Vallds, unpublished 
results) reproduce the dual function of aFGF under the two 
different culture conditions. Interestingly, all these scatter 
factors bind to tyrosine kinase receptors. 

Because of the unique property of growth factors activat- 
ing receptor tyrosine kinase to induce either dispersion or 
proliferation of NBT-II cells, we carried out a series of ex- 
periments in which tyrosine kinase activity was specifically 
inhibited or enhanced. Genistein and tyrphostin AG18 were 
used to specifically inhibit protein-tyrosine phosphorylation 
(1, 48) and sodium orthovanadate to inhibit tyrosine phos- 
phatases (19). As shown in Fig. 1, genistein and tyrphostin 
AG18 dramatically reduced [3H]thymidine incorporation in 
cells stimulated with aFGF. Conversely, sodium orthovana- 
date was a potent mitogen for NWr-II cells. Interestingly, it 
was active on confluent cultures only and had no mitogenic 
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Figure 3. "I'GF-/~I abolishes 
the mitogenic action of aFGF 
without affecting its dispers- 
ing effect. (Upper panel) The 
reinitiation of DNA synthesis 
was estimated by [~H]thymi- 
dine incorporation in confluent 
cultures of cells deprived of 
serum for 24 h before addi- 
tion of TGF-~/1 alone (n) or 
in conjunction with 1 ng/ml 
aFGF (m). The number of 
counts per minute incorpo- 
rated was determined as indi- 
cated in Materials and Meth- 
ods. Each point represents the 
mean value of three identi- 
cal wells + standard error. 
(Lower panels) Sparse cul- 
tures of NBT-II cells were in- 
cubated for 8 h in standard 
medium without (a) or with 
TGF-/31 at 10 ng/ml (b). Alter- 
natively, cells were incubated 
for the same period of time 
with aFGF at 10 ng/ml alone 
(c) or in conjunction with 10 
ng/ml TGF-#I (d) before fixa- 
tion and processing for immu- 
nofluorescence labeling with 
anti-DP antibody. Note that 
"I'GF-•I had no effect on the 
accumulation of DP immuno- 
reactivity in lateral contacts of 
control ceils (b) and did not 
perturb its internalization in 
cells stimulated with aFGF 
(d). Bar, 20 t~m. 

effect on subcortfluent cultures (data not shown). In addition, 
it markedly increased [3H]thymidine incorporation in cells 
stimulated with aFGF (Fig. 1). These results demonstrated 
that sodium orthovanadate could mimic the mitogenic action 
of aFGF thus suggesting that tyrosine kinase activation was 
a central event in aFGF-induced mitogenesis. The effects of 
the compounds were also tested on the induction of cell dis- 
persion (Fig. 2). Cell dispersion was examined in two ways: 
cell dissociation and acquisition of motility. Cell dissociation 
was estimated by the modulation of intercellular junctions, 
and specifically by the alteration of desmosomes. We had 
previously shown that the immunoreactive pattern observed 
with the mAb to desmoplakin (anti-DP), which recognizes 
a subset of proteins of the desmosomal plaque (15) disap- 
peared from the boundaries of cells dissociated by aFGF (7, 
41). DP immunoreactivity was redistributed in intracellular 
dots, suggesting that desmosomes were split and internalized 
during the aFGF-induced EMT (e.g., Fig. 2 d). Cell motility 
was estimated by the ability of cells located at the edge of 
an artificially produced wound to colonize the wounded 
area. As already stated (7, 42), wound repair was due solely 
to the ability of NBT-II cells to migrate actively into the 
wound and did not depend on cell proliferation. 

As shown in Fig. 2, in the presence of 100 #M tyrphostin 
AG18 aFGF was no longer able to induce the disappearance 

