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A B S T R A C T

Background. Risk of kidney function decline in immunoglobu-
lin A (IgA) nephropathy (IgAN) is significant and may not be
predicted by available clinical and histological tools. To serve
this unmet need, we aimed at developing a urinary biomarker-
based algorithm that predicts rapid disease progression in
IgAN, thus enabling a personalized risk stratification.
Methods. In this multicentre study, urine samples were col-
lected in 209 patients with biopsy-proven IgAN. Progression
was defined by tertiles of the annual change of estimated
glomerular filtration rate (eGFR) during follow-up. Urine sam-
ples were analysed using capillary electrophoresis coupled mass
spectrometry. The area under the receiver operating characteris-
tic curve (AUC) was used to evaluate the risk prediction models.
Results. Of the 209 patients, 64% were male. Mean age was
42 years, mean eGFR was 63 mL/min/1.73 m2 and median
proteinuria was 1.2 g/day. We identified 237 urine peptides

showing significant difference in abundance according to the ter-
tile of eGFR change. These included fragments of apolipoprotein
C-III, alpha-1 antitrypsin, different collagens, fibrinogen alpha
and beta, titin, haemoglobin subunits, sodium/potassium-
transporting ATPase subunit gamma, uromodulin, mucin-2, frac-
talkine, polymeric Ig receptor and insulin. An algorithm based on
these protein fragments (IgAN237) showed a significant added
value for the prediction of IgAN progression [AUC 0.89; 95% con-
fidence interval (CI) 0.83–0.95], as compared with the clinical
parameters (age, gender, proteinuria, eGFR and mean arterial
pressure) alone (0.72; 95% CI 0.64–0.81).
Conclusions. A urinary peptide classifier predicts progressive
loss of kidney function in patients with IgAN significantly better
than clinical parameters alone.
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I N T R O D U C T I O N

Immunoglobulin A (IgA) nephropathy (IgAN) is the most com-
mon primary glomerulopathy with an incidence exceeding 2.5/
100 000 patients per year [1]. A clinical challenge is the heteroge-
neity in kidney function decline, with some patients having an in-
dolent course and others having a marked progressive trajectory
with more rapid decline in kidney function. Between 15%
and 60% of IgAN patients show a 50% reduction of estimated
glomerular filtration rate (eGFR) or reach end-stage kidney
disease (ESKD) in 5–10 years [2–4]. There is no targeted
therapy for IgAN; corticosteroids are frequently used, however
they are associated with substantial risk of toxicity and variable ef-
ficacy [5, 6].

The Kidney Disease: Improving Global Outcomes
(KDIGO) guidelines recommend to stratify patients with
IgAN based on risk of progression, so that immunosup-
pressive treatment can be targeted to high-risk patients [7].
At present, clinical variables associated with a higher risk
of kidney function decline include proteinuria >1 g/day,
decreased eGFR and the presence of hypertension at base-
line and during follow-up [8]. In addition, the Oxford his-
tological risk variables and presence of crescents add
independent prognostic information [9–11]. Recently, clin-
ical and histological characteristics were combined into a
model to predict individual risk of disease progression [2].
While offering important information about prognosis,

this tool has been validated using clinical data at the time of
biopsy, and requires biopsy scores. There is still a need for a
tool that will enable individual risk stratification during the
course of disease, that can be applied without concurrent
kidney biopsy.

In several studies, the benefit and the added value of capil-
lary electrophoresis (CE) coupled mass spectrometry (CE-MS)-
based urinary proteome panels were demonstrated in the diag-
nosis of IgAN [12, 13]. The same technology also enabled the
definition of specific peptides to discriminate IgAN from other
causes of chronic kidney disease (CKD). Some similarities in
the individual biomarkers between CKD aetiologies were ob-
served, but also apparent IgAN-specific peptides that may be
helpful to describe disease progression and development of kid-
ney damage in IgAN on a molecular level [14].

Based on these encouraging findings, the multicentre project
‘Personalized Treatment in IgA Nephropathy’ (PERSTIGAN)
was initiated. The aim of this study is to identify urinary pep-
tides that enable prediction of kidney function decline and,
in a subsequent step, may predict response to immunosup-
pressive treatment on an individual (i.e. personalized) level.
These findings could help to identify those patients with
IgAN who require increased medical attention and who may
benefit from immunosuppressive therapy. In this article, we
present the PERSTIGAN cohort and describe a new urinary
peptide classifier identifying patients with rapid eGFR loss
during follow-up.

