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Abstract 
Purpose: The aim of our work is to evaluate the correlation of two-dimensional (2D) and three-dimensional (3D) 
radiomics and metabolic features of hepatocellular carcinoma (HCC) with tumour diameter, staging, and metabolic 
tumour volume (MTV).

Material and methods: Thirty-three patients with HCC were studied using 18F-fluorodeoxyglucose positron-emission 
tomography with computed tomography (18F [FDG] PET/CT). The tumours were segmented from the PET images after 
CT correction. Metabolic parameters and 35 radiomics features were compared using 2D and 3D modes. The meta-
bolic parameters and tumour morphology were compared using 2 different types of software. Tumour heterogeneity 
was studied in both metabolic parameters and radiomics features. Finally, the correlation between the metabolic and 
radiomics features in 3D mode, as well as tumour morphology and staging according to the American Joint Committee 
on Cancer (AJCC) staging were studied.

Results: Most of the metabolic parameters and radiomics features are statically stable through the 2D and 3D modes. 
Most of the 3D mode features show a correlation with metabolic parameters; the total lesion glycolysis (TLG) shows 
the highest correlation, with a Spearman correlation coefficient (rs) of 0.9776. Also, the grey level run length matrix/
run length non-uniformity (GLRLM_RLNU) from radiomics features exhibits a correlation with a Spearman corre-
lation coefficient of 0.9733. Maximum tumour diameter is correlated with TLG and GLRLM_RLNU, with rs equal to 
0.7461 and 0.7143, respectively. Regarding AJCC staging, some features show a medium but prognostic correlation. 
In the case of 2D-mode features, all metabolic and radiomics features show no significant correlation with MTV, 
AJCC staging, and tumour maximum diameter.

Conclusions: Most of the normal metabolic parameters and radiomics features are statistically stable through the 3D 
and 2D modes. 3D radiomics features are significantly correlated with tumour volume, maximum diameter, and 
staging. Conversely, 2D features have negligible correlation with the same parameters. Therefore, 3D mode features 
are preferable and can accurately evaluate tumour heterogeneity.
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Introduction 
Hepatocellular carcinoma (HCC) is the most common 
primary liver malignancy and a leading cause of cancer-
related death [1]. HCC is an extremely heterogeneous dis-
ease, and intratumour heterogeneity is a recognised fact 

within each specific tumour. Heterogeneity could involve 
molecular, morphological, and immunohistochemical 
characteristics.

The pathologic classification of HCC is based on  
the degree of cellular difference. The cancer tissue of two 
different histological grades may be present in the same 
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tumour. Intratumor heterogeneity of HCC has a prognos-
tic value [2]. 

It is hard to survey intra-tumoural heterogeneity with 
conventional testing or biopsy because it is difficult to  
cover the full degree of phenotypic or hereditary variety 
inside a tumour. Imaging modalities such as X-ray, ultra-
sound (US), computed tomography (CT), magnetic reso-
nance imaging (MRI), and positron emission tomography 
(PET) show a good and non-intrusive technique for evalu-
ating the heterogeneity inside a tumour. A limitation that 
applies to all imaging modalities is that the image inter-
pretation is based on a visual process. However, there are 
features within each image that may not be appreciated 
readily by the naked eye [3].

Recently, there has been extensive effort in the medical 
imaging community to obtain correlations between imag-
ing features and tumour heterogeneity; an approximation 
for this concern is radiomics, which is a new technique 
that depends on the extraction of more data from bio-
medical images that cannot be investigated by the naked 
eye. This term was used for first time by Lambin et al., 
who investigated quantitative image analysis such as tex-
ture analysis to assess tumour heterogeneity [4]. Several 
studies demonstrated a promising role for radiomics in 
cancer diagnosis, staging, and treatment assessment [5,6].

