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Abstract
Obstructive nephropathy is characterized by an inflammatory state in the kidney, that is promoted by cytokines and 
growth factors produced by damaged tubular cells, infiltrated macrophages and accumulated myofibroblasts. This 
inflammatory state contributes to tubular atrophy and interstitial fibrosis characteristic of obstructive nephropathy. 
Accumulation of leukocytes, especially macrophages and T lymphocytes, in the renal interstitium is strongly associated 
to the progression of renal injury. Proinflammatory cytokines, NF-κB activation, adhesion molecules, chemokines, 
growth factors, NO and oxidative stress contribute in different ways to progressive renal damage induced by 
obstructive nephropathy, as they induce leukocytes recruitment, tubular cell apoptosis and interstitial fibrosis. 
Increased angiotensin II production, increased oxidative stress and high levels of proinflammatory cytokines contribute 
to NF-κB activation which in turn induce the expression of adhesion molecules and chemokines responsible for 
leukocyte recruitment and iNOS and cytokines overexpression, which aggravates the inflammatory response in the 
damaged kidney. In this manuscript we revise the different events and regulatory mechanisms involved in 
inflammation associated to obstructive nephropathy.

Introduction
Obstructive nephropathy due to congenital or acquired
urinary tract obstruction is the first primary cause of
chronic renal failure (CRF) in children, according to data
of The North American Pediatric Renal Transplant
Cooperative Study (NAPRTCS) [1]. Obstructive neph-
ropathy is also a major cause of renal failure in adults
[2,3].

The renal consequences of chronic urinary tract
obstruction are very complex, and lead to renal injury
and renal insufficiency. The experimental model of uni-
lateral ureteral obstruction (UUO) in rat and mouse has
become the standard model to understand the causes and
mechanisms of nonimmunological tubulointerstitial
fibrosis. This is because it is normotensive, nonproteinu-
ric, nonhyperlipidemic, and without any apparent
immune or toxic renal insult. The UUO consists of an
acute obstruction of one of the ureter that mimics the dif-
ferent stages of obstructive nephropathy leading to tubu-
lointerstitial fibrosis without compromising the life of the
animal, because the contralateral kidney maintains or

even increases its function due to compensatory func-
tional and anatomic hypertrophy [2,3].

The evolution of renal structural and functional
changes following urinary tract obstruction in these
models has been well described. The first changes
observed in the kidney are hemodynamic, beginning with
renal vasoconstriction mediated by increased activity of
the renin-angiotensin system and other vasoconstrictor
systems [4]. Epithelial tubular cells are damaged by the
stretch secondary to tubular distension and the increased
hydrostatic pressure into the tubules due to accumulation
of urine in the pelvis and the retrograde increase of inter-
stitial pressure. This is followed by an interstitial inflam-
matory response initially characterized by macrophage
infiltration. There is also a massive myofibroblasts accu-
mulation in the interstitium. These myofibroblasts are
formed by proliferation of resident fibroblasts, from bone
marrow-derived cells, from pericyte infiltration, as well
by epithelial-mesenchymal transformation (EMT), a
complex process by which some tubular epithelial cells
acquire mesenchymal phenotype and become activated
myofibroblasts [5,6].

Damaged tubular cells, interstitial macrophages and
myofibroblasts produce cytokines and growth factors
that promote an inflammatory state in the kidney, induce
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tubular cell apoptosis and provoke the accumulation of
extracellular matrix. The end-result of severe and chronic
obstructive nephropathy is a progressive renal tubular
atrophy with loss of nephrons accompanied by interstitial
fibrosis. Thus, interstitial fibrosis is the result of these
processes in a progressive and overlapping sequence. The
evolution of renal injury in obstructive nephropathy
shares many features with other forms of interstitial renal
disease such as acute renal failure, polycystic kidney dis-
ease, aging kidney and renal transplant rejection [7-9].
The final fibrotic phase is very similar to virtually all pro-
gressive renal disorders, including glomerular disorders
and systemic diseases such as diabetes or hypertension
[4].

In this review we will analyze the role of inflammation
on renal damage associated to obstructive nephropathy,
and the cellular and molecular mechanisms involved in
the genesis of these processes. As later described, the
inflammatory process, through the release of cytokines
and growth factors, results in the accumulation of inter-
stitial macrophages which, in turn, release more cytok-
ines and growth factors that contribute directly to tubular
apoptosis and interstitial fibrosis [10,11].

Urinary obstruction induces an inflammatory state in the 
kidney
In Sprague-Dawley rats subjected to chronic neonatal
UUO (from 2 to 12 days), microarray analysis revealed
that the mRNA expression of multiple immune modula-
tors, including krox24, interferon-gamma regulating fac-
tor-1 (IRF-1), monocyte chemoattractant protein-1
(MCP-1), interleukin-1β (IL-1β), CCAAT/enhancer bind-
ing protein (C/EBP), p21, c-fos, c-jun, and pJunB, were
significantly increased in obstructed compared to sham-
operated kidneys, thus suggesting that UUO induces a
pro-inflammatory environment [12]. This environment is
characterized by up-regulation of inflammatory cytok-
ines and factors that favors leukocyte infiltration. Other
cytokines with different functions are also differentially
regulated after UUO, and will contribute to the regula-
tion of inflammation and interstitial infiltration. Thus, we
will review the data available about the mechanisms
involved in this inflammatory state, including nuclear
factor κB (NF-κB) activation, increased oxidative stress,
interstitial cell infiltration, and production of proinflam-
matory cytokines and other growth factors with inflam-
matory or anti-inflammatory properties, in the renal
damage after UUO.