G R A P H I C A L A B S T R A C T
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M A T E R I A L S A N D M E T H O D S

Study population

Urine samples and clinical data were obtained from inde-
pendent projects from six centres in Europe (Prague,
Innsbruck, Göttingen, Wroclaw, Madrid and Leipzig; n¼ 134)
and from one centre in Canada (Toronto; n¼ 75). All n¼ 209
patients included in this study had biopsy-proven IgAN, a base-
line visit and follow-up after collection of the urine sample of at
least 12 months, and an eGFR at time of inclusion of at least
20 mL/min/1.73 m2. The mean number of eGFR measurements
per patient was 5.1 6 4.3. This study was approved by the local
Institutional Review Boards of all participating centres.

Study design and definition of progression

Urine protein excretion per day (i.e. urinary protein–creati-
nine ratio or 24-h proteinuria, whichever was available), eGFR
[calculated using the CKD Epidemiology Collaboration (CKD-
EPI) formula] [15], body mass index, age, gender, presence of
hypertension, blood pressure, prior use of medications that
block the renin–angiotensin–aldosterone system and prior use
of immunosuppressive agents (such as steroids) were

determined at time of baseline urine sample collection and dur-
ing follow-up. Annual eGFR slope after the baseline visit (i.e.
during follow-up) was calculated by fitting a straight line
through the calculated eGFR using linear regression and the
principle of least squares. The total cohort of 209 subjects was
divided into tertiles according to the annual eGFR slope.
Patients in the lowest eGFR slope tertile (i.e. highest loss of kid-
ney function after baseline) were defined as progressors,
patients in the highest eGFR slope tertile (i.e. nearly no loss of
kidney function after baseline) were defined as non-
progressors, all other were defined as intermediate. When plan-
ning the study, we performed a power calculation, which
revealed that 29 samples per group were sufficient to detect a
30% change in peptide abundance, with a Type I error of 0.05
and 80% power. We randomly divided the 140 samples from
progressors and non-progressors into a training set (n¼ 94, 47
progressors and 47 non-progressors) for biomarker discovery
and a test set (n¼ 46, 23 progressors and 23 non-progressors)
for the validation study (Figure 1A). Randomization was per-
formed using the Excel randomization (RAND) function
(Microsoft, Redmond, WA, USA). There were no significant
differences in the clinical characteristics between the subjects
from the training set and from the test set (data not shown).
The CE-MS data of the training set were used for the definition
of peptides being significantly differentially abundant between
progressors and non-progressors (Figure 1B) and for the gener-
ation of the classifier. The generated classifier was then vali-
dated in the test set.

Urine proteome profiling

Proteome analysis was performed in baseline urine samples.
The urine samples were thawed immediately before use, pre-
pared as described previously [16] and analysed using a CE cou-
pled online to a micro-time of flight MS, following the sample
injection and acquisition protocol as previously described [17].
CE-MS data assessment was performed using an approach
based on clustering of the identified compounds to an underly-
ing matrix of previously known identified peptides as described
by Latosinska et al. [18]. To correct for variability, a linear re-
gression algorithm was applied for normalization, using inter-
nal standard peptides as reference [19]. After normalization, all
proteomics datasets were deposited, matched and annotated in
a Microsoft Structered Query Language (SQL) database and
used as input in this study.

Peptide sequencing and matching

The amino acid sequence was determined by CE-MS/MS or
liquid chromatography-tandem mass spectrometry (LC-MS/
MS) analysis as previously described [20]. Protein matching
and data analysis were based on Proteome Discoverer version
1.2 (activation type: HCD; precursor mass tolerance: 5 p.p.m.;
fragment mass tolerance: 0.05 Da). No fixed modifications were
selected, oxidation of methionine and proline were selected as
variable modifications. The data were searched against the
UniProt human database without enzyme specificity. In the
case of LC-MS/MS, matching of the amino acid sequences with
the CE-MS acquired ion peaks was based on mass correlation

KEY LEARNING POINTS

What is already known about this subject?

