Europe. Even the previously reported distributions of autism risk score of AGRE individuals with and without the disorder¹ are consistent with this explanation (Supplementary Data).

As we found that autism risk scores based on the publicly available SNPs did not distinguish independent cases from controls, we asked if these score distributions differed between European populations. CEU (the control group used to train the classifier) had the lowest median and mean autism risk scores of these European populations (1.3 and 1.4, respectively) whereas Finns, a representative Northeastern European population, had the highest median and mean autism risk scores (2.8 and 2.7, respectively), as would be expected if the classifier were confounded by population structure. Their overall distributions also differed (two-sample K–S test, P = 0.0005).

In the publication describing the classifier, an autism risk score cutoff of 3.93 was used to predict affectation status. We examined the properties of our populations using this cutoff, although we note that as we had data only on 19 of the 30 SNPs, it is an approximation of the results based on the 30 SNP classifier.¹ Importantly, the proportion of Finns above this autism risk score cutoff (29%) differed neither from AGRE cases (28%) nor AGRE controls (31%) (two-tailed Fisher's exact tests P = 0.89 and P = 0.81, respectively). In contrast, more Finns were classified as autistic than the training HapMap3 population CEU (12%; two-tailed Fisher's exact test P = 0.0054), the independent 1000 Genomes British population GBR (17%; two-tailed Fisher's exact test P = 0.055) and the HapMap3 Italian population TSI (16%; twotailed Fisher's exact test P = 0.039). These analyses lead to the conclusion that the autism risk scores based on the publicly available SNPs effectively separate European populations from one another, but do not separate cases from controls. Moreover, as Northeastern Europeans generally had higher scores than Western or Southern Europeans, this would result in inflated measures of accuracy in the previously reported independent validation that used diverse European Americans as cases and Northwestern Europeans as controls.¹

Whereas these strongest contributors to the classifier are more consistent with artifacts of population structure than with true autism spectrum disorder signal, it remains possible that there are some true signals differentiating cases and controls, particularly among the 207 weaker SNPs that are not currently publicly available. However, until more evidence can be provided, we favor the more conservative interpretation that these associations are due to previously unobserved population stratification in the cases and controls, and do not contribute meaningfully to a diagnostic classifier.

CONFLICT OF INTEREST

 DHG is on the scientific advisory board of Synapdx. All other authors declare no conflict of interest.

TG Belgard¹, I Jankovic², JK Lowe^{1,3} and DH Geschwind^{1,2,3} ¹Center for Autism Research and Treatment, and Program in Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; ²Department of Human Genetics, University of California, Los Angeles, CA, USA and ³Program in Neurogenetics, Department of Neurology, University of California, Los Angeles, CA, USA

E-mail: dhg@mednet.ucla.edu

REFERENCES

- 1 Skafidas E et al. Mol Psychiatry 2012, e-pub ahead of print 11 September 2012; doi:10.1038/mp.2012.126.
- 2 Geschwind DH, Sowinski J, Lord C, Iversen P, Shestack J, Jones P *et al. Am J Hum Genet* 2001; **69**: 463–466.
- © 2014 Macmillan Publishers Limited

- 3 Lajonchere CM, AGRE Consortium. Neuron 2010; 68: 187–191.
- 4 Yang W-Y, Novembre J, Eskin E, Halperin E. *Nature* 2012; **44**: 725–731.
- 5 Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM et al. Nucleic Acids Res 2001; 29: 308–311.
- 6 Kidd KK et al. Am J Phys Anthropol 2003, 120 (Suppl S36): 128.

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

OPEN

Response to Belgard et al.

Molecular Psychiatry (2014) **19,** 407–409; doi:10.1038/mp.2013.186; published online 14 January 2014

We thank the Editor for the opportunity to respond to the letter from Belgard *et al.*¹ In their letter, these authors consider that the issue of ethnic population stratification may have negatively impacted the findings in our original manuscript.² We agree that population stratification is an important issue that needs to be accounted for in such analyses.