of DP immunoreactivity from cell boundaries. Genistein 
also fully inhibited cell dissociation when used at 100/~M, 
which was the concentration giving 100% inhibition of DNA 
synthesis (see Fig. 1). The same doses of tyrphostin and 
genistein blocked cell migration into the wounded areas of 
cultures stimulated by aFGF (data not shown). As tyrphostin 
AG18 and genistein did not reduce the level of DNA synthe- 
sis in cells stimulated with FCS (not shown), their inhibiting 
action of aFGF-induced mitogenesis and cell scattering was 
not due to nonspecific, toxic effects. Sodium orthovanadate 
alone was able to reproduce the effects of aFGF: it induced 
the dissociation of cell clusters as visualized by the internal- 
ization of DP immunoreactivity. Interestingly, the response 
to sodium orthovanadate was quite rapid, beginning 2 h after 
its addition into the culture medium as compared with the 
response to aFGF which begins 5 h after addition of aFGE 
Although less effective than aFGF, sodium orthovanadate in- 
duced acquisition of cell motility as visualized by the pene- 
tration of isolated cells within wounded areas of cell mono- 
layers (Fig. 2, compare g and h). Thus, because compounds 
interfering with tyrosine phosphorylation cannot distinguish 
between the two pathways involved in transducing the aFGF 
message, our results indicate that tyrosine phosphorylation 
constitutes a central event in both cell scattering and mito- 
genesis induced by aFGE 
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TGF-[31 Distinguishes between the Two Responses 
to aFGF , 

Because it is well established that TGF-~I is a potent growth e 
inhibitor in many cell types, it was interesting to test whether ~ 5 
it was able to antagonize the effects of aFGF on Nt~-II cells. ~ 4 .  

As illustrated in Fig. 3, TGF-~I abolished the mitogenic re- 
sponse elicited by aFGF with 50% inhibition at a low con- ~ 3 
centration (0.1 ng/ml). In contrast, the dissociating effect of ~ z. 

aFGF, when used at a concentration similar to that of the ~ 1 
mitogenic assay, was not altered by addition of TGF-B1 tested , 
within a wide range of concentrations. In Fig. 3 the effect of 0 
addition of 10 ng/ml of TGF-/31 is shown. TGF-/~I is thus a 
factor that discriminates between the two pathways elicited 
by aFGF stimulation. 
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An Elevation in cAMP Blocks the EMT 
of NBT-II Cells and Potentiates the Mitogenic 
Response to aFGF 

Another agent which discriminates between the two path- 
ways of aFGF is intracellular cAMP. The levels of intracellu- 
lar cAMP can be externally manipulated by using various 
toxins and chemicals: 8-bromo cAMP and dibutyryl cAMP 
are diffusible analogs of natural cAMP, forskolin reversibly 
stimulates adenylate cyclase by binding directly to it, cholera 
toxin stimulates a GTP-binding protein that selectively acti- 
vates adenylate cyclase, and pertussis toxin inactivates an in- 
hibitory G protein (39). However, some of these compounds 
might have complex effects; for example, pertussis toxin also 
inactivates a Gp involved in the activation of PLC (31). 

Mitogenesis induced by aFGF was dramatically increased 
in the presence of cAMP-elevating agents (Fig. 4). Cholera 
toxin alone at 10/zg/ml had a mitogenic effect (Fig. 4 C). 
All compounds potentiated the action of aFGF at a concen- 
tration of aFGF that was either sufficient to induce DNA syn- 
thesis (Fig. 4, C and D) or not (Fig. 4, A and B). The rather 
modest effect of pertussis toxin can be attributed to the fact 
that the toxin interferes with two different transducing 
pathways. 

Upon exposure of arrested cells to a combination of aFGF 
and one of the cAMP-elevating agents, DNA synthesis was 
reinitiated 7 h after addition of the factors (data not shown). 
Comparison with the lag period of 12-14 h after which aFGF 
was able to induce an increase in [3H]thymidine incorpora- 
tion suggests that cAMP-modulating agents may bypass some 
steps of the pathway leading to cell proliferation. 

None of the cAMP-elevating compounds tested were able 
to induce, alone or in combination with aFGE the reinitia- 
tion of DNA synthesis in cells arrested at subconfluency 
(data not shown). This result demonstrated that an increase 
in cAMP, which facilitated aFGF-induced mitogenesis at 
confluency, was not sufficient to overcome the inhibitory ac- 
tion of aFGF at subconfluency. 