No standardisation has yet been developed for ra-
diomics. Radiomics features are variable through many 
factors such as scanners, test-retest, observers, segmen-
tation methods, and image reconstruction [7-9]. In ad-
dition, the mode of imaging may have an influence on 
radiomics. Texture analysis was performed in 2D mode. 
However, the advancements in 3D information acquisi-
tion and the high spatial resolution allow better capture 
of tissue properties [10]. Few studies have looked at the 
differences between radiomics or textural features in 3D 
and 2D modes utilising MRI or CT [11,12]. Ortiz-Ramón 
et al. introduced a radiomics approach on MRI of cancer 
lesions including lung cancer and melanoma [13].

The aim of our work was to evaluate the correlation 
of 2D and 3D radiomics and metabolic features of hepa-
tocellular carcinoma with tumour diameter, staging, and 
metabolic tumour volume.

Material and methods

Patients

This retrospective study included 33 consecutive patients 
with HCC proven by histopathology (29 males and 4 fe-
males) between November 2016 and April 2018. Patients 
were referred to our department primarily to investigate 
the extra-hepatic disease before starting an appropriate 
management plan. The average age was 57.7 years (range 
39-77). Disease stage was assigned by a tumour board 
committee and based on the American Joint Commit-
tee on Cancer (AJCC) cancer staging manual 2017 [14].  

The primary HCC was diagnosed by histopathology,  
the nodal and metastatic disease was established with 
reference to dedicated imaging, histopathology/histo-
cytology of suspicious lesions when indicated to change 
line of management as well as the clinical assessment 
and follow-up. After staging, patients were referred to 
a multidisciplinary HCC panel including an oncologist, 
surgeon, hepatologist, and interventional radiologist.  
The management plan was implemented based on the 
Barcelona Clinic Liver Cancer (BCLC) system and its up-
dates, which incorporates tumour morphology, liver func-
tion, and health performance status along with treatment-
dependent variables [15,16].

The study was approved by the institutional review 
board (IRB), and informed consent was waved.

Imaging techniques

The study was performed using a PET/CT scanner (Sie-
mens Biograph 128-mCT). The patients were positioned 
in the PET/CT scanner approximately after injection of 
FDG intravenously the patients injected according to their 
weight by 0.1 mCi or 3.7 MBq for each kg. A non-contrast 
CT scan was acquired from the base of the skull to the 
upper high region and used for attenuation correction. 
Images size was 200 × 200 pixels; slice thickness = 1 mm. 

Image processing and analysis

Imaging interpretation and analysis were performed and 
revised by a qualified radiologist with 15 years’ experience 
in reading PET/CT. The tumours were segmented from 
the PET images after CT correction, using a semiauto-
matic method by ITK-snap software version 3.6.0 in 2D 
mode. In 3D mode the Pet scan segmented directly using 
a semiautomatic method in LIFEx package version 4.0.0 
(https://www.lifexsoft.org/) [17]. The metabolic param-
eters and texture features were extracted using the LIFEx 
package. Figure 1 shows a diagram of the workflow of ra-
diomics extraction, and Figure 2 shows a PET scan before 
and after delineation in the LIFEx package.

Metabolic parameters

The standardised uptake value (SUV) is defined as the 
tissue concentration of tracer, as measured by a PET 
scanner, divided by the activity injected divided by body 
weight [18]. There are many parameters related to SUV 
that can be useful for cancer diagnosis and staging.

SUVmax: The maximum SUV value at the region of 
interest, which is the commonly used SUV clinically; 
however, some works show that another SUV factor can 
give a global view for tumours, such as metabolic tumour 
volume (MTV) and TLG. 

SUVmean: The average SUV value at the region of in-
terest. 
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SUVmin: The minimum SUV value at the region of in-
terest.

Metabolic tumour volume (MTV): Measures the ac-
tive volume in ml.

Total lesion glycolysis (TLG): Is defined as the product 
of SUVmean and MTV [19].