• the clinical challenge in patients with immunoglobulin
A (IgA) nephropathy (IgAN) is to identify those
patients who show rapid progression to end-stage kid-
ney disease and need closer medical attention;

• current risk prediction tools have been validated at
time of biopsy and include clinical data and kidney bi-
opsy scores; and

• there is still a need for a non-invasive tool that enables
individual risk stratification during the course of dis-
ease, and that can be applied without concurrent kid-
ney biopsy.

What this study adds?

• this article describes the discovery of a new urinary
proteomics-based biomarker classifier IgAN237 for
prediction of risk in patients with IgAN; and

• IgAN237 demonstrates a significantly better prediction
of progressive decline of kidney function than clinical
parameters alone.

What impact this may have on practice or policy?

• application of this novel classifier may allow individual
risk stratification in patients with IgAN; and

• this may be done at any timepoint and independently
of a kidney biopsy, and potentially may influence and
improve patient management.

M. Rudnicki et al.44



between CE-MS and LC-MS/MS analysis and on the theoretical
migration time as a result of the assessment of the peptide
charge at the working pH of 2.2 [21].

Statistical analysis and classifier generation

Clinical and demographical data were compared using
Kruskal–Wallis test MedCalc version 12.7.5.0 (MedCalc
Software bvba, Ostend, Belgium). For the definition of specific
biomarkers for IgAN progression data of the training set were
used and only peptides detected with a frequency of>30% in at
least one of the two groups (progressors or non-progressors)
were included. P-values were calculated using non-parametric
Wilcoxon test (R-based statistic software, version 2.15.3) and

corrected using the false-discovery rate procedure by Benjamini
and Hochberg [22]. A corrected two-tailed P < 0.05 was set as
the significance level. Potential biomarkers were combined in a
support vector machine (SVM)-based classifier.

The area under the receiver operating characteristic
(ROC) curve (AUC) of the generated classifier was calculated
using MedCalc software. In the case of training set data
from the n-1 cross-validation were evaluated. The associa-
tion of baseline and follow-up clinical data and eGFR slope
with proteomics classification score was analysed using
Spearman’s rank correlation test. To analyse the relationship
between progressors and non-progressors, proteomics classi-
fication score and baseline clinical variables, and to find the

A

B

FIGURE 1: Study design of the PERSTIGAN project. (A) We collected urine samples and clinical data from n¼ 209 patients with biopsy-
proven IgAN. Patients were stratified by eGFR slope tertiles based on annual eGFR slope during follow-up. Patients in the highest eGFR slope
tertile were defined as non-progressors, and patients in the lowest eGFR slope tertile were defined as progressors (patients in the middle tertile
were excluded for biomarker definition and validation). N¼ 140 patients were randomized into a training set and into a test set in a 2:1 ratio.
(B) For the biomarker definition all detected urinary peptides of the training cohort were compared between progressors and non-progressors
(left compiled 3D depiction of all peptide signals in the training cohort), resulting in definition of 237 discriminating peptides (right compiled
3D depiction of 237 significant peptide signals in the training cohort). Protein names of the identified significant peptides are shown in the
lower right corner.
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best fitting model, the binomial logistic regression analysis
was performed. The comparison of the ROC curves was
performed using DeLong tests.

Data availability statement

The MS proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner reposi-
tory with the dataset identifier PXD020288 [23].

R E S U L T S

Clinical characteristics of the PERSTIGAN cohort

Baseline urine samples from 209 biopsy-proven IgAN
patients were analysed. Detailed clinical characteristics of the
whole cohort and of each of the eGFR slope tertiles are listed in
Table 1. In brief, baseline mean eGFR was 63 mL/min/1.73 m2

and median proteinuria was 1.2 g/day. Twenty-six (12%) of the
subjects had a baseline eGFR<30 mL/min/1.73 m2 and 110
(53%) of the subjects had a baseline eGFR<60 mL/min/
1.73 m2. During a mean follow-up time of 39 months median
annual eGFR decline was �1.4 mL/min/1.73 m2/year. Eighteen
patients (8.6%) progressed to ESKD. Progressors had a median
annual eGFR decline of�6.4 mL/min/1.73 m2, and 14 (20%) of
these patients progressed to ESKD, while non-progressors had
a median annual eGFR change of þ3.4 mL/min/1.73 m2 and
none progressed to ESKD. Notably, mean baseline eGFR of pro-
gressors was not significantly different from non-progressors
(64.9 versus 60.7 mL/min/1.73 m2, P¼ 0.385).