Thus, monocytes/macrophages, T cells, dendritic cells
and neutrophils are involved in this inflammatory state of
the kidney after UUO. Whereas interstitial macrophages
increases 4 hours after UUO and constitute the predomi-
nant infiltrating cell population in acutely obstructed kid-
neys, T cells are also evident after 24 h of obstruction

although neither B lymphocytes nor neutrophils are
observed. Moreover, interstitial macrophages increases
biphasically with an initial rapid increase during the first
24 h after UUO and the second phase following 72 h after
UUO and all reports which observed an inverse correla-
tion between interstitial macrophage number and the
degree of fibrosis was noted at the later stage of UUO
(day 14) and therefore it will be believed the possible
renoprotective role for macrophages that infiltrate in the
later phase after UUO [13].

NF-κB activation
NF-κB is a ubiquitous and well-characterized transcription
factor with a pivotal role in control of the inflammation,
among other functions. Thus, NF-κB controls the expres-
sion of genes encoding pro-inflammatory cytokines (e. g.,
IL-1, IL-2, IL-6, TNF-α, etc.), chemokines (e. g., IL-8, MIP-
1 α, MCP-1, RANTES, eotaxin, etc.), adhesion molecules
(e. g., ICAM, VCAM, E-selectin), inducible enzymes
(COX-2 and iNOS), growth factors, some of the acute
phase proteins, and immune receptors, all of which play
critical roles in controlling most inflammatory processes
[14,15]. Also the PI3K/Akt pathway, which has been
reported to be activated very early after UUO [16], results
in activation of NF-κB [17]. NF-κB also controls the
expression of EMT inducers (e.g., Snail1), and enhances
EMT of mammary epithelial cells [18,19] (Figure 1).

NF-κB is activated by several cytokines such as IL-1β,
TNF-α, by oxidative stress and by other molecules such

Figure 1 Schematic representation of some of the signaling inter-
mediates potentially involved in regulation of inflammatory re-
sponse after UUO. UUO induces IL-1β and TNF-α expression, leading 
to NF-κB activation. UUO also induces both oxidative stress and in-
creased Angiotensin II (Ang II) levels. Ang II also activate the transcrip-
tion factor NF-κB, both directly and indirectly, by promoting oxidative 
stress, which in turns activate Ang II by regulating angiotensinogen ex-
pression. TGF-β activates NF-κB through I-κB inhibition, a mechanism 
shared by TNF-α. NF-κB activation concludes in IL-1β and TNF-α ex-
pression enhancing NF-κB activation. Also NF-κB controls the expres-
sion of genes encoding pro-inflammatory cytokines, adhesion 
molecules and iNOS.
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as Angiotensin II (Ang II) [20]. Obstructed kidneys pre-
sented many cells that contained activated NF-κB com-
plexes, in glomeruli, in tubulointerstitial cells and in
infiltrating cells [21]. NF-κB is activated very early follow-
ing UUO [22] and it is maintained activated during at
least 7 days after UUO [21]. Furthermore, inhibition of
NF-κB activation decreases apoptosis and interstitial
fibrosis in rats with UUO [23]. NF-κB inhibition also
diminishes monocyte infiltration and inflammation gene
overexpression after UUO [21]. The administration of a
proteasome inhibitor to maintain levels of I-κB, an
endogenous inhibitor of NF-κB, reduces renal fibrosis
and macrophage influx following UUO [24].

Renal cortical TNF-α levels increases early after UUO,
whereas TNF-α neutralization with a pegylated form of
soluble TNF receptor type 1 significantly reduced
obstruction-induced TNF-α production, as well as NF-κB
activation, IκB degradation, angiotensinogen expression,
and renal tubular cell apoptosis, thus suggesting a major
role for TNF-α in activating NF-κB via increased IκB-
alpha phosphorylation [25].

In addition, curcumin, a phenolic compound with anti-
inflammatory properties, has revealed protective action
against interstitial inflammation in obstructive nephropa-
thy by inhibition of the NF-κB-dependent pathway [26].
HGF has also been reported to inhibit renal inflamma-
tion, proinflammatory chemokine expression and renal
fibrosis in an UUO model. The anti-inflammatory effect
of HGF is mediated by disrupting nuclear factor NF-κB
signaling, as later will be described [27].

NF-κB can be also activated by oxidative stress. The
administration of antioxidant peptides to rats that suf-
fered UUO was associated to a lower activation of NF-κB,
and significantly attenuated the effects of ureteral
obstruction on all aspects of renal damage associated to
UUO [28]. Thus, oxidative stress seems to play also a
major role in the UUO-associated inflammation.

Oxidative stress
Oxidative stress has been implicated in the pathogenesis
of various forms of renal injury [29]. Oxidative stress is
also a major activator of the NF-κB and thus, an inductor
of the inflammatory state [30] (Figure 1). There are sev-
eral evidences showing that increased oxidative stress is
involved in renal inflammatory damage after UUO. Reac-
tive oxygen species are significantly increased in the
chronically obstructed kidney [31] and a positive correla-
tion was observed between the levels of free radical oxi-
dation markers in the obstructed kidney tissue and in
plasma [32]. Superoxide anion and hydrogen peroxide
production increase significantly in the obstructed kid-
ney [33]. After 5 days of obstruction, it has been reported
a slight increase on renal cortex NADPH oxidase activity
(a major source for superoxide production) whereas after

14 days of obstruction, a marked increase on NADPH
oxidase activity was observed. In addition, decreased
superoxide dismutase activity were demonstrated follow-
ing 14 days of obstruction whereas no differences were
noticed after 5 days of kidney obstruction [34].