The effect of cAMP-elevating compounds was also tested 
on induction of EMT initiated by aFGE Cell dissociation 
was assessed by internalization of DP immunoreactivity in 
cells incubated with a combination of 20 ng/ml aFGE and 
each compound used at a concentration that was the most 
effective in the mitogenic assay. As shown in Fig. 5, cAMP 
analogs, forskolin, and cholera toxin dramatically affected 
the internalization of DP immunoreactivity induced by 
aFGE Here again, pertussis toxin had a reduced inhibitory 
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Figure 4. Incorporation of [3H]thymidine in replicating DNA of 
confluent NBT-II cells arrested by serum starvation for 24 h before 
stimulation with different agents for 20 h and incubation with 
[3H]thymidine for 4 h. (~a) Stimulation with cAMP-elevating 
agents at the indicated concentration. (u) Stimulation with cAMP- 
elevating reagents in conjunction with 0.1 ng/ml aFGF (A and B) 
or 1 ng/ml aFGF (C and D). The number of counts per minute in- 
corporated was determined as indicated in Materials and Methods. 
Each point represents the mean value of three identical wells + 
standard error. 

effect. The inhibition of cell dissociation cannot be ac- 
counted for by a toxic effect of the compounds tested because 
they did exert a positive effect on DNA synthesis. 

The same products were assayed on cell motility tested in 
wound healing experiments (Fig. 6). Depending on the com- 
pound, migration of cells within the wound was partially or 
totally abolished. Once again the less pronounced effect was 
obtained with pertussis toxin. Altogether, these data indicate 
that an augmentation in intracellular cAMP content mark- 
edly synergized the mitogenic function of aFGF on NBT-II 
cells while drastically inhibiting its dispersing effect. 

We subsequently examined whether the effects of cAMP- 
elevating agents on aFGF-induced cell responses were due 
to modifications in aFGF binding on NI~-H cells. At 
saturating concentrations of the growth factor, the amount of 
cell-surface bound t2SI-aFGF was not affected by preincuba- 
tion of cells with the different compounds tested (Table I). 
Therefore, the biological effects of cAMP-elevating agents 
were not due to changes in the binding of aFGF to its recep- 
tors, and arose most likely from modifications in the signal- 
ing pathways. 
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Figure 5. DP immunostaining 
of NBT-II cells incubated for 
8 h with 10 ng/ml aFGF and 
various cAMP-elevating agents 
before fixation and processing 
for immunofluorescence mi- 
croscopy. Cells were incu- 
bated with 10 ng/ml aFGF 
alone (a), or plus 10 izg/ml 
cholera toxin (b), plus lO0 ng/ 
ml pertussis toxin (c), plus 
lO0 izM forskolin (d), plus 
1 mM 8-bromo cAMP (e), 
plus 1 mM dibutyryl-cAMP (f). 
Bar, 20 izm. 

Cyclic AMP-elevating Agents Can Reverse the 
~broblastic Phenotype Induced by aFGF 
Since artificial elevation of the intracellular cAMP level 
completely abolished the transition towards a fibroblastic 
phenotype, it was important to investigate the effects of 
cAMP-elevating agents on cells that were already established 
in their fibroblastic-like phenotype by long term culture with 
aFGE In the presence of any of the agents tested, the refor- 
mation of intercellular desmosomes was induced very rap- 
idly, with DP immunoreactivity reexpressed at cell bound- 
aries only 2 h after addition of the compounds (Fig. 7). In 
keeping with the effects of pcrtussis toxin on the initiation 
of EMT, this toxin was not very efficient in the reformation 
of desmosomal contacts between cells. Concomitantly with 
the reformation of desmosomes, cells stopped migrating: for 
example, videomicrocinematography recordings showed that 
the average velocity of cells cultured for 2 wk in the presence 
of aFGF dropped from 30 to 10 /~m/h after a 2 h 
exposure to 10 i~g/ml cholera toxin. Moreover, the vimentin 
intermediate filaments that were induced by long-term cul- 
ture with aFGF (see reference 7), underwent dramatic modi- 
fications. As an example, Fig. 7 shows the immunoreactive 
pattern obtained by incubating cells with cholera toxin: the 
network of filaments running through the cytoplasm was re- 
placed by a dense immunoreactivity accumulated in a region 
near the nucleus; some cells were even devoid of vimentin 
immunostaining (Fig. 7, compare g and h). 