Development of the urine peptide-based classifier

We identified 237 discriminatory peptides showing a signifi-
cantly different abundance between progressors and non-
progressors of the training set after correction for multiple test-
ing (Supplementary data, Table S1 and Figure 1). These pepti-
des were combined into a single analysis covariate using an
SVM algorithm, and this was designated as ‘IgAN237’.
Sequence information was obtained for 84 of the 237 peptides
associated with progression of IgAN. Here, fragments of differ-
ent collagens, apolipoprotein C-III, alpha-1 antitrypsin, fibrino-
gen alpha and beta, titin, haemoglobin subunits, sodium/
potassium-transporting ATPase subunit gamma, uromodulin,
mucin-2, fractalkine, polymeric Ig receptor and insulin were

included. As shown in Supplementary data, Table S1, most of
the collagen fragments displayed decreased abundance in pro-
gressive subjects. The most significant 25 sequenced peptides
are listed in Table 2.

Comparison with CKD273

Next, we investigated whether the IgAN237 classifier was
specific for IgAN or reflected more general changes during
CKD progression. For this purpose, the 87 sequenced peptides
were compared with urinary peptides of the CKD273 bio-
marker, which has been shown to identify patients with pro-
gressive CKD irrespective of a specific aetiology [24]. Only 15
peptides (14 collagen and 1 fibrinogen fragment) were found in
both, the IgAN237 and the CKD273 classifiers, suggesting that
IgAN237 may be disease-specific.

Prediction of progression using the IgAN237 classifier

We used ROC statistics to validate that the classification
score of the IgAN237 biomarker discriminates IgAN progres-
sors versus non-progressors. When applied to the n-1 cross-
validated training set ROC resulted in an AUC of 0.91 [95%
confidence interval (CI) 0.85–0.97]. To validate the generated
IgAN237 classifier we applied it to the independent test set of
23 progressors and 23 non-progressors. This resulted in a sig-
nificant discrimination of IgAN progressors with an AUC of
0.72 (95% CI 0.57–0.87) (Figure 2).

Correlation of IgAN237 with clinical parameters

To characterize the correlation of IgAN237 with the pheno-
type we performed a correlation analysis within the whole co-
hort of n¼ 209 subjects with baseline clinical data at the time of
urine sampling. The IgAN237 score showed a significant corre-
lation with proteinuria (q¼ 0.181, P¼ 0.011) and a borderline
significant correlation with baseline eGFR (q¼�0.136,
P¼ 0.05) (Figure 3A). No other baseline variables were signifi-
cantly associated with the IgAN237 score.

Next, we analysed the association of the IgAN237 classifica-
tion score with kidney function decline, follow-up eGFR and
progression to ESKD. The IgAN237 scores were significantly
negatively correlated with eGFR slope (q¼�0.484, P< 0.001)
and with the last follow-up eGFR value (q¼�0.319, P< 0.001;
Figure 3B). Patients who progressed to ESKD (n¼ 18) showed

Table 1. Clinical and laboratory parameters at baseline and during follow-up. RAAS, renin–angiotensin–aldosterone system

Characteristics All, n¼ 209 eGFR slope tertile 1,
n¼ 70

eGFR slope tertile 2,
n¼ 69

eGFR slope tertile 3,
n¼ 70

P-value

Male gender, % 64 71 64 57 0.113
Caucasian, n (%) 169 (81) 57 (81) 52 (75) 60 (86) 0.299
Age at diagnosis, mean (SD), years 42 (15) 39 (14) 41 (13) 45 (16) 0.113
eGFR, mean (SD), mL/min/1.73 m2 62.8 (29) 64.9 (30.8) 62.8 (29.5) 60.7 (26.6) 0.842
Proteinuria, median, g/day (95% CI) 1.2 (0.1 to 1.5) 1.8 (1.4–2.2) 1.0 (0.8–1.2)* 1.0 (0.6–1.6)* <0.001
eGFR slope, median, mL/min/

1.73 m2/year (95% CI)
�1.4 (�2.1 to �0.8) �6.4 (�8.8 to �5.2) �1.4 (�1.8 to �1.1)* 3.4 (2.3–4.7)* <0.001