Increased Ang II production, accumulation of activated
phagocytes in the interstitial space and elevation of
medium-weight molecules have been involved as respon-
sible for the increased oxidative stress [35] after UUO.
UUO also generate increased levels of carbonyl stress,
and subsequently advanced glycation end-products
(AGEs), and nitration adduct residues, both contributing
to the progression of renal disease in the obstructed kid-
ney [36,37]. The products of lipid peroxidation have been
also found increased in both plasma and obstructed kid-
ney after UUO [38]. Carboxymethyl-lysine, a marker for
accumulated oxidative stress, was found to be increased
in the interstitium of the obstructed kidneys [39]. Fur-
thermore, heme oxygenase-1 (HO-1) expression, a sensi-
tive indicator of cellular oxidative stress, was also found
to be induced as early as 12 hours after ureteral obstruc-
tion [39]. All these results suggest that oxidative stress is
involved in the pathogenesis of UUO. On the other hand,
levels of the antioxidant enzyme catalase and copper-zinc
superoxide dismutase, which prevent free radical dam-
age, are lower in the obstructed kidney compared with
the contralateral unobstructed kidney [33].

Antioxidant compounds, such as tocopherols reduce
the level of oxidative stress observed after UUO [38].
Moreover, the administration of isotretinoin, a retinoid
agonist, reduces renal macrophage infiltration in rats
with UUO [39]. It should be noted that an increase in cel-
lular reactive oxygen species (ROS) production stimulate
the expression of the transcription factor Snail and favors
EMT [40].

In short, oxidative stress markers levels increase in the
kidney during UUO whereas levels of enzymes that pre-
vent the oxidative damage are diminished in the
obstructed kidney. All these data suggest that oxidative
stress is increased in the obstructed kidney, and that
increased oxidative stress plays a role in inducing an
inflammatory state and in deteriorating the renal func-
tion of the obstructed kidney.

Angiotensin II
Angiotensin II (Ang II) behaves in the kidney as a proin-
flammatory mediator, as it regulates a number of genes
associated with progression of renal disease. The regula-
tion of gene expression by Ang II occurs through changes
in the activity of transcription factors within the nucleus
of target cells. In particular, several members of the NF-
κB family of transcription factors are activated by Ang II,
which in turn fuels at least two autocrine reinforcing
loops that amplify Ang II and TNF-α formation [41].
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Thus, it is not surprisingly the interrelation between Ang
II and proinflammatory cytokines effects in the intersti-
tial cell infiltration after UUO. Many studies have demon-
strated that obstructive nephropathy leads to activation
of the intrarenal renin-angiotensin system [4,42,43]. This
system is also activated in animal models of UUO. Ang II
has a central role in the beginning and progression of
obstructive nephropathy, both directly and indirectly, by
stimulating production of molecules that contribute to
renal injury. Following UUO, Ang II activates NF-κB, and
the subsequent increased expression of proinflammatory
genes [22]. In turn, the angiotensinogen gene is stimu-
lated by activation of NF-κB [44] (Figure 1). In relation to
the inflammatory process, Ang II type 1 receptor (AT1R)
regulates several proinflammatory genes, including
cytokines (interleukin-6 [IL-6]), chemokines (monocyte
chemoattractant protein 1 [MCP-1]), and adhesion mole-
cules (vascular cell adhesion molecule 1 [VCAM-1]) [45],
but others, as the chemokine RANTES, are regulated by
the Ang II type 2 receptor (AT2R) [46]. Some evidence
suggests that AT2R participates in the inflammatory
response in renal and vascular tissues [45-47]. In vivo and
in vitro studies have shown that Ang II activates NF-κB in
the kidney, via both AT1R and AT2R receptors [48,49].

Most studies have focused on the role of AT1R activa-
tion on kidney inflammation after UUO. For instance,
inhibition or inactivation of AT1R also reduces NF-κB
activation in the obstructed kidneys after UUO [50,51].
Also AT1R blockade, partially decreased macrophage
infiltration in the obstructed kidney [21,50,52]. Thus
AT1R activation seems to play a role in the UUO-associ-
ated inflammation. However, obstructed kidney in AT1R
KO mice showed interstitial monocyte infiltration and
NF-κB activation, and both processes were abolished by
AT2R blockade, suggesting that AT2R activation plays
also a major role in UUO-induced renal inflammation
[21]. Simultaneous blockade of both AT1R and AT2R is
able to completely prevent the inflammatory process
after UUO [21], thus giving a further proof of the role of
both receptors in the inflammatory state occurring after
UUO. It should be noted that in wild-type mice reconsti-
tuted with bone marrow cells lacking the angiotensin
AT1R gene, UUO results in more severe interstitial fibro-
sis despite fewer interstitial macrophages [53]. This effect
seems to be due to impaired phagocytic function of
AT1R-deficient macrophages [53]. This is a typical exam-
ple of the fact that manipulation of a single molecule
affecting more than one renal compartment could have
opposite effects in different compartments.

Treatment with angiotensin converting enzyme (ACE)
inhibitors greatly reduced the monocyte/macrophage
infiltration in the obstructed kidney [54] but this reduc-
tion seems to be observed only in the short-term UUO,
and 14 days after UUO ACE inhibitors did not decreased

monocyte/macrophage infiltration, maybe because in
late-stage UUO, infiltration is dependent on cytokines
formation that is independent of Ang II [55].

Ang II also stimulates the activation of the small
GTPase Rho, which in turn activates Rho-associated
coiled-coil forming protein kinase (ROCK). Furthermore,
inhibition of ROCK in mice with UUO significantly
reduces macrophage infiltration and interstitial fibrosis
[56].