Intra-tumour heterogeneity 

The 18F-FDG uptake heterogeneity was estimated using 
the coefficient of variation (COV), defined as the ratio be-
tween the standard deviation of SUV values and the mean 
SUV value within the delineated MTV [20].

SUV parameters are referred to as usual metabolic pa-
rameters; MTV and TLG are referred to as global meta-
bolic parameters [21].

Texture features 

Thirty-five radiomics features are studied. Histogram in-
dices derived after determination of bin width; the grey 
level co-occurrence matrix (GLCM) takes into conside
ration the arrangements of pairs of voxels to calculate 
textural indices, and the neighbourhood grey-level dif-
ferent matrix (NGLDM) corresponds to the distinction 
of grey-level between one voxel and its 26 neighbours in  
3 dimensions. The grey-level run length matrix (GLRLM) 
provides the scale of consistent runs for every grey-level. 
The grey-level zone length matrix (GLZLM) provides data 
on the scale of consistent zones for every grey-level in  
3 dimensions.

Table 1 summarises all of the different features included 
in this study. More details about the radiomics features used 

Figure 1. The workflow of standardised uptake value (SUV) parameters and radiomics features extraction

2D PET image 

3D PET scan 

2D segmentation

3D segmentation

SUV parameters

Features analysis

Radiomics features extraction

Figure 2. Coronal positron-emission tomography (PET) images of a 59-year-old male with hepatocellular carcinoma before (A) and after (B) delineation 
of the liver lesion using LIFEx package

A B
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Table 1. Summary of the features included in this study