ESKD, n (%) 18(8.6) 14 (20.0) 4 (5.8) 0 (0)* <0.001
Follow-up time, mean (SD), months 39.4 (27.0) 34.5 (19.0) 48.0 (38.1)* 35.8 (17.1) 0.046
Received RAAS blockade, % 87 87 84 90 0.580
Received IS treatment, % 38 39 31 43 0.306

The P-values were calculated using the Kruskal–Wallis test. *P< 0.05 versus Tertile 1 in the post hoc analysis.
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a significantly higher IgAN237 score than patients who
did not (0.968; 95% CI 0.643–1.529 versus 0.195; 95%
CI �0.038 to 0.353, P< 0.001; Figure 3C). The median
IgAN237 score was 0.649 in the progressors, 0.409 in the inter-
mediate group and �0.465 in the non-progressors, respectively
(Figure 4). Significant differences were observed between pro-
gressors and non-progressors (P< 0.001), between progressors

and the intermediate tertile (P¼ 0.025) and between the inter-
mediate tertile and non-progressors (P< 0.001).

Added value of proteomics IgAN237 classifier

In the next step, we evaluated if the IgAN237 classifier
improves discrimination between progressors and non-
progressors compared with clinical data alone [age, gender,

Table 2. List of 25 most significant sequenced peptides of IgAN237 with lowest adjusted P-values

Peptide ID Corr.
P-value

Mean
amplitude

progressors
(training)

Mean
amplitude

non-progressors
(training)

Fold
change

Sequence Protein name Protein
symbol

Start
AA

Stop
AA

99915883 0.0105 8.96 58.32 0.154 NSGEpGApGSK
GDTGAKGEp
GPVGVQGPpGPAG

Collagen alpha-1(I)
chain

COL1A1 432 464

99910985 0.0105 43.83 86.99 0.504 NSGEKGDQGFQ
GQPGFPGPPGP

Collagen alpha-
1(XVI) chain

COL16A1 1145 1166

99907573 0.0105 92.15 292.94 0.315 ESVVLEPEAT Fractalkine X3CL1 123 132
99910668 0.0123 1497.39 2131.3 0.703 GpPGEAGKpGEQ

GVpGDLGAPGp
Collagen alpha-

1(I) chain
COL1A1 650 672

99914456 0.0123 28.16 450.67 0.062 DLQVGQVELGGGPGA
GSLQPLALEGSLQ

Insulin INS 60 87

99904786 0.0125 69.59 122.18 0.570 SpGSPGPDGKTGPPGP Collagen alpha-
1(I) chain

COL1A1 543 559

99917505 0.0157 122.02 283.96 0.430 AGRpGEVGPpGPpGPAGEKG
SPGADGPAGAPGTpGPQG

Collagen alpha-1
(I) chain

COL1A1 916 953

99917388 0.0157 99.88 204.59 0.488 GPpGppGRDGEDGPTGP
pGPPGPPGPPGLGGNFAAQ

Collagen alpha-2(I)
chain

COL1A2 45 80

99916194 0.0167 26.62 623.15 0.043 EAEDLQVGQVELGGG
PGAGSLQPLALEGSLQ

Insulin INS 57 87

99910573 0.0168 987.11 1499.34 0.658 GPpGEAGKpGEQ
GVpGDLGAPGP

Collagen alpha-1(I)
chain

COL1A1 650 672

99912693 0.0175 31.22 51.49 0.606 GPAGpPGKAGEDGH
PGKpGRpGERG

Collagen alpha-2(I)
chain

COL1A2 133 157

99908185 0.0179 108.3 412.91 0.262 EEAPSLRPAPPPISGGGY Fibrinogen beta
chain

FGB 54 71

99914501 0.0179 98.36 152.89 0.643 pPGADGQPGAKGEpGD
AGAKGDAGpPGPAGP

Collagen alpha-1(I)
chain

COL1A1 816 846

99909057 0.0186 3.49 35.74 0.098 GpAGATGDRGEAG
AAGPAGpAGP

Collagen alpha-2(I)
chain

COL1A2 685 707

99903148 0.0234 1279.9 275.75 4.642 FMGKVVNPTQK Alpha-1-antitrypsin SERPINA1 408 418
99910838 0.0234 25.77 61.51 0.419 GpTGpIGPpGpAGQ