We wrote to Dr Belgard who kindly provided the 19 singlenucleotide polymorphisms (SNPs) used in their analysis.¹ These 19 SNPs were derived from the 30 SNPs provided in our original article. Of these 19 SNPs, the number of SNPs with positive weights exceeded the number of SNPs with negative weights, including the second most negative weighted SNP, rs12317962, on KCNMB4, which would bias the classifier score. Our original analyses included a total of 237 SNPs. In order to address the issue of ethnic population stratification, we downloaded data from the 1000 genome cohort,³ including Central European (CEU), Finnish (FIN), Great British (GBR) and Iberian Spanish (IBS) populations.

In their analysis using 19 SNPs, Belgard et al. indicated that in Finns (non-autism spectrum disorder (ASD)), our classifier had a higher chance of classifying individuals as ASD compared with CEU (non-ASD) individuals. They concluded that our classifier might be better at separating between European subpopulations than cases from controls. In order to examine this in detail, we tested our classifier performance in correctly identifying control individuals from the CEU, FIN, GBR and IBS control populations. As not all SNPs were available across all data sets, we retrained the classifier using the common SNPs on our training set and then applied the classifier on unseen validation data from the FIN, GBR and IBS control cohorts. Comparing these ethnic European subpopulations, we found that greater differences in classifier score between these populations occurred when only part of the classifier was used (a difference as high as 25% was observed between the FIN and GBR groups). However, using the full classifier, the effects of ethnic population contributed to < 6% of the total difference in classifier score. We also provide the full 237 SNPs relevant to our classifier (Table 1). The full code used in the generation of the classifier has been made available on the Autism Genetic Resource Exchange (AGRE) website (http://agre.org), together with testing of the classifier on other ASD data sets.

Using our SNPs, we then examined their predictive accuracy in classifying control individuals from the FIN and GBR (non-ASD) populations, as well as SFARI (Simons Foundation Autism Research Initiative) ASD probands (the independent validation sample in our paper). We plotted the percentage of individuals classified as

Table 1.	List of	all 237	SNPs for	ASD	classifier	in the	CEU Cohort, ²
organised	d from	highest	to lowes	st me	dian weig	ghtings	