aFGF Does Not Significantly Modify Basal or 
Activated Adenylate Cyclase Activity 
Due to the discriminating effects of cAMP-elevating agents 
on the dual function of aFGF, it was of importance to deter- 
mine whether intracellular cAMP content was affected by 
aFGE In the absence of adenylate cyclase activator, no 
significant increase of the basal cAMP production could be 
detected upon addition of aFGF to sparse or confluent G0- 
arrested cells (Table II). Stimulation of adenylate cyclase 
activity by forskolin (10 ftM) or cholera toxin (1 /~g/ml) 
resulted in the expected augmentation of intracellular cAMP 
content. The presence of aFGF (30 ng/mi) did not signifi- 
cantly modify forskolin or cholera toxin-stimulated CAMP 
production, even in the presence of the phosphoesterase in- 
hibitor IBMX, which was included at 1 mM to allow ac- 
cumulation of intracellular CAMP. These results suggest that 
aFGF-induced stimulation of its cognate receptors does not 
generate a modification in the adenylate cyclase system. 
Therefore, the synergy between cAMP-elevating agents and 
aFGF in the reinitiation of DNA synthesis is likely to arise 
from events involved downstream in the cAMP transducing 
pathway. 

Interestingly, subconfluent cultures had an elevated con- 
tent of intracellular CAMP as compared with confluent cul- 
tures (Table ID. The amount of cAMP in sparse cells is 
nevertheless too small to prevent cells from being dispersed 
by aFGF at a concentration of 10 ng/ml. However, in other 
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situations in which local concentrations of aFGF would be 
in a more physiological range than those used here, the 
amounts of intracellular cAMP could be sufficient to inhibit 
the scattering effect of this growth factor. 

Discuss ion  

aFGF promotes two different biological responses in the 

Table L cAMP-elevating Agents Do Not Influence aFGF 
Binding on NBT-H Cells 

Treatment Binding of radiolabeled aFGF 

cpm 4- SE 

-- 12696 + 56 
pertussis toxin 11795 + 289 
cholera toxin 13552 + 1279 
forskolin 14291 + 211 

Binding of 10 ng/rrd mI-aFGF on the surface of NBT-II ceils preincubated 
for 4 h with 100 ng/ml pertussis toxin, 10 gg/ml cholera toxin, or 100 I~M for- 
skolin. The number of cpm bound is determined under conditions described in 
Materials and Methods and represents the mean value of three identical wells 
4- standard error. 

Figure 6. Closure of in vitro 
wounds made in monolayers 
of NBT-II cells. Cell cultures 
were fixed and examined 18 h 
after producing an artificial 
wound in cultures incubated 
with standard medium (a). 
Alternatively, wounded cell 
cultures were stimulated with 
10 ng/ml aFGF alone (b), or 
plus 10 gg/ml cholera toxin 
(c), plus 100 ng/ml pertussis 
toxin (d), plus I mM 8-bromo 
cAMP (e), plus 1 mM dibu- 
tyryl-cAMP (f). Bar, 200 gm. 

NBT-II rat bladder carcinoma cell line. At confluency, it in- 
duces reentry to cell division while at subconfluency, it trig- 
gers cell scattering (42). Resistance of subconfluent cultures 
to the mitogenic effect of aFGF does not arise from the intrin- 
sic inability of sparse G0-arrested cells to reinitiate DNA 
synthesis. Indeed, bradykinin, a rnitogenic peptide that stim- 
ulates the hydrolysis of phosphoinositides (5) promotes the 
proliferation of sparse cultures of NBT-II cells and has no 
dispersing effect (data not shown). This result raises the 
attractive possibility that the induction of EMT would be 
coupled to inhibition of proliferation and furthermore would 
be under the control of factors binding tyrosine kinase re- 
ceptors. 

The two functions of aFGF are mutually exclusive since 
the growth factor cannot simultaneously elicit dispersion 
and DNA synthesis. The opposing activities of aFGF de- 
pending on the status of the cell cannot be accounted for by 
differences in prevalence or affinity of aFGF receptors on the 
surface of confluent versus subconfluent cells (42). More- 
over, NBT-II cells are devoid of receptors recognizing basic 
FGF (bFGF) (41) and do not scatter in response to this 
growth factor. Transfection of NBT-II cells with a plasmid 

Boyer and Thiery Signaling in FGF-induced Cell Dispersion 773 



Figure 7. The transition to- 
wards a dispersed state is 
reversed by cAMP-elevating 
agents, NBT-II cells were main- 
tained in the presence of 10 
ng/ml aFGF for 2 wk before 
addition of various reagents 
for 6 h. Cells were fixed and 
processed for immunofluores- 
cence microscopy with a mAb 
against DPs (a-f) or vimentin 
(g and h). (a and g) Control 
cells permanently stimulated 
by aFGF; (b and h) addition of 
10 tLg/ml cholera toxin; (c) 
addition of 100 I~M forskolin; 
(d) addition of 100 ng/ml per- 
tussis toxin; (e) addition of 
1 mM 8-bromo cAMP; and 
(/") addition of 100/~M gen- 
istein. 