PGDKGEGGAP
Collagen alpha-1(III)

chain
COL3A1 762 785

99908885 0.0240 3223.72 6243.43 0.516 AAHLPAEFTPAVHASLDK Haemoglobin subunit
alpha

HBA1 111 128

99917047 0.0242 2828.47 4810.36 0.588 PpGESGREGApGAEGSp
GRDGSpGAKGDRGETGP

Collagen alpha-1(I)
chain

COL1A1 1008 1041

99906068 0.0242 326.45 545.87 0.598 NDGApGKNGERGGpGGP Collagen alpha-1(III)
chain

COL3A1 586 602

99909564 0.0242 18.51 96.54 0.192 GEKGpSGEAGTA
GPpGTpGPQG

Collagen alpha-2(I)
chain

COL1A2 844 865

99913909 0.0242 902.04 5019.41 0.180 EKSAVTALWGKVNV
DEVGGEALGRL

Haemoglobin
subunit beta

HBB 8 32

99906402 0.0254 11.3 57.83 0.195 WQGVEVGEAGQGKDF Basement membrane-
specific heparan
sulfate
proteoglycan
core protein

HSPG2 4245 4259

99912198 0.0254 134.56 344.73 0.390 AGppGEAGKPGEQGV
pGDLGApGPSG

Collagen alpha-1(I)
chain

COL1A1 649 674

99913650 0.0266 20.96 63.72 0.329 GpTGATGDKGPPG
PVGPPGSNGpVGEpGP

Collagen alpha-2(V)
chain

COL5A2 1020 1048

99905463 0.0276 60.81 258.26 0.235 ApGDKGESGPSGPAGPT Collagen alpha-1(I)
chain

COL1A1 777 793
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eGFR, proteinuria and mean arterial pressure (MAP) at urine
sampling]. For this analysis, we used progressors and non-
progressors of the whole patient cohort. The combined baseline
clinical data resulted in an AUC of 0.72 (95% CI 0.64–0.81) for
the prediction of fast progression. In the next step, the IgAN237
classifier was added to the clinical parameters. Logistic regres-
sion analysis was performed (i) to analyse the relationship be-
tween the progression and non-progression outcome and the
individual clinical variables together with IgAN237 score and
(ii) to find the best fitting model to predict the progression and
non-progression outcome. The resulting regression coefficients
showed the highest value for IgAN237 score (1.98072) in com-
parison with the regression coefficients of the clinical parame-
ters, of which only gender reached statistical significance
(Table 3), indicating highly significant association of IgAN237
with outcome.

All parameters together with their individual regression
coefficients were combined to the following regression equation
for a clinical data-adjusted IgAN237 score:

IgAN237adj¼�2.8438þ (�0.034667*age)þ (0.016583
*eGFR)þ (0.019597*MAP)þ (1.26778*gender)þ (0.14726*ur-
ine protein)þ (1.98072*IgAN237 score).

(age in years; eGFR calculated by the CKD-EPI formula
in mL/min/1.73 m2; MAP in mmHg; male¼ 1, female¼ 0;
urinary protein/24 h in g/day).

Using this formula the combination of clinical parameters
with the IgAN237 scores resulted in AUC of 0.89 (95% CI 0.83–
0.95), demonstrating significantly better performance than the
clinical parameters alone (P< 0.001) (Figure 5).

D I S C U S S I O N

In this study, we developed a urinary biomarker-based classifier
to predict a progressive or a non-progressive clinical course in
patients with IgAN. The IgAN237 classifier correlated signifi-
cantly with eGFR slope during follow-up, eGFR at the end of
follow-up and was significantly different between patients who
progressed to ESKD and those who did not. Further, we showed
that addition of the IgAN237 classifier to clinical variables

improves discrimination between progressors and non-
progressors beyond clinical data alone.