SNP	Weight Iower	Weight median	Weight upper	Gene no.	Gene symbol
rs968122	1.5465	1.5555	1.5645	27345	KCNMB4
rs876619	0.9476	1.2092	1.4708	2775	GNAO1
rs11020772	0.8553	0.8641	0.8729	2915	GRM5
rs9288685	0.5856	0.5998	0.614	3635	INPP5D
rs10193128	0.5836	0.5946	0.6056	3635	INPP5D
rs7842798	0.5298	0.5386	0.5474	114	ADCY8
rs3773540	0.5125	0.5208	0.5291	55799	CACNA2D3
rs1818106	0.5002	0.5161	0.532	80310	PDGFD
rs2384061	0.4195	0.4306	0.4417	109	ADCY3
rs12582971	0.3983	0.4295	0.4607	5288	PIK3C2G
rs10409541	0.4067	0.4189	0.4311	773	CACNA1A
rs2300497	0.3782	0.3889	0.3996	801	CALM1
rs/562445	0.3741	0.3843	0.3945	2066	ERBB4
rs/31399/	0.3382	0.3507	0.3752	5801 775	PIPKK
152259110	0.5546	0.3552	0.5750	2022	CACNATC
rs10823195	0.1801	0.3470	0.313	1763	
rs9798267	0.2759	0 3388	0.4017	84083	ZRANR3
rs1075354	0.4236	0.3177	0.6402	55799	CACNA2D3
rs1942052	0.2641	0.3088	0.3535	130013	ACMSD
rs4696443	0.2525	0.3047	0.3569	23321	TRIM2
rs243196	0.2402	0.2976	0.3549	1112	FOXN3
rs16929470	0.1854	0.2712	0.3571	775	CACNA1C
rs7580690	0.1647	0.2248	0.285	83439	TCF7L1
rs7145618	0.1515	0.2238	0.296	5528	PPP2R5C
rs3770132	0.1514	0.2093	0.2673	3676	ITGA4
rs3790095	0.1215	0.2017	0.2819	2775	GNAO1
rs1013459	0.1417	0.1969	0.2522	2774	GNAL
rs11001056	0.1519	0.1891	0.2263	5592	PRKG1
rs10952662	0.148	0.1868	0.2257	26047	CNTNAP2
rs//56516	0.152	0.1853	0.2186	3120	HLA-DQB2
rs8054767	0.1322	0.1803	0.2284	55/9	PRKCB
rs2239028	0.1121	0.1703	0.2405	5226	DICCO
rs1078168	0.0909	0.1737	0.2303	401237	FLCG2
rs7100765	0.0037	0.099	0.1322	5593	PRKG2
rs1369450	0.0563	0.0933	0.1450	114	ADCY8
rs1040336	-0.0615	0.091	0.2435	2272	FHIT
rs10407144	0.0434	0.0872	0.131	773	CACNA1A
rs10794197	0.045	0.0869	0.1287	1488	CTBP2
rs3734464	0.0247	0.0868	0.149	5071	PARK2
rs7864216	-0.0072	0.0863	0.1798	9630	GNA14
rs4254056	0.0432	0.0846	0.126	338751	OR52L1
rs988920	0.0453	0.0842	0.1232	9229	DLGAP1
rs12393998	0.0536	0.0839	0.1142	8450	CUL4B
rs872794	0.0413	0.0813	0.1213	3778	KCNMA1
rs2503220	-0.0527	0.0806	0.214	5142	PDE4B
rs10468681	0.0356	0.08	0.1243	2//4	GNAL
rs/258489	0.0428	0.079	0.1152	808 E144	CALM3
15155900	0.0379	0.0765	0.115	0569	CAPPD2
rc2161620	0.0301	0.0754	0.1139	10725	GADDRZ NEATS
rs7097311	0.0232	0.0703	0.1270	5593	PRKG2
rs2088747	-0.0137	0.0693	0.1522	11060	WWP2
rs9832697	-0.0766	0.0689	0.2144		KCNMB2
rs7731023	0.0343	0.0683	0.1023	6502	SKP2
rs7120612	0.0224	0.0659	0.1094	390055	OR52A6
rs2033655	0.0277	0.0647	0.1017	109	ADCY3
rs1453541	-0.1057	0.0354	0.1766	219983	OR4D6
rs3746821	-0.0262	0.0335	0.0932	958	CD40
rs220740	-0.0085	0.0332	0.0749	10846	PDE10A
rs2299679	-0.014	0.0331	0.0801	5332	PLCB4
rs887387	-0.0028	0.0317	0.0662	489	ATP2A3
rs7174459	-0.0092	0.0288	0.0669	4735	NEDD5
rs884399	-0.0073	0.0281	0.0634	5581	PRKCE
rs5021051	-0.0146	0.027	0.0686	2895	GRID2
rs2903813	-0.0208	0.0252	0.0711	3315	HSPB1
rs1062935	-0.0207	0.0245	0.0697	5/521	кріОК