Proinflammatory cytokines in urinary obstruction
TNF-α and IL-1
The prototypical pro-inflammatory cytokines, TNF-α
and interleukin-1 (IL-1), play a major role in the recruit-
ment of inflammatory cells in the obstructed kidney [57-
59]. Both TNF-α [60] and IL-1 [12,49] expression have
been found augmented after renal obstruction. TNF-
alpha production localized primarily to renal cortical
tubular cells following obstruction [61] and dendritic
cells [62]. The synthetic vitamin D analogue paricalcitol
reduced infiltration of T cells and macrophages accompa-
nied by a decreased expression of TNF-α in the
obstructed kidney [63] and TNF-α neutralization
reduced the degree of apoptotic renal tubular cell death
although it did not prevent renal apoptosis completely,
suggesting that other signaling pathways may contribute
to obstruction-induced renal cell apoptosis [60]. The IL-1
receptor antagonist (IL-1ra) administration in mice with
UUO inhibited IL-1 activity and subsequently decreased
the infiltration of macrophages, the expression of ICAM-
1 and the presence of alpha-smooth muscle actin (a
marker of myofibroblasts) [59].
Other proinflammatory cytokines
Macrophage migratory inhibitory factor (MIF) is a proin-
flammatory cytokine which regulates leukocyte activa-
tion and fibroblast proliferation but although it is
increased in the obstructed kidney after ureteral obstruc-
tion, MIF deficiency did not affect interstitial mac-
rophage and T cell accumulation induced by UUO [64],
thus suggesting that there are other factors that are also
involved.

Interstitial cell infiltration
It is now generally accepted that leukocyte infiltration
and activation of interstitial macrophages play a central
role in the renal inflammatory response to UUO [10].
The progression of renal injury in the obstructive neph-
ropathy is closely associated with accumulation of leuko-
cytes and fibroblasts in the damaged kidney. Leukocyte
infiltration, especially macrophages and T lymphocytes,
increases as early as 4 to 12 hours after ureteral obstruc-
tion and continues to increase over the course of days
thereafter [65]. There are studies suggesting that lympho-
cyte infiltration does not seem to be required for progres-
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sive tubulointerstitial injury since immunocompromised
mice with very low numbers of circulating lymphocytes
showed the same degree of kidney damage after UUO
[66]. However, macrophages are involved in the
obstructed pathology [65,67] and macrophage secretion
of galectin-3, a member of a large family of β-galactoside-
binding lectins, is the major mechanism for macrophage
to induce TGF-β-mediated myofibroblast activation and
extracellular matrix production [68]. Macrophages can be
functionally distinguished into two phenotypes based on
cell surface markers and cytokine profile, M1 and M2
macrophages, suggesting different roles of macrophages
in inflammation and tissue fibrosis [69]. Thus, whereas
M1 macrophages produce MMPs and induce myofibro-
blasts to produce MMPs, M2 macrophages produce large
amounts of TGF-β. It has been suggested that M1 mac-
rophages may alter the equilibrium towards degradation
during the later stages of fibrosis and play an important
anti-fibrotic role [13].

Also, mast cells seem to protect the kidney against
fibrosis by modulation of inflammatory cell infiltration
as, after UUO, obstructed kidneys from mice deficient in
mast cells showed increased fibrosis and infiltration of
ERHR3-positive macrophages and CD3-positive T cells
[70]. In a neonatal model of UUO in mice, blocking leu-
kocyte recruitment by using the CCR-1 antagonist BX471
protected against tubular apoptosis and interstitial fibro-
sis, as evidenced by reduced monocyte influx, decreased
EMT, and attenuated collagen deposition [71]. In this
model, EMT was rapidly induced within 24 hours after
UUO along with up-regulation of the transcription fac-
tors Snail1 and Snail2/Slug, preceding the induction of α-
smooth muscle actin and vimentin. In the presence of
BX471, the expression of chemokines, as well as of Snail1
and Snail2/Slug, in the obstructed kidney was completely
attenuated. This was associated with reduced mac-
rophage and T-cell infiltration, tubular apoptosis, and
interstitial fibrosis in the developing kidney. These find-
ings provide evidence that leukocytes induce EMT and
renal fibrosis after UUO [71].

The recruitment of leukocytes from the circulation is
mediated by several mechanisms including the activation
of adhesion molecules, chemoattractant cytokines and
proinflammatory and profibrotic mediators. Renal infil-
trating cells have been characterized and quantitatively
analyzed using specific blockers. For example, adminis-
tration of liposome condronate deleted F4/80-possitive
macrophages in mice and found that either F4/80+
monocytes/macrophages, F4/80+ dendritic cells, or both
cell types contribute, at least in part, to the early develop-
ment of renal fibrosis and tubular apoptosis [72]. These
dendritic cells are considered an early source of proin-
flammatory mediators after acute UUO and play a spe-

cific role in recruitment and activation of effector-
memory T-cells [62].
Adhesion molecules and leukocyte infiltration
Adhesion molecules are cell surface proteins involved in
binding with other cells or with extracellular matrix.
Adhesion molecules such as selectins, vascular cell adhe-
sion molecule 1 (VCAM-1), intercellular adhesion mole-
cule 1 (ICAM-1) and integrins plays a major role in
leukocyte infiltration in several physiological and patho-
logical conditions. We will next review their role in leuko-
cyte recruitment after UUO.
Selectins Selectins and their ligands mediate the initial
contact between circulating leukocytes and the vascular
endothelium resulting in capture and rolling of leuko-
cytes along the vessel wall [73]. There are three different
Selectins: E-selectin is expressed on endothelial cells, P-
selectin on endothelial cells and platelets, and L-selectin
on leukocytes. Whereas E-selectin expression is induced
by inflammatory cytokines, P-selectin is rapidly mobi-
lized to the surface of activated endothelium or platelets.
L-selectin is constitutively expressed on most leukocytes.
It has been reported that after ligation of the ureter,
ligands for L-selectin rapidly disappeared from tubular
epithelial cells and were relocated to the interstitium and
peritubular capillary walls, where infiltration of mono-
cytes and CD8(+) T cells subsequently occurred and
mononuclear cell infiltration was significantly inhibited
by neutralizing L-selectin, indicating the possible involve-
ment of an L-selectin-mediated pathway [74]. In mice KO
for P selectin, there is a marked decrease in macrophage
infiltration in the obstructed kidney [75]. In other study
using mice with a triple null mutation for E-, P-, and L-
selectin (EPL-/- mice), it has been reported that EPL-/-