Feature type Feature indexFeature name 

SUV/normal metabolic parametersSUVmin (SUV)The minimum SUV

SUV/normal metabolic parametersSUVmean (SUV)The average SUV

SUV/normal metabolic parametersSUVstd (SUV)The standard deviation of SUV 

SUV/normal metabolic parametersSUVmax (SUV)The maximum SUV 

SUV/normal metabolic parametersSUV(std/mean)The coefficient of variation 

Global metabolic parameters TLG (ml) Total lesion glycolysis 

Global metabolic parameters(MTV) Volume (ml)Metabolic tumour volume

Histogram indices HISTO_SkewnessSkewness

Histogram indices HISTO_KurtosisKurtosis

Histogram indices HISTO_Entropy_log10Entropy

Histogram indices HISTO_Entropy_log2Entropy

Histogram indices HISTO_EnergyEnergy

The grey level co-occurrence matrix (GLCM)GLCM_HomogeneityHomogeneity

GLCMGLCM_EnergyEnergy 

GLCMGLCM_ContrastContrast 

GLCMGLCM_CorrelationCorrelation

GLCMGLCM_Entropy_log10Entropy

GLCMGLCM_Entropy_log2Entropy

GLCMGLCM_DissimilarityDissimilarity

The grey-level run length matrix (GLRLM) GLRLM_SREShort-run emphasis 

GLRLMGLRLM_LRELong-run emphasis 

GLRLMGLRLM_LGRELow grey-level run emphasis 

GLRLMGLRLM_HGREHigh grey-level run emphasis 

GLRLMGLRLM_SRLGEShort-run low grey-level emphasis 

GLRLMGLRLM_SRHGEShort-run high grey-level emphasis 

GLRLMGLRLM_LRLGELong-run low grey-level emphasis 

GLRLMGLRLM_LRHGELong-run high grey-level emphasis 

GLRLMGLRLM_GLNUGrey-level non-uniformity for run 

GLRLMGLRLM_RLNURun length non-uniformity 

GLRLMGLRLM_RPRun percentage

The neighbourhood grey-level different matrix (NGLDM)NGLDM_CoarsenessCoarseness

NGLDMNGLDM_ContrastContrast

NGLDMNGLDM_BusynessBusyness

The grey-level zone length matrix (GLZLM) GLZLM_SZEShort-zone emphasis

GLZLMGLZLM_LZELong-zone emphasis 

GLZLMGLZLM_LGZELow grey-level zone emphasis 

GLZLMGLZLM_HGZEHigh grey-level zone emphasis 

GLZLMGLZLM_SZLGEShort-zone low grey-level emphasis

GLZLMGLZLM_SZHGEShort-zone high grey-level emphasis 

GLZLMGLZLM_LZLGELong-zone low grey-level emphasis 

GLZLMGLZLM_LZHGELong-zone high grey-level emphasis 

GLZLMGLZLM_GLNUGrey-level non-uniformity for zone 

GLZLMGLZLM_ZLNUZone length non-uniformity 

GLZLMGLZLM_ZPZone percentage 
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in this study can be found at: https://lifexsoft.org/index.
php/resources/19-texture/radiomicfeatures?filter_tag [0]=. 

Statistical analysis 

A paired t-test was used to obtain the differences between 
the metabolic and radiomics features in 3D and 2D mode, 
and then the Spearman correlation coefficient was cal-
culated to study the relationship between metabolic and 
radiomics features and the tumour staging, diameter, and 
metabolic volume. All statistical tests were calculated using 
Origin lab software version 6 and IBM-SPSS version 19.

Results 
SUV values (SUVmax, SUVmean, and MTV) were compared 
between the LIFEx package and an approved software: 
Siemens Syngo trueD. An independent t-test for the val-
ues in both software calculated to measure the differences 
between the values. SUVmean was the most stable feature 
between the two software packages, with a significance 
level (ρ) = 0.91, where MTV and SUVmax gave (ρ) = 0.87 
and 0.61, respectively. There was no significant difference 
between the two software packages, as shown in Figure 3.

The variations between SUV parameters, except SUVmin, 
and 20 radiomics features were statistically stable in 3D and 
2D modes, as shown in Table 2. Most features had ρ-values 
higher than 0.05; the most stable in the SUV feature was 
SUVmean, with ρ = 0.588, while in radiomics features the 
most stable were GLCM_Contrast and GLZLM_LGZE, 
with ρ = 0.89 and 0.82, respectively. Around 15 features 
were significantly different between the 2 modes; the most 
significant was GLZLM_ZP, with ρ ≤ 0.001. 

Spearman correlation coefficients for both 3D and 2D 
features with tumour maximum diameter, tumour stag-
ing, and tumour metabolic volume are shown in Tables 3 
and 4, respectively. Most of 3D mode features showed 

high correlation with metabolic tumour volume, as shown 
in Table 3; the strongest correlation of metabolic param-
eters was found with TLG, with rs = 0.98, and from ra-
diomics features it was GLRLM_RLNU, with rs = 0.97. 
Considering the 2D mode features, there was no signifi-
cant correlation between the SUV as well as radiomics 
features and MTV, AJCC staging, or tumour maximum 
diameter, where all spearman correlation coefficients were 
less than 0.3, as shown in Table 4.

To compare HCC tumour heterogeneity through up-
take heterogeneity and radiomics features, the relation-
ship between SUV(std/mean) and GLCM entropy with meta-
bolic tumour volume is shown in Figure 4. The18F-FDG 
uptake heterogeneity coefficient SUV(std/mean) mean value = 
0.304 ± 0.14, and GLCM-entropy radiomics feature mean 
= 2.016 ± 0.523.

Discussion
Several studies have demonstrated agreement on the use-
fulness of 18F[FDG]-PET/CT in defining HCC, staging, 
and treatment assessment; furthermore, some authors  
reported a high correlation with histopathology results 
[22-25]. Our study showed that the addition of radiomics 
features to PET images can provide more information 
about cancer structure and intratumour heterogeneity. 

Comparing the SUV parameters generated by LIFEx, 
which is an open-source software, with Siemens Syngo-
via TrueD (commercial software), there was no significant 
difference between the two software programs. Arian et 
al. reported differences in SUV parameters through four 
platforms [26]. On the other hand, Kenny et al. compared 
SUV parameters through 14 software programs using three 
phantoms calibrated on 3 PET/CT scanners, and agreement 
found in some software included Siemens TrueD [27].