Progressors were defined based upon tertiles of the annual
eGFR decline during follow-up. The urine peptide profiles of
the lowest (i.e. progressors) and the highest (i.e. non-
progressors) eGFR slope tertile were compared. We chose this
approach for several reasons: By analysing extremes, i.e.
patients with well-separated phenotypical characteristics such
as eGFR slopes of �6.4 mL/min/1.73 m2 versus þ3.4 mL/min/
1.73 m2/year, it is more probable that biomarkers with ‘true’
predictive value for a given clinical outcome will be identified.
Furthermore, the median annual eGFR decline of �6.4 mL/
min/1.73 m2 is in line with current CKD KDIGO guidelines in
which fast progression is defined as a sustained decline in eGFR
of >5 mL/min/1.73 m2/year [25]. A dichotomous separation of
the cohort using a clear cut-off such as an eGFR decline of be-
low or above�5 mL/min/1.73 m2/year or�30/�40% may have
resulted in a large number of patients with a more vague or bor-
derline definition of progression. This might have impacted the
validity of the urinary peptide classifier to identify truly pro-
gressive patients with IgAN. Although the number of patients
with ESKD was relatively low (n¼ 18) for the purpose of classi-
fier development, subjects who reached ESKD showed a signifi-
cantly higher IgAN237 score than patients who did not. About
14 of the 18 ESKD subjects were part of the progressor group.
These results suggest that the relative definition of CKD pro-
gression used in this project is in line with current guidelines
and represents progressive and non-progressive patients seen in
routine clinical practice.

A major constituent of the IgAN237 classifier was collagen
fragments, representing 69% of the identified peptides.
Particularly fragments from collagen Type I have been reported
as an integral part of diagnostic classifiers in many studies of
CKD [14, 24, 26], and also recently in a study on obesity-related
nephropathy [27]. Most collagen fragments are decreased in
subjects with progressive CKD, including patients with diabetes
and obesity [27, 28]. The negative correlation of urinary frag-
ments of collagen Type I with the degree of renal fibrosis has
been demonstrated in kidney biopsies from various CKD aetiol-
ogies [29]. This reduced abundance of collagen fragments in the
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urine might mirror reduced degradation of collagen and an in-
crease in extracellular matrix accumulation in the kidney in
progressive patients, consequently leading to kidney fibrosis.
Thus the urinary proteome appears to a substantial degree re-
flect the turnover of extracellular matrix in the kidney [30].

A surprising finding of our study was the decreased abun-
dance of several fragments of the haemoglobin alpha and beta

chains in progressive patients. In previous studies, higher uri-
nary levels of various haemoglobin fragments have been de-
scribed in vasculitis patients [26] and also in IgAN patients
[14], most probably reflecting prominent glomerular inflamma-
tion. Thus, a decrease in haemoglobin peptides in the urine of
progressive subjects may indicate a less inflammatory and more
fibrotic phenotype. These findings are further supported by the
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decrease of peptide fragments from tubular proteins (mucin,
uromodulin), possibly indicating disturbed tubular function,
due to an increase in tubular atrophy and, again, interstitial fi-
brosis. Alpha-1 antitrypsin was highly increased in progressive
subjects. Alpha-1 antitrypsin is a major protease inhibitor con-
trolling tissue damage by inhibiting proteases, including elastase
and proteinase-3 released by leucocytes infiltrating the kidney
as well as collagenases [31]. An increased abundance of alpha-1
antitrypsin has been reported in various types of glomerulone-
phritis, such as IgAN, vasculitis and membranous nephropathy
[14, 26, 32]. Smith et al. identified urinary alpha-1 antitrypsin
excretion in primary glomerulonephritis and showed localiza-
tion of this protein in the podocytes within sclerotic glomeruli
by immunohistochemistry [33]. Thus, the highly increased
abundance of alpha-1 antitrypsin peptide fragments in the
urine is compatible with the observed decrease in collagen frag-
ments, potentially related to inhibition of collagenase activity,
and to sclerotic glomeruli in progressive patients. In summary,
the components of the IgAN237 classifier seem to reflect several
pathologic processes known to be associated with progressive
IgAN, such as inflammation, matrix turnover and fibrosis.