mice compared with wild type mice, showed markedly
lower interstitial macrophage infiltration, collagen depo-
sition and tubular apoptosis after ureteral obstruction
[76]. Furthermore, tubular apoptosis showed a significant
correlation with macrophage infiltration [76]. Sulfatide, a
sulphated glycolipid, is a L-selectin ligand in the rat kid-
ney and contributes to the interstitial monocyte infiltra-
tion following UUO [77]. Sulfation of glycolipids is
catalyzed by the enzime cerebroside sulfotransferase, and
mice with a targeted deletion of this enzyme showed a
considerable reduction in the number of monocytes/
macrophages that infiltrated the interstitium after UUO.
The number of monocytes/macrophages was also
reduced to a similar extent in L-selectin KO mice, thus
suggesting that sulfatide is a major L-selectin-binding
molecule in the kidney and that the interaction between
L-selectin and sulfatide plays a critical role in monocyte
infiltration into the kidney interstitium alter UUO [77]
ICAM and VCAM Vascular cell adhesion molecule 1
(VCAM-1) and intercellular adhesion molecule 1
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(ICAM-1) plays a major role in firm leukocyte adherence
to vessel wall, a prerequisite for leukocyte diapedesis.
VCAM-1 and ICAM-1 involvement in obstructive neph-
ropathy have been also studied. Both ICAM and VCAM
expression was observed to be increased in the
obstructed kidney, but with a different time course.
ICAM expression increased as early as 3 hours [78] and
continued high after 90 days of obstruction, while VCAM
expression increased later, 2 or 3 days after obstruction
[79,80]. Chronic UUO in weanling rats upregulated renal
interstitial expression of ICAM-1 and macrophage-1
(Mac-1) antigen [81]. Both VCAM and ICAM immunos-
taining was higher in the expanding interstitium, but
lower in glomeruli in obstructed kidney compared with
contralateral kidneys, and only ICAM immunostaining
within the apical tubular epithelium increase in both cor-
tical and medullary cross-sections [78]. Inhibition of
ICAM-1 by intravenous administration of antisense oli-
gonucleotides against ICAM-1 markedly reduced inter-
stitial inflammation and extracellular matrix following
UUO in mice [82]. Inhibition of IL-1 by administration of
genetically modified bone-marrow-derived vehicle cells
containing an IL-1 receptor antagonist also reduced
ICAM-1 expression and macrophage infiltration in mice
with UUO [59], given a further support to the role of
ICAM-1 expression as a key step in macrophage infiltra-
tion after UUO. No details of the role of PECAM in
obstructive nephropathy have yet been reported to our
knowledge.
Integrins and other molecules involved in leukocyte 
adhesion Integrins are heterodimeric adhesion receptors
consisting of noncovalently associated α and β subunits.
β1-integrin interacts with LDL receptor-related protein 1
(LRP1) to mediate the activity of tPA as a fibrogenic
cytokine in obstructed kidney [83]. Â2-integrins, mediate
macrophage infiltration in obstructive nephropathy as
targeted deletion of β2-integrins reduces early mac-
rophage infiltration following UUO in the neonatal rat
[84]. β2-integrins also mediate macrophage infiltration in
obstructive nephropathy in weanling rats [81]. Also αvβ5
integrin interacts with the receptor for urokinase-type
plasminogen activator (uPAR or CD87), which in
response to ureteral obstruction was significantly upreg-
ulated [85], a finding consistent with the fact that
obstructed kidneys from uPAR-/-mice showed lower leu-
kocytes and macrophages recruitment in the interstitium
than WT mice [85].

Other molecules that participate in leukocyte recruit-
ment have been identified, including junctional adhesion
molecules (JAMs) which engage interactions with leuko-
cyte 1 and 2 integrins [86]. JAM-C recognizes mac-
rophage-1 (Mac-1) antigen, a leukocyte integrin of
particular interest because it has been reported to be the
predominant leukocyte integrin involved in leukocyte

recruitment after obstruction, and it is activated after
UUO [81,84].
Chemokines involved in leukocyte infiltration
Infiltrating cells are attracted by chemokines following a
concentration-dependent signal towards the source of
chemokines. Chemokines are categorized into four
groups depending on the spacing of their first two
cysteine residues. Thus CC chemokines (or β-chemok-
ines) have two adjacent cysteines near their amino termi-
nal ends, whereas the two N-terminal cysteines of CXC
chemokines (or α-chemokines) are separated by one
amino acid, C chemokines (or γ chemokines) has only
two cysteines; one N-terminal cysteine and one cysteine
downstream. Finally CX3C chemokines (or δ-chemok-
ines) have three amino acids between the two cysteines.

CC chemokines, MCP-1 (monocyte chemoattractant
protein-1) and RANTES (Regulated on Activation Nor-
mal T cell Expressed and Secreted), have been reported
to increase progressively from 2 to 10 days after UUO
[67,87]. MCP-1 expression increases at 2 hours after
obstruction, while RANTES and macrophage inflamma-
tory protein 1 alpha (MIP-1α) expression are increased
later, at day 5 after UUO [88]. Vielhauser et al. showed a
prominent expression of MCP-1 mRNA in the interstitial
mononuclear cell infiltrates and also cortical tubular epi-
thelial cells of mouse obstructed kidney [89]. Intramuscu-
lar injection of a mutant MCP-1 gene can block
macrophage recruitment and reduce renal fibrosis fol-
lowing UUO [90]. Upregulation of MCP-1, in turn, is
suppressed by HO-1. Targeted deletion of HO-1 in other
models of renal injury significantly increases MCP-1
expression [91].