In the current work we found that SUVmean and  
SUV(std/mean) were smaller in 3D than in 2D mode, whereas, 

Siemens MTV Siemens 
SUVmax

LIFEx 
SUVmax

LIFEx 
SUVmean

Siemens 
SUVmean

LIFEx MTV

Figure 3. Show a box plot of metabolic parameters in Siemens vs. LIFEx software. A) Metabolic tumour volume (MTV) in both software. B) A SUVmax and 
SUVmean in each software
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Table 2. The results of paired t-test for metabolic and radiomics features 
in both 2D and 3D modes; the cells signed with (*) show the significant 
difference in features between 3D and 2D

p-valuetFeatures 

0.17821.377SUV(std/mean)

< 0.0001*–5.557SUVmin (SUV)

0.588–0.546SUVmean (SUV)

0.44840.767SUVstd (SUV)

0.21041.278SUVmax (SUV)

0.58580.550HISTO_Skewness

0.49080.697HISTO_Kurtosis

0.14581.491HISTO_Entropy_log10

0.14581.491HISTO_Entropy_log2

0.05941.955HISTO_Energy

0.45620.754GLCM_Homogeneity

0.1345–1.536GLCM_Energy

0.8861–0.144GLCM_Contrast

0.0011*3.594GLCM_Correlation

0.0182*2.489GLCM_Entropy_log10

0.0182*2.489GLCM_Entropy_log2

0.7833–0.277GLCM_Dissimilarity

0.2800–1.099GLRLM_SRE

0.63770.475GLRLM_LRE

0.4633–0.742GLRLM_LGRE

0.7816–0.28GLRLM_HGRE

0.5691–0.575GLRLM_SRLGE

0.7372–0.338GLRLM_SRHGE

0.3485–0.952GLRLM_LRLGE

0.56200.586GLRLM_LRHGE

< 0.0001*5.845GLRLM_GLNU

< 0.0001*4.837GLRLM_RLNU

0.5007–0.681GLRLM_RP

< 0.001–10.763NGLDM_Coarseness

0.0094*–2.763NGLDM_Contrast

< 0.0001*4.705NGLDM_Busyness

< 0.0001*–11.597GLZLM_SZE

0.0049*3.020GLZLM_LZE

0.8234–0.225GLZLM_LGZE

0.69080.401GLZLM_HGZE

0.0628–1.928GLZLM_SZLGE

0.0628–1.526GLZLM_SZHGE

0.0319*2.243GLZLM_LZLGE

0.0041*3.089GLZLM_LZHGE

0.0001*4.430GLZLM_GLNU

0.0145*2.586GLZLM_ZLNU

< 0.0001*–12.754GLZLM_ZP

SUVmax was little higher in 2D mode than in 3D mode. 
Kocabaş et al. reported that SUVmax was variable between 
3D and 2D modes and the values were smaller in 3D 
mode [28]. In the current work we found that SUVmean and 
SUV(std/mean) were smaller in 3D than in 2D mode, whereas 
SUVmax was a little larger in 2D mode than in 3D mode. 

Our study showed a strong correlation of 3D mode 
features, especially TLG and GLRLM_RLNU with MTV. 
This strong correlation could be explained by the fact that 
TLG and GLRLM_RLNU voxel values are not absolute 
SUV values and depend on the lesion volume. Therefore, 
it showed a strong correlation with MTV. The lowest cor-
relation of MTV was found with GLRLM_LRLGE. A simi
lar correlation between the same feature and MTV was 
found by Vicente et al. in the case of breast cancer dual 
time acquisition PET [29]. GLRLM_LRLGE measures the 
roughness of the images, which increases when the texture 
is dominated by long runs that have low grey levels; hence, 
it may not correlate with volume.