encoding the well-defined receptor for acidic and basic FGF 
fig induces cells to disperse in response to bFGF stimulation 
(Savagner, P., A. M, Vallds, J. Jouanneau, Y. Yamada, and 
J. P. Thiery, unpublished data). These data indicate that the 
scattering activity of growth factors toward the NBT-II cell 
line can be triggered by receptors endowed with a mitogenic 
activity and is therefore not harbored by a special type of 
receptor. It is thus important to determine whether the alter- 
native action of aFGF is dependent on alternative signaling 
pathways. 

Our results clearly demonstrate the role of tyrosine phos- 
phorylation in both responses. Tyrosine phosphorylations 
have already been shown to be implicated in the mitogenic 
response of 3T3 cells to aFGF (11). This is not an unexpected 
result, since FGFs bind to receptors endowed with a tyrosine 
kinase activity (20, 40). Moreover, our results indicate that 
sustained tyrosine phosphorylation activity is able to repro- 
duce by itself the scattering effect of aFGE These data are 
consistent with the observation that sodium orthovanadate 
dissociates MDCK cells and reproduces the alterations of 

Table II. Effect of aFGF on the Basal and Stimulated Adenylate Cyclase Activity in Sparse and Confluent 
Cultures of  NBT-II Cells 

Condition Confluent culture Subconfluent culture 

pmol cAMP~10 s cells pmol/1os cells 

+ IBMX 0.03 + 0.005 0.18 • 0.04 
+ IBMX + aFGF 0.05 + 0.004 0.18 + 0.05 
+ IBMX + forskolin 1.5 + 0 .4  1.8 • 0.25 
+ IBMX + a F G F  + forskolin 1.8 + 0.3 1.6 + 0.3 
+ IBMX + cholera toxin 1.6 + 0 .4  1.1 + 0.3 
+ IBMX + aFGF + cholera toxin 2 .0  + 0.5 1.0 • 0.2 

Two million c~lls (confluent cultures) or 2 • 105 cells (subconfluent cultures) were preincubated for 30 rain in DME before receiving the various agents, Cholera 
toxin (1 /~g/ml) was present during the 30-rain incubation, aFGF (30 ng/ml) was added for 15 rain before addition of IBMX (1 raM). Forskolin (10 ~M) was 
added 15 rain after IBMX. The accumulation of cAMP was measured 10 rain after addition of IBMX (when forskolin was omitted) or 10 rain after addition of 
forskolin. Determination of cAMP content was done by radioimmunoassay as described in Materials and Methods. Values are the means :[: standard error of four 
different determinations. 

The Journal of Cell Biology, Volume 120, 1993 774 



adherent junctions that were previously described in src- 
transformed chick cells (43, 44). Since one of the primary 
events in aFGF-induced scattering consists of the removal of 
desmosomal components from the cell periphery (7), our 
results suggest that intercellular junctions may be direct tar- 
gets for growth factor action. Involvement of a specific sig- 
naling pathway in the disruption of intercellular contacts 
induced by low extracellular calcium had already been 
reported 00). On the other hand, cell adhesion molecules 
that participate in establishing cell-cell interactions mediate 
their function through pertussis-sensitive G protein (12), 
suggesting that modifications in the balance of messenger 
molecules could in turn be directly reflected by changes in 
intercellular adhesiveness. 

From our results, it appears clear that tyrosine kinase- 
modulating agents cannot distinguish between the two re- 
sponses elicited by aFGE In an attempt to demonstrate that 
the transducing pathways of aFGF leading to the two biologi- 
cal responses of NBT-II cells are different, we found that 
TGF-/31 has the unique property of blocking aFGF-induced 
DNA replication without affecting aFGF-mediated EMT. 
Because they are not equally sensitive to TGF-/~I, the two bi- 
ological responses of NBT-II cells are therefore not triggered 
by the same set of transducing molecules. Mysterious for a 
long time, the nature of the signaling mechanisms of TGF~ 
is now being progressively elucidated (28, 30). Most inter- 
estingly, the growth inhibitory signals of TGF-/~I are likely 
to take place late during the cell cycle by preventing the phos- 
phorylation of pRB (24). This result suggests that the two 
pathways of aFGF in NBT-II cells diverge at a branching 
point taking place before late (31 phase. 