CC chemokines receptors, CCR1, CCR2 and CCR5
have been reported to be overexpressed after UUO [87].
Moreover, studies in CCR1 KO mice revealed that dele-
tion of the CCR1 receptor attenuates leukocyte recruit-
ment following UUO [92]. Something similar occurred
with the inhibition of the CCR1 receptor [93]. However,
this did not occur with CCR5, suggesting that only CCR1
is required for leukocyte recruitment and fibrosis after
UUO [92]. Targeted deletion of the CCR2 gene or admin-
istration of CCR2 inhibitors reduced macrophage infil-
tration and interstitial fibrosis following UUO [94].

The synthetic vitamin D analogue paricalcitol reduced
infiltration of T cells and macrophages in the obstructed
kidney accompanied by a decreased expression of
RANTES [63].

CXC chemokines are also involved in leukocyte recruit-
ment in UUO, as it has been reported that interferon-
gamma-induced protein-10 (IP-10), a CXC chemokine
that is a potent chemoattractant for activated T lympho-
cytes, natural killer cells, and monocytes is overexpressed
in obstructed kidneys [95]. Its receptor, CXCR3 was also
found to be upregulated after UUO [96]. Also, targeted
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deletion of its receptor, CXCR3, or administration of an
anti-IP-10-neutralizing monoclonal antibody promoted
renal fibrosis, without affecting macrophage or T cell
infiltration in obstructed kidneys [96], thus suggesting
that blockade of IP-10 via CXCR3 contributes to renal
fibrosis, possibly by upregulation of transforming growth
factor-beta1 (TGF-β1), concomitant with downregula-
tion of hepatocyte growth factor (HGF). Thus, overex-
pression of IP-10 and CXCR3 after UUO seems to serve
as a protective mechanism against renal fibrosis.
Growth factors involved in the regulation of leukocyte 
infiltration
Growth factors are proteins capable of regulating a vari-
ety of cellular processes and typically act as molecules
carrying information between cells. In the setting of a
pro-inflammatory situation, growth factors regulate sev-
eral steps of the inflammatory process.

TGF-β1 is a pleiotropic cytokine involved in a wide
range of pathophysiological processes. Many studies have
reported an increase in TGF-β1 content after UUO [67].
There is no doubt that TGF-β1 plays a major role in stim-
ulating ECM production after UUO. The profibrogenic
effect of TGF-β1 is achieved by a combination of inhibi-
tion of the degradation of matrix proteins by increased
generation of proteinase inhibitors and by decreased
expression of degradative proteins such as collagenase.
The net effect of TGF-β1 is extracellular matrix accumu-
lation. Furthermore, TGF-β1 is a chemoattractant for
fibroblasts, and also stimulates fibroblast proliferation. In
addition, TGF-β1 is a major inducer of the transcription
factor snail [97], and Snail overexpression in mice is suffi-
cient to induce spontaneous renal fibrosis [98]. Experi-
mental studies, in a variety of renal disorders, have shown
that the sustained aberrant expression of renal TGF-β1
results in the pathological accumulation of extracellular
matrix material in both the glomerulus and interstitial
compartments. TGF-β expression has been found in
macrophages [99] but its expression is stronger in renal
tubular cells [100]

However this molecule has also several anti-inflamma-
tory properties. First, TGF-β has opposing actions than
those of the proinflammatory cytokines IL-1 and TNF-α
in glomerular disease. Second, TGF-β is a prominent
macrophage deactivator acting against macrophage-
mediated kidney injury [101]. By the opposite, TGF-β is
known to be a strong chemoattractant for monocytes
[102]. In agreement with this property, a significant cor-
relation between interstitial macrophage number and
cortical TGF-β1 expression levels has been reported in
the obstructed kidney [67]. The major origin of increase
TGF-β1 levels after UUO seems to be the infiltrated mac-
rophages [67]. Thus macrophage infiltration seems to
play a major role in UUO-induced interstitial fibrosis. In
a model of mice that overexpress latent TGF-β1 on skin,

high levels of latent TGF-β1 shows renoprotective effects
as mice are protected against renal inflammation after
UUO. This protection seems to be mediated by upregula-
tion of renal Smad7, an inhibitory Smad, which inhibits
NF-κB activation by inducing IκB expression [103] (Fig-
ure 1). Leptin has been suggested as a cofactor of TGF-β
activation in obstructed kidney after UUO and the block-
ade of leptin has been proposed as a therapeutic possibil-
ity to prevent or delay the fibrosis and inflammation
observed in the obstructive nephropathy [104].

HGF is known to contribute to organogenesis and tis-
sue repair through mitogenic, motogenic and morpho-
genic activities in the kidney [105]. Renal HGF levels
increased rapidly after UUO, reaching a peak 3 days after
obstruction. Seven days after UUO, HGF levels declined
to half of those seen three days after UUO. Also the
administration of exogenous HGF to mice with UUO
produced a reduction in TGF-β levels that may be
achieved, at least in part, by suppression of macrophage
infiltration, as has been observed that HGF suppress infil-
tration of macrophages in the obstructive nephropathy
[106,107]. HGF gene delivery inhibited interstitial infil-
tration of inflammatory T cells and macrophages, and
suppressed expression of both RANTES and MCP-1 in a
mouse model of obstructive nephropathy [27]. In con-
trast to several reports demonstrating that activation of
PI3-kinase/Akt results in activation of NF-κB [17], this
study indicates that PI3-kinase activation by HGF,
through the phosphorylation and subsequent inactivation
of GSK-3β, leads to the suppression of the NF-κB-medi-
ated RANTES expression after UUO [27].

Paricalcitol, as noted above, reduced infiltration of T
cells and macrophages in the obstructed kidney and the
mechanism by which it works seems to be the inhibition
of RANTES expression by promoting vitamin D recep-
tor-mediated sequestration of NF-κB signaling [63].