In this study, TLG from metabolic parameters and 
GLRLM_RLNU from radiomics features demonstrated 
a strong correlation with maximum diameter of the le-
sion, with rs = 0.75 and 0.71, respectively. Hatt et al. re-
ported that MTV has a close correlation with tumour 
diameter in lung cancer [20]. So, the same correlation can 
be found in the case of TLG because it depends on MTV, 
and as we mentioned before: RLNU is correlated to MTV 
and to the diameter. Regarding AJCC staging, some fea-
tures showed a medium correlation with metabolic and 
radiomics features; the strongest was GLZLM_GLNU, 
with rs = 0.4915. Van Go et al. reported a similar correla-
tion between some radiomics features of [18F] (FDG-PET) 
images and AJCC staging for non-small cell lung carci-
noma (NSCLC) [21]. 

Considering the 2D mode features, there was no sig-
nificant correlation between the SUV as well as radiomics 
features and MTV, AJCC staging, or tumour maximum 
diameter. This may be because the spatial resolution of 
PET images is low, which does not give strong texture in-
formation in small areas [18].

It has been shown that tumour heterogeneity increas-
es with larger tumour volume, as reported by Hatt et al. 
and Brooks and Grigsby [20,30]. In our cohort we found 
that some HCC tumours may be more heterogeneous in 
both uptake and radiomics value without being large in 
volume, as shown in Figure 5. SUVmax is the commonest 
parameter used for follow-up; however, it suffers from the 
fact that it is not correlated to tumour volume and tumour 
heterogeneity. Figure 5 demonstrates a tumour with high 
SUVmax, but its textural analysis is less heterogeneous than 
another tumour with lower SUVmax value. Hatt et al. sug-
gested that GLCM entropy with MTV is lower in the vol-
ume range less than 50 cm3 [31]; this finding is in agree-
ment with our study.

Limitations of our study include the relatively small 
sample size, restricted number of radiomics features, and 
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Table 3. Spearman correlation coefficient rs and ρ-values for metabolic and radiomics features in 3D mode with tumour metabolic volume, tumour staging, 
and maximum diameter; cells signed with (*) are medium correlation where cells signed with (**) are high correlation 

MTV (ρ)MTV (rs)AJCC staging 
(ρ)

AJCC staging 
(rs)

Diameter (ρ)Diameter (rs)3D features

0.0002**0.60900.0657*0.32420.0029**0.5019SUVmean/std

0.0009**–0.55050.1087–0.28440.0011**–0.5439SUVmin (SUV)
0.0024**0.51140.0156*0.41770.0654*0.3246SUVmean (SUV)
0.0002**0.61230.0453*0.35090.0104*0.4400_SUVstd (SUV)

< 0.0001**0.69280.0176*0.41080.0040*0.4882SUVmax (SUV)
< 0.0001**0.68010.0292*0.37990.00380.4903SUVpeak 1 ml 
< 0.0001**0.97760.0077*0.4556< 0.0001**0.7461TLG (ml) 

0.006*0.46790.45920.13340.0623*0.3281HISTO_Skewness
0.0542*0.33820.8222–0.04070.09370.2966HISTO_Kurtosis

0.0001**0.62300.0424*0.35540.0086*0.4500HISTO_Entropy_log10
0.0003**–0.59460.0491*–0.34520.0120*–0.4323HISTO_Energy
0.0030**–0.50030.0173*–0.41170.1483–0.2573Sphericity (only for 3D ROI)

< 0.0001**0.95420.0764*0.3128< 0.0001**0.7363SHAPE_Compacity ROI (nZ > 1)
0.007*–0.46020.0773*–0.31180.0908–0.2991GLCM_Homogeneity

0.0003**–0.58720.041*–0.35760.0181*–0.4090GLCM_Energy
0.0050*0.47730.0561*0.33580.0633*0.3269GLCM_Contrast