Table. 1. (Continued)						
SNP	Weight	Weight	Weight	Gene	Gene	
	lower	median	upper	no.	symbol	
rs9347553	-0.0154	0.0228	0.0609	5071	PARK2	
rs11072416	-0.0259	0.0222	0.0703	6263	RYR3	
rs4553343	-0.0304	0.0204	0.0712	2977	GUCY1A2	
rs7146234	-0.0132	0.0202	0.0535	5495	PPM1A	
rs848282	-0.0191	0.0172	0.0536	55120	FANCL	
rs12726510	-0.0493	0.0120	0.0748	5321	ΓΙΓΛΛ ΡΙΔ2GΔΔ	
rs718949	-0.0303	0.0093	0.0489	1488	CTBP2	
rs1954787	-0.0264	0.0089	0.0441	2900	GRIK4	
rs2238079	-0.0283	0.0084	0.045	775	CACNA1C	
rs1337420	-0.0398	0.008	0.0558	2898	GRIK2	
rs917948	-0.0553	0.0075	0.0704	5536	PPP5C	
rs381/222	-0.1848	0.0055	0.1957	4660	PPP1R12B	
rs1/53114/	-0.0612	0.003	0.0672	2700	GNG12 ITDDD	
rs4145903	-0.0801	-0.0304	-0.0033	783	CACNR2	
rs10505029	-0.1011	-0.0404	0.0203	51366	UBR5	
rs1122838	-0.1213	-0.0408	0.0396	9630	GNA14	
rs1993477	-0.0818	-0.0434	-0.0049	51366	UBR5	
rs2179871	-0.0912	-0.0454	0.0005	10369	CACNG2	
rs10740244	-0.0892	-0.0467	-0.0041	5592	PRKG1	
rs2503220	-0.1151	-0.04/2	0.0207	5142	PDE4B	
rs1005057	-0.0050	-0.0466	-0.0139	21405 83430	UDEZJI TCE7I 1	
rs7176475	-0.1234	-0.0528	0.0201	123746	PLA2G4F	
rs1937671	-0.0953	-0.0545	-0.0138	5592	PRKG1	
rs7079293	-0.0902	-0.0549	-0.0196	10581	SORBS2	
rs1003854	-0.1288	-0.0551	0.0187	326	AIRE	
rs919741	-0.0962	-0.0565	-0.0169	815	CAMK2A	
rs750438	-0.1075	-0.0574	-0.0074	11184	MAP4K1	
rs6139034	-0.0997	-0.0576	-0.0154	3704 6019	IIPA II 6	
rs7108524	-0.1087	-0.0599	-0.0267	81286	OR51F3	
rs1002424	-0.1023	-0.0626	-0.0229	5562	PRKAA1	
rs2239316	-0.1033	-0.0631	-0.0228	1387	CREBBP	
rs5030949	-0.157	-0.0653	0.0264	3098	HK1	
rs17682073	-0.1006	-0.066	-0.0315	6262	RYR2	
rs1872902	-0.1108	-0.0665	-0.0221	80310	PDGFD	
rs11602535	-0.100	-0.1236	-0.0812	219981	OK5A2	
rs10762342	-0.1733	-0.1233	-0.0774	5592	PRKG1	
rs11583646	-0.2023	-0.1311	-0.0599	6262	RYR2	
rs6118611	-0.1819	-0.1321	-0.0822	5332	PLCB4	
rs2587891	-0.1722	-0.1322	-0.0922	2775	GNA01	
rs4651343	-0.1739	-0.1333	-0.0926	5321	PLA2G4A	
rs1659506	-0.1761	-0.1363	-0.0966	23295	MGRN1	
rs22/1986	-0.1968	-0.136/	-0.0/6/	4842	NUST	
rs6071000	-0.1775	-0.1375	-0.0973	26212	OR2E2	
rs2272197	-0.1896	-0.1485	-0.1073	4216	MAP3K4	
rs4947963	-0.1867	-0.1493	-0.1119	1956	EGFR	
rs7536307	-0.1876	-0.1507	-0.1138	26289	AK5	
rs12462609	-0.2085	-0.151	-0.0936	773	CACNA1A	
rs1517521	-0.2925	-0.152	-0.0114	23180	RFTN1	
rs8063461	-0.1865	-0.1534	-0.1203	7249	ISC2	
rs88881/	-0.193/	-0.1604	-0.12/2	5924	KASGKFZ	
13722443 rs339408	-0.2455	-0.167	-0.0003	2//S 9377	TRIP10	
rs7512378	-0.2068	-0.1691	-0.1314	55811	ADCY10	
rs7870040	-0.2408	-0.1892	-0.1376	774	CACNA1B	
rs3904668	-0.2423	-0.2069	-0.1715	29993	PACS1N1	
rs12716928	-0.2784	-0.2073	-0.1362	5336	PLCG2	

Abbreviations: ASD, autism spectrum disorder; CEU, Central European; SNP, single-nucleotide polymorphism. Weight indicates the contribution of each SNP to ASD clinical status. The lower and upper weights represent the 95% confidence intervals (CIs) of the distribution of weights for each SNP.

Figure 1. Percentage of individuals classified as ASD as a function of the number of single-nucleotide polymorphisms (SNPs) ordered in decreasing absolute magnitude. Significant variance was observed at smaller number of SNPs (not plotted). Note the gradient differential between SFARI cases versus FIN and GBR between SNPs 80 and 150. ASD, autism spectrum disorder; SNPs, single-nucleotide polymorphisms; SFARI-CASES, Simons Foundation Autism Research Initiative ASD probands; population samples from the 1000 genome cohort³: GBR, Great British; FIN, Finnish.