The growth factor macrophage colony-stimulating fac-
tor-1 (M-CSF or CSF-1) is important in promoting
monocyte survival and activation to macrophages and it
is produced by tubular epithelial cells and fibroblasts,
whereas macrophages generate inflammatory cytokines
that are dependent on M-CSF. M-CSF expression is regu-
lated by NF-κB activation [108] and it has been reported
that M-CSF expression is increased in the obstructed kid-
neys after UUO and that this increase is correlated with
the macrophage recruitment induced in the obstructed
kidney [64,109]. Targeted deletion of M-CSF in mice with
UUO reduced interstitial macrophage infiltration, prolif-
eration and activation, and significantly diminished tubu-
lar apoptosis [110] thus suggesting the key role of M-CSF
regulating damage induced by macrophages during UUO.

Agonists of the adenosine receptor transiently reduced
renal macrophage infiltration and inflammation in isch-
emic renal injury [111] and its mechanism of action is
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probably related to the inhibition by adenosine of M-CSF,
although this item is not yet completely proven [112].
However, adenosine receptor agonists do not reduce
renal inflammation and injury after UUO [111].
Osteopontin and leukocyte infiltration in UUO
Osteopontin (OPN) is a tubular-derived glycoprotein
with macrophage chemoattractant properties. Numerous
studies have investigated the role of OPN in tubulointer-
stitial macrophage accumulation in the kidney [113,114].
Using OPN knockout mice, Persy et al. verified that OPN
was a critical factor for interstitial macrophage accumula-
tion after renal ischemia and reperfusion damage [115].
OPN is involved in the accumulation of macrophages
within the renal cortex following UUO, as OPN expres-
sion increased 4-fold 1 day after UUO and persisted at
this level for at least 5-days after UUO, and this increase
was found to be correlated with interstitial macrophage
infiltration [116,108]. Furthermore, targeted deletion of
the OPN gene reduced macrophage infiltration and inter-
stitial fibrosis in mice with UUO and enhanced tubular
cells apoptosis. This suggests that OPN could play a dif-
ferent role in the tubular epithelial cells and the intersti-
tium. Thus, OPN might contribute to renal interstitial
injury and, at the same time, it might have a protective
role on the tubular epithelial cells [117].

OPN is a major ligand of CD44 glycoproteins, and
chronic UUO also increases tubular expression of the
CD44 family of glycoproteins, which are generated by
alternative splicing after transcription of a single gene.
Targeted deletion of CD44 in mice with UUO reduces
macrophage infiltration and interstitial fibrosis, but
increases tubular apoptosis and tubular injury [118].
Thus, we can deduce that OPN has a dual role in obstruc-
tive nephropathy, with damaging effects on the renal
interstitium and protective effects on the tubular epithe-
lial cells.

Ang II and losartan administration increased and
decreased respectively OPN expression in the kidney,
whereas angiotensinogen and AT1-receptor antisense
inhibition inhibited OPN expression in tubular proximal
cells [119,120]. This suggests that the increased levels of
Ang II in the obstructed kidney, through AT1 receptor,
up-regulated OPN expression and secretion by the proxi-
mal tubule, thus facilitating macrophage recruitment into
the renal interstitium (Figure 2).

In UUO nephropathy, administration of simvastatin, a
member of the HMG-CoA reductase inhibitors (statins)
reduced renal inflammation, macrophage accumulation
and fibrosis in tubulointerstitium, independent of their
cholesterol-lowering effects [121]. Another statin, ator-
vastatin, reduced the number of macrophage on day 3
and on day 10 after UUO through downregulating the
expression of OPN and M-CSF independent of choles-
terol-lowering effects [108]. Statin-reduced OPN expres-

sion in UUO may also be related to its inhibiting effect on
Ang II inflammatory effects on the kidney [122], as Ang II
is a potent inducer of OPN [103]. On the other hand, sta-
tins also can inhibit NF-κB activation [123]. Furthermore,
mizoribine, an immunosuppressive that inhibits selec-
tively the proliferation of lymphocytes by interfering with
inosine monophosphate dehydrogenase, inhibited the
UUO-mediated OPN increment [124]. All these studies
suggest a role of OPN in the leukocyte recruitment after
ureteral obstruction. However Yoo et al. have found that
the interstitial macrophage population did not differ in
OPN null mutant (-/-) mice and WT mice after UUO

Figure 2 Schematic illustration of the Osteopontin signaling 
pathway and effects during obstructive nephropathy. UUO induc-
es increased Angiotensin II (Ang II) levels which up-regulated Osteo-
pontin (OPN) expression through AT1 receptor. This effect can be 
inhibited by statins. UUO also increases tubular expression of the 
CD44, a receptor of OPN. OPN actions may be mediated by uPAR, 
which reduces tubular apoptosis and interstitial fibrosis through re-
duced plasminogen activator inhibitor-1 (PAI-1) but promotes mac-
rophage infiltration in the obstructive nephropathy. Discontinuous 
arrow connecting OPN and uPAR means that, although the relation-
ship between them has been demonstrated "in vitro" (ref. 126 and 
127), no direct relationship has been demonstrated in experimental or 
clinical models of obstructive nephropathy.
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[125] suggesting other roles for OPN during obstructive
nephropathy. CD44 is one of the receptors of OPN and of
hyaluronic acid and the CD44 expression is induced after
UUO [118]. Moreover, obstructed kidneys from CD44-/-

mice subjected to UUO, showed lower macrophage infil-
tration than WT mice [118]. It has been also suggested
that CD44 works as a facilitator of HGF signaling in vivo,
as phosphorylation of c-Met, its high-affinity receptor,
was attenuated in obstructed CD44-/- kidneys, suggesting
that CD44 is involved in the protective functions of HGF
[118]. In addition, lower levels of OPN were observed in
the obstructed kidney of urokinase receptor deficient
mice (uPAR-/-) than in WT mice after UUO, thus suggest-
ing that OPN-induced cell migration may be dependent
on uPA-uPAR activity [85]. It should be noted that uPAR
seems to play also a dual role on UUO-induced renal
damage. Targeted deletion of uPAR in mice with UUO in
one way reduces macrophage infiltration, but on the
other hand increases accumulation of plasminogen acti-
vator inhibitor-1 (PAI-1) and interstitial fibrosis, as well
as tubular apoptosis [85] (Figure 2). However it should be
noted that although the connection between osteopontin
and PAR has been reported in some "in vitro" studies
[126,127], no reports on this connection has been pub-
lished in experimental or clinical models or urinary
obstruction.