< 0.0001**0.76140.16350.2483< 0.0001**0.6277GLCM_Correlation
0.0002**0.60960.0289*0.38050.0120*0.4323GLCM_Entropy_log10
0.0050*0.47660.0575*0.33400.0746*0.3145GLCM_Dissimilarity
0.26150.20120.12850.27010.51900.1169GLRLM_SRE
0.4674–0.13100.1511–0.25560.6283–0.0875GLRLM_LRE
0.1276–0.27070.1333–0.26680.4802–0.1273GLRLM_LGRE

0.0012**0.53940.0174*0.41150.0486*0.3460GLRLM_HGRE
0.0708*–0.31850.0658*–0.3240.3982–0.1521GLRLM_SRLGE

0.0023**0.51240.0145*0.42180.0596*0.3314GLRLM_SRHGE
0.6802–0.07450.5303–0.11330.9617–0.0087GLRLM_LRLGE

< 0.0001**0.63800.0080*0.45380.0256*0.3883GLRLM_LRHGE
< 0.0001**0.89300.13280.2672< 0.0001**0.6943GLRLM_GLNU
< 0.0001**0.97330.0120*0.4324< 0.0001**0.7143GLRLM_RLNU

0.30230.18520.19110.23340.55190.1074GLRLM_RP
< 0.0001**–0.96520.0213*–0.3993< 0.0001**–0.711NGLDM_Coarseness

0.62010.08960.31350.1810.9764–0.0054NGLDM_Contrast
0.0061*0.46760.60410.09370.0697*0.3197NGLDM_Busyness
0.0831*0.30610.0071*0.460.0878*0.3018GLZLM_SZE
0.43480.14070.4722–0.12960.55810.1057GLZLM_LZE

0.0028**–0.50430.0100*–0.44220.0781*–0.311GLZLM_LGZE
0.0001**0.62430.0163*0.41490.0171*0.4122GLZLM_HGZE
0.0001**–0.62330.0350*–0.36830.0312*–0.3756GLZLM_SZLGE
0.0003**0.59290.0175*0.41100.0197*0.4042GLZLM_SZHGE

0.22390.21760.7627–0.05460.28690.1910GLZLM_LZLGE
0.13550.26540.5660–0.10360.31800.1793GLZLM_LZHGE

< 0.0001**0.91810.0037*0.4915< 0.0001**0.6590GLZLM_GLNU
< 0.0001**0.85900.0070*0.4607< 0.0001**0.6412GLZLM_ZLNU

0.29260.18880.09120.29880.48020.1273GLZLM_ZP
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Table 4. Spearman correlation coefficient (rs) and p-values for metabolic and radiomics features in 2D mode with tumour metabolic volume, tumour staging, 
and maximum diameter

MTV 
(p)

MTV 
(rs)

AJCC satging
(p)

 AJCC staging 
(rs)

Diameter
(p)

Diameter
(rs)

2D features 

0.6412–0.08420.86380.03100.8389–0.0368SUVmean/std

0.29250.18890.9856–0.00330.54750.1086SUVmin (SUV)

0.47080.13000.59150.09690.67980.0746SUVmean (SUV)

0.9323–0.01540.90820.02090.7127–0.0666_SUVstd (SUV)

0.51190.11830.64000.08300.69960.0698SUVmax (SUV)