ASD against the number of SNPs used in the classifier, with SNPs ordered by absolute magnitude of their weightings. As can be seen in Figure 1, while population stratification may have an influence at lower SNP numbers with regard to differences in classifier accuracy between populations, such an effect is diminished as a greater number of SNPs are included. The separation in percentage classified as ASD between the SFARI/ASD and the FIN/GBR groups occurred with increasing gradient between 50 and 100 SNPs, whereas at >150 SNPs the separation between these groups plateaus. This is to be expected, as these SNPs have the smallest weightings within the classifier. Therefore, in keeping with Belgard *et al*'s analysis, we show that at low SNP numbers, population effects may influence classification accuracy, but these effects are of second order to the ASD signal as the number of SNPs increases.

Using the classifier, as described above, we tested its accuracy in correctly classifying controls (non-ASD) within individual European cohorts. We achieved accuracies (that is, correct classification as non-ASD) of 82% for the FIN, 78% for GBR and 67% for the Spanish cohorts. In addition, to determine classifier performance confidence intervals, we performed a bootstrap analysis (1000 permutations were undertaken; 80% of the data was used to train a classifier to predict the remaining 20%) on all white non-hispanic populations, including all available populations (that is, SFARI and Autism Genetic Resource Exchange probands, and WTBC, CEU, FIN, GBR and IBS Controls). Diagnostic accuracy for ASD was 66.0% (90% CI: 61.5–71.9), with a sensitivity of 63.4% (90% CI: 54.3–75.9) and specificity of 67.2% (90% CI: 59.5–74.3). This equates to a positive likelihood ratio of 1.9 (90% CI: 1.3–3.0).

In our paper, we reported positive and negative predictive accuracies that were 70.8% and 71.8%, respectively.² Based on a

population prevalence of 1:88 cases of ASD in the US population,⁴ this equates to a positive predictive value (that is, precision) of 2.8% and a negative predictive value of 99.5%. This suggests that the classifier is not suitable as a general screening method, rather it should only be considered in high-risk populations where the base rate of ASD is high and produces acceptable positive and negative predictive values.

In conclusion, we demonstrate that the SNPs in our classifier show some ability to non-randomly distinguish between ASD and controls and that our results are not merely explained by population stratification as demonstrated in our analyses in independent cohorts of individuals of European ancestry. Further work on such approaches is needed in order to validate these findings, for example, prospective studies that examine children at risk for ASD (such as families with an affected member).

CONFLICT OF INTEREST

A patent application has been filed by The University of Melbourne.

ACKNOWLEDGMENTS

We thank Dr Belgard for his helpful suggestions and feedback on further analyses in the preparation of this letter.

E Skafidas^{1,2,3,4}, R Testa^{1,2,5}, D Zantomio⁶, G Chana^{1,3,7}, IP Everall^{4,7,8} and C Pantelis^{2,4,7,8}

¹Centre for Neural Engineering, The University of Melbourne, Parkville, VIC, Australia;

²Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, National Neuroscience Facility (NNF), Parkville, VIC, Australia;

³National ICT Australia, The University of Melbourne, Parkville, VIC, Australia:

⁴Florey Institute of Neurosciences and Mental Health, Melbourne Brain Centre, Parkville, VIC, Australia;

⁵Department of Psychology, Monash University, Clayton, VIC, Australia:

⁶Department of Haematology, Austin Health, Heidelberg, VIC, Australia;

⁷Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia and

⁸NorthWestern Mental Health, Melbourne Health, Parkville, VIC, Australia

E-mail: cpant@unimelb.edu.au

REFERENCES

- 1 Belgard TG, Jankovic I, Lowe JK, Geschwind DH. *Mol Psychiatry* advance online publication, 2 April 2013; doi:10.1038/mp.2013.34 (e-pub ahead of print).
- 2 Skafidas E, Testa R, Zantomio D, Chana G, Everall IP, Pantelis C. *Mol Psychiatry* advance online publication, 11 September 2012; doi:10.1038/mp.2012.126 (e-pub ahead of print).
- 3 Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE *et al. Nature* 2012; **491**: 56–65.
- 4 Centers for Disease Control and Prevention. Surveillance Summaries 2012; 61: 1-19.