iNOS overexpression
Inducible nitric-oxide synthase (iNOS) overexpression is
a characteristic hallmark of the inflammatory state and
activation of the transcription factor NF-κB is thought to
be essential for the induction of iNOS [128]. iNOS
expression increases after UUO (Figure 1). Thus, 5 days
after kidney obstruction there is an increased NO pro-
duction and iNOS expression at transcriptional and post-
transcriptional levels, whereas 14 days after obstruction,
decreased endogenous NO production and lower iNOS
expression at mRNA and protein levels were observed
[34]. Tubular epithelial cells are most likely the major
source of NO as these cells are subjected to a high pres-
sure or mechanical stretch as a result of ureteral obstruc-
tion. When cultured tubular epithelial cells are subjected
to high pressure (60 mmHg), there was an increase of

Table 1: Summary effects of different molecules involved 
in inflammation in the obstructive nephropathy

Agent Effect

NF-κB Inflammatory gene expression
Macrophage infiltration
Renal tubular cell apoptosis

Ang II NF-κB activation
Oxidative stress
TGF-β upregulation
Macrophage infiltration

TNF-α Macrophage infiltration
Renal tubular cell death

IL-1 ICAM expression
Macrophage infiltration
Fibroblast activation

MIF Leukocyte activation
Fibroblast proliferation

E,P,L Selectins Monocytes/macrophage and T cell 
infiltration
Tubular apoptosis

VCAM, ICAM Interstitial inflammation
Leukocyte infiltration

β-integrins Macrophage infiltration

MCP-1, RANTES, MIP-1α Macrophage recruitment

CCR1, CCR2 Leukocyte recruitment
Interstitial fibrosis

JAMS Leukocyte recruitment

M-CSF Macrophage infiltration, activation 
and proliferation
Tubular apoptosis

IP-10 Leukocyte recruitment

TGF-β Monocyte/macrophage infiltration
Fibroblast proliferation
Tubular apoptosis

HGF Suppress macrophage infiltration
Inhibit chemokine expression

OPN Macrophage infiltration
Interstitial fibrosis
Repress tubular cell apoptosis

iNOS Resistance to cell death
Limit macrophage infiltration

Table 1: Summary effects of different molecules involved 
in inflammation in the obstructive nephropathy 
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iNOS expression, while endothelial NOS expression
remained unchanged. Furthermore, the use of NF-κB
inhibitors was shown to prevent the increase in iNOS
expression, thus suggesting the role of this pro-inflamma-
tory pathway in the iNOS overexpression [129]. In
obstructed neonatal rats, in vivo administration of L-
Arginine, which activates NO production by iNOS, pre-
vented renal damage. Opposite effects were obtained
after nitro L-Arginine methyl ester (L-NAME) treatment.
These findings suggest that NO can produce resistance to
obstruction-induced cell death in neonatal UUO [34].
Targeted deletion of inducible nitric oxide synthase
(iNOS) in mice subjected to UUO increases renal mac-
rophage infiltration and interstitial fibrosis, indicating
that endogenous iNOS also serves to limit macrophage
infiltration [130]. Administration of losartan to the UUO
model in rats induced a down-regulation of iNOS, with
persistent levels of eNOS in renal cortex of the
obstructed kidney, thus suggesting that Ang II plays a
major role in iNOS overexpression [131]. Liposome-
mediated iNOS gene therapy improves renal function in
rats with UUO [132] demonstrating that strategies to
increase iNOS might be a powerful therapeutic approach
in obstructive nephropathy [133].

Conclusions and clinical perspectives
In this review we have summarized the most important
factors that have been involved in the genesis and pro-
gression of the inflammatory damage induced by ureteral
obstruction. These factors regulate cytokine and
chemokines production, leukocyte/macrophage recruit-
ment, interstitial inflammation, tubular cell apoptosis,
and fibroblasts proliferation and activation (see table 1).
NF-κB activation plays a central role in the inflammatory
reaction after ureteral obstruction. Oxidative stress and
renin-angiotensin II system seems to play a major role in
activating NF-κB and they contribute also to the overex-
pression of pro-inflammatory cytokines in the obstruc-
tive nephropathy. As many therapeutic agents have been
developed in the last years to control inflammation and
NF-κB activation for the treatment of several diseases
such as tumors [134], it can be postulated that this anti-
inflammatory therapy could be useful to treat or prevent
kidney damage during obstructive nephropathy [135].
There are many data in animal models, most of them
reviewed in the present manuscript, demonstrating that
anti-inflammatory treatment ameliorates renal damage in
experimental models of obstructive nephropathy. Fur-
thermore, attempts to avoid tubulointerstitial inflamma-
tion by immunosupression were successful to inhibit
renal fibrosis. Rapamycin and mycophenolate mofetil
(MMF), immunosuppressive agents, were described to
improve the progression of injury elicited by UUO

[136,137]. However, cost and adverse effects caused diffi-
culty in the establishment of an efficient therapy based on
that approach. It should be noted that clinical studies on
these topics are almost absent in the literature. Thus, the
anti-inflammatory therapy to treat obstructive nephropa-
thy, although promising, needs many clinical studies that
prove to be successful in the clinical setting.
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