0.75350.05680.60900.09240.68250.0740HISTO_Skewness

0.68290.07390.4785–0.12780.47030.1302HISTO_Kurtosis

0.8709–0.02940.92890.01620.6798–0.0746HISTO_Entropy_log10

0.93970.01370.9241–0.01720.87300.0289HISTO_Energy

0.92940.01600.8168–0.04190.73500.0612GLCM_Homogeneity

0.92940.01600.9720–0.00640.88760.0256GLCM_Energy

0.7931–0.04750.74360.05920.5707–0.1024GLCM_Contrast

0.93380.01500.9968–0.00070.78570.0492GLCM_Correlation

0.9764–0.00530.9265–0.01670.8316–0.0385GLCM_Entropy_log10

0.8549–0.03310.78490.04940.6105–0.0920GLCM_Dissimilarity

0.9544–0.01040.6910–0.07190.7114–0.0669GLRLM_SRE

0.79590.04680.6910–0.07190.55500.1066GLRLM_LRE

0.3049–0.18420.6703–0.0770.4425–0.1384GLRLM_LGRE

0.48590.12570.66500.07820.65220.0815GLRLM_HGRE

0.2027–0.22760.6484–0.08240.3550–0.1663GLRLM_SRLGE

0.48120.12700.63110.08680.62560.0882GLRLM_SRHGE

0.5000–0.12170.6320–0.08660.6873–0.0728GLRLM_LRLGE

0.12800.27040.61800.09020.32860.1755GLRLM_LRHGE

0.59670.09560.2180–0.22000.40660.1494GLRLM_GLNU

0.60700.09290.8330–0.03810.44090.1389GLRLM_RLNU

0.8957–0.02370.69320.07130.6609–0.0793GLRLM_RP

0.2342–0.21290.8347–0.03780.1532–0.2543NGLDM_Coarseness

0.5498–0.10800.96320.00840.3754–0.1594NGLDM_Contrast

0.57870.10030.85280.03360.47090.1300NGLDM_Busyness

0.7227–0.06420.96400.00800.7350–0.0612GLZLM_SZE

0.88840.02540.6013–0.09440.67170.0766GLZLM_LZE

0.2647–0.19990.6105–0.09200.4157–0.1466GLZLM_LGZE

0.45820.13370.54020.11060.63290.0863GLZLM_HGZE

0.2441–0.20860.6290–0.08710.4163–0.1464GLZLM_SZLGE

0.62300.08890.58520.09860.80500.0447GLZLM_SZHGE

0.8131–0.04280.5957–0.095810GLZLM_LZLGE

0.12750.27070.81440.04250.15160.2553GLZLM_LZHGE

0.66260.07890.3471–0.16900.35250.1516GLZLM_GLNU

0.85640.03280.9409–0.01340.73290.0617GLZLM_ZLNU

0.8131–0.04280.65790.08010.6602–0.0795GLZLM_ZP
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Figure 4. The correlation of SUVstd/mean and GLCM entropy with metabolic 
tumour volume (MTV)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0
0	 200	 400	 600	 800	 1000

MTV (ml)

SUVstd/mean GLCM entropy

Figure 5. Comparison between two hepatocellular carcinoma (HCC) tumour parameters. (A) and (B) compare uptake heterogeneity coefficient and GLCM- 
entropy of two HCC tumours. Although (B) have a higher metabolic tumour volume, it is more homogenous than tumour (A). (C) and (D) compare the 
parameters for the same patient in 2D and 3D, respectively

A

C

B

D

lack of comparison of the findings with other clinical in-
formation such histopathology results. The clinical course 
of the disease and liver functions have not been compared 
with radiomics. However, the main focus of this investiga-
tion was to improve the performance of FDG-PET/CT in 
the diagnosis and characterisation of HCC, which will be 
extended in our future works to incorporate radiomics 
in clinical practice. Furthermore, there was medical value 
to our finding: we discovered the best mode for HCC ra-
diomics for use in our future studies.

Conclusions
The metabolic parameters and radiomics features are vari-
able between 3D and 2D modes. Some SUV parameters 
and radiomics features are statically stable through 3D 
and 2D modes. Image analysis in 3D radiomics features is 
significantly correlated with tumour volume, maximum 
diameter, and staging, whereas all features in 2D exhibit 
no correlation. Therefore, in comprehensive studies of 
intra-tumoral structure, 3D mode features can accurately 
evaluate tumour heterogeneity.
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