Although current risk stratification of patients with IgAN
based on the dynamics of proteinuria, eGFR and blood pressure
control is well established, it depends upon availability of detailed
histologic data obtained concurrent to the clinical data, and im-
portantly it is not validated using clinical data at other points
during the follow-up [2]. We endeavoured to derive a non-
invasive tool that did not require pathologic data. In our study,
the addition of the IgAN237 score to clinical variables including
eGFR, proteinuria, gender and MAP resulted in better discrimi-
nation of patients at the highest risk of progressive disease (AUC
of 0.89 compared with 0.720, P< 0.001). This proteomic classi-
fier, adjusted for baseline clinical parameters derived from the
presented cohort, was further developed into an online calculator
of risk of progression in IgAN (www.perstigan.eu) to be used for
baseline risk prediction to potentially contribute to therapy deci-
sions. As a hypothetical example, considering a patient with an
IgAN237 score in the range of the progressor group (median
0.64), only minor clinical signs of chronicity, preserved kidney
function and histological signs of only limited tubular atrophy
(MEST T0 or T1), one could decide to apply immunosuppres-
sion (IS), having in mind the discussed guidelines and evidence
applicable in this field. These combined modelling approaches
must be taken to next steps, including prospective therapy stud-
ies using such newly developed diagnostic approaches.

The ability of CE-MS-based urinary proteomics to discrimi-
nate between IgAN and healthy controls [12, 13] or other kid-
ney diseases [14] has been demonstrated previously. Many of
the biomarker peptides identified in our study were also identi-
fied in other studies on IgAN, further supporting the signifi-
cance of these peptides as specific markers of disease activity or
progression. The PERSTIGAN study was designed to generate
a urinary peptide profile for personalized risk stratification. A
central element in personalized medicine is the assessment of
the individual health status of a patient, which is a significant
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Table 3. Logistic regression coefficients for prediction of outcome

Variable Coefficient SE P-value

Age �0.034667 0.021400 0.105
eGFR 0.016583 0.010744 0.123
Male gender 1.26778 0.57323 0.027
Proteinuria 0.14726 0.13789 0.286
MAP 0.019597 0.017673 0.268
IgAN237 1.98072 0.39590 <0.001

SE, standard error.
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challenge particularly in heterogeneous diseases such as IgAN.
In comparison with single biomarkers, omics-multimarker-
based approaches offer the possibility to describe a dynamic
phenotype more comprehensively and more accurately, as a re-
sult of simultaneous assessment of multiple parameters.
Applications of proteomics biomarkers in personalized medi-
cine in the context of kidney disease provided already first suc-
cessful examples [34], with CKD273 for the diagnosis and
prediction of CKD being the most mature example [24].
Especially in early disease, CKD273 showed a significantly bet-
ter predicted value for CKD progression than albuminuria [35–
37], also in non-albuminuric patients [38], and it is predictive
of death in two independent cohorts [39, 40].

Although peptide contents between CKD273 and IgAN237 are
moderately similar, CKD273 did not identify progressive disease
in the PERSTIGAN cohort (data not shown). The overlap between
IgAN237 and CKD273 was small, with 15 of the 84 (18%) se-
quenced peptides being present in both classifiers. These data fur-
ther suggest that IgAN237 serves as a disease-specific classifier.

The most important strengths of the PERSTIGAN project
and this study are the relatively large number of IgAN subjects,
the multicentre design and the clinical characteristics of the
patients, which are quite comparable to patients included in
large randomized controlled trials such as the Supportive Versus
Immunosuppressive Therapy for the Treatment of Progressive
IgA Nephropathy (STOP-IgAN) and the Therapeutic
Evaluation of Steroids in IgA Nephropathy Global (TESTING)
study trial. Furthermore, many of the peptides identified can be
associated with pathological processes known to be associated
with worsening of kidney function.

This study has several limitations, the lack of histological scores
(MEST-C) being the most important one. Therefore, we cannot
compare the value of the IgAN237 score with an integrated risk
prediction tool applied at the time of biopsy [2]. While this repre-
sents an area for future studies, a prediction tool that depends en-
tirely upon data derived non-invasively presents a distinct
advantage. Also, this study is not a prospective study, however it is
based on prospectively collected samples. Furthermore, the
IgAN237 score was developed in a mainly Caucasian population,
so it remains speculative whether our findings can be extended to
other ethnicities. The number of subjects (n¼ 209) may also limit
the generalizability of our findings, so the results of this study
need to be validated in larger and independent cohorts.

In conclusion, the IgAN237 classifier identifies IgAN
patients who are at high risk for disease progression, indepen-
dently of a concurrent kidney biopsy or traditional clinical
parameters such as eGFR, proteinuria or blood pressure. This
may allow individual risk stratification and potentially may in-
fluence patient management.
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