Activation or inhibition of PKC did not have any effect on 
the two responses elicited by aFGF in NBT-II cells (data not 
shown). Consequently, we sought to determine whether the 
effect of cAMP-elevating agents on the two responses to 
aFGF could provide additional evidence for the existence of 
a diverging point in the transduction pathways of aFGE Our 
results point out to the discriminative effect of sustained ele- 
vation of cAMP: cAMP-elevating agents indeed synergize 
with aFGF to trigger DNA synthesis and strongly repress 
aFGF-induced EMT. Moreover, cAMP elevation is also 
capable of reversing the fibroblastic-like phenotype, indicat- 
ing that the level of cAMP not only regulates EMT but is also 
probably involved in the maintenance of the epithelial 
phenotype. 

Implication of cAMP in FGF-induced mitogenesis has 
been a subject of controversy (25, 36). More generally, it ap- 
pears that cAMP could be involved in epithelial but not in 
fibrohlastic mitogenesis (14). However, there are exceptions 
to this rule. For example, cAMP-elevating agents still poten- 
tiate aFGF-induced DNA synthesis in fibroblastic-like NBT- 
II cells that have been maintained in the presence of aFGF 
for one month (data not shown); cAMP enhancers also syn- 
ergize with insulin to induce DNA synthesis in 3T3 fibro- 
blasts (32). 

Cyclic AMP not only regulates cell division but also cell 
differentiation. In many cells, there is an obvious link be- 
tween growth and inhibition of differentiation or conversely, 
between growth arrest and differentiation processes. Our 
system provides evidence for such a linkage, since cAMP 
elevation stimulated DNA synthesis and inhibited EMT, 
which can be regarded as a process of differentiation. In ad- 
dition it should be stressed that the status of the cell itself 

participates in the choice between proliferation and differen- 
tiation (42). In agreement with our results, O'Neill and co- 
workers reported that elevation in intracellular cAMP stimu- 
lates the proliferation of quiescent fibroblasts and inhibits 
their motility (32). 

Measurements of intracellular cAMP content in sub- 
confluent and confluent cultures indicated that no change in 
the cAMP level was detected in FGF-stimulated cells, even 
in the presence of cAMP-elevating agents. The discrepancy 
between our results and others' (26) might arise from the fact 
that in our system cAMP stimulates cell proliferation while 
in the other report it was a strong inhibitor of FGF-induced 
mitogenesis. The absence of effect of aFGF on cAMP pro- 
duction suggests that the pathways of aFGF and cAMP are 
largely separate. Moreover, our results raise the question as 
to whether cAMP elicits its discriminative effects on aFGF 
functions by activating cyclic AMP-dependent protein ki- 
nases (PKA) or by acting on gene expression. Cyclic AMP 
could indeed display both stimulatory and inhibitory effects 
by acting only on DNA transcription: whereas transcrip- 
tional activation of cyclic AMP-responsive element (CRE)- 
containing genes is a common effect of cAMP, cAMP in- 
hibits fibronectin gene expression in a granulosa cell line by 
acting indirectly on a DNA sequence other than CRE (3). 
Therefore, it would be interesting to study induction of gene 
expression in aFGF-stimulated NBT-II ceils in the presence 
or absence of cAMP-elevating agents. 

There is increasing evidence that many signals emanating 
from a single growth factor receptor follow multiple cellular 
pathways. This could explain the pleiotropic effects of growth 
factors that elicit their biological responses by inducing a 
wide range of cellular modifications. The molecular bases 
underlying the generation of complex networks of branching 
pathways are far from being elucidated. However, there is 
evidence that divergence of the signals might occur at the 
receptor level (40, 47). In the case of the dual response 
elicited by aFGF in NBT-II ceils, our experiments suggest the 
existence of a precocious branching point that can be arti- 
ficially modulated by elevation of intracellular cAMP. It is 
therefore conceivable that signal transfer particles created 
between the stimulated receptor and intracellular effector 
molecules might specify the type of biological response. 
This hypothesis is under current investigation. 
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