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Abstract: Poly-γ-glutamic acid (γ-PGA) is a natural, safe, non-immunogenic, biodegradable, and
environmentally friendly glutamic biopolymer. γ-PGA has been regarded as a promising bio-based
materials in the food field, medical field, even in environmental engineering field, and other industrial
fields. Microbial synthesis is an economical and effective way to synthesize γ-PGA. Bacillus species
are the most widely studied producing strains. γ-PGA biosynthesis involves metabolic pathway of
racemization, polymerization, transfer, and catabolism. Although microbial synthesis of γ-PGA has
already been used extensively, productivity and yield remain the major constraints for its industrial
application. Metabolic regulation is an attempt to solve the above bottleneck problems and meet
the demands of commercialization. Therefore, it is important to understand critical factors that
influence γ-PGA microbial synthesis in depth. This review focuses on production strains, biosynthetic
pathway, and metabolic regulation. Moreover, it systematically summarizes the functional properties,
purification procedure, and industrial application of γ-PGA.

Keywords: poly-γ-glutamic acid; Bacillus species; microbial synthesis; metabolic pathway; indus-
trial application

1. Introduction

γ-PGA is a biopolymer of D- and/or L-glutamic acid monomers by peptide bonds [1–3].
Commonly, γ-PGA is natural, water-soluble, edible, non-immunogenic, and biodegradable.
Nowadays, due to specific biological properties, γ-PGA has already gained significant
attention and has been widely applied into the fields of food processing, agricultural
production, emerging medical treatment, cosmetics, and other fields [4–13].

Microbial synthesis is an extremely economical and effective way to produce γ-
PGA [11]. Bacteria, archaea, and eukaryotes are all γ-PGA producers, but Bacillus species
are the natural, dominant, and safely produced strains [7,8,14–16]. Commonly, the pro-
duction strains are divided into glutamic acid-dependent and glutamic acid-independent
strains according to whether there is a need to add glutamate acids externally [17]. Glutamic
acid dependent strains are regarded as the better producers, as adding glutamic acids can
significantly increase the yield [1,9,18]. Biosynthesis of γ-PGA is well established, but both
productivity and yield are still the decisive factors for limiting its industrial application [11].

The molecular composition, molecular weight, yield, and synthesis productivity of
γ-PGA directly affect its biological properties and industrial applications. Most recent
research have been paid attention to metabolism regulation of γ-PGA synthesis. Some
of the strategies may be promising in the future, including genetic manipulation, culture
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medium, and culture condition optimization, which are all expected to improve the yield
and productivity [11].

This review mainly summarizes the recent advances about the molecular components,
functional properties, microbial sources, synthetic pathway, metabolic regulation, purifica-
tion processes, and industrial application of γ-PGA. Meanwhile, it reveals tough challenges
of γ-PGA biosynthesis ahead and strategies for challenges.

2. The Functional Properties of γ-PGA

γ-PGA is polymerized from D-/L-glutamic acid monomers alone or both enantiomers
by peptide bonds, which are synthesized by the α-amino of one glutamic acid and the
γ-carboxylic acid of another one (Figure 1) [19–21]. The peptide bonds of γ-PGA are
significantly different from the amide bonds of ordinary proteins, which are formed by one
amino acid with α-amino group and another one with α-carboxylic acid group [19].
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Figure 1. The structural formula of γ-PGA and its constituent units. The polymer of γ-PGA (n:
repeating units approach at least 10,000) (A) and the L-glutamic acid monomer (B) and D-glutamic
acid monomer (C) of γ-PGA.

The molecular structure of γ-PGA is directly affected by the molecular composition,
molecular weight, and order of the isomers. Based on the monomer types, γ-PGA consists
of γ-L-PGA (homopolymers containing only L-glutamic acid), γ-D-PGA (homopolymers
containing only D-glutamic acid), and γ-DL-PGA (random copolymer containing D- and
L-glutamic acid) [8,12]. Generally, γ-PGA covers five types of structures: α-helix, β-
sheet, random coil, helix-to-random coil transition, and enveloped aggregate [12,22,23].
The molecular structures are always influenced by the extraction process [1]. Degree of
monomer polymerization reflects the molecular weight of γ-PGA, which is determined by
the producers, media, and cultivation conditions [24,25]. The molecular weight of γ-PGA is
generally in the range of 10 kDa to 2000 kDa [19]. The higher molecular weight, the higher
viscosity and the more difficult it is for further purification preparation [3,5,11,12,26,27].

The structure and molecular component of γ-PGA decisively influence its functional
properties. As an anionic biopolymer with both carbonyl and amide groups, γ-PGA pos-
sesses an array of specific properties: edible, strong water solubility and water retention,
non-toxicity, high biodegradability, high cation exchange capacity, metal-chelating ability,
strong antioxidant, antimicrobial peptides activities, and high resistance to thermal de-
composition [21,28]. However, some functional properties of γ-PGA are not completely
understood. Depending on the biological properties, γ-PGA might be used as food ad-
ditives, e.g., taste-masking agents, texture modifier, thickeners, stabilizers, moisturizers,
and probiotics cryoprotectant [12,22,29]. It may be an essential material for maintaining
sensitive activities and is used as carriers, fillers, and adhesives in complex matrices, such
as for drugs in the medical industry and tissue engineering [30–38]. Besides, in agriculture,
it can be an ideal stabilizer, metal biosorbent in soil washing, an environment-friendly
fertilizer synergist, and plant growth accelerator [24,38–40]. Additionally, it can be used in
moisturizers in the cosmetics industry [41].
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3. Microbial Sources of γ-PGA

Since γ-PGA was first discovered in a capsule of Bacillus anthracis by Bruckner and his
co-workers in 1937, it has been discovered successively in archaea, bacteria, and eukaryotes,
such as Natrialba aegyptiaca, Natronococcus occultus, and Fusobacterium nucleatum [14,15,42].
However, natural sources of γ-PGA have been occurring in the fermented products of
Bacillus species for a long time, which contains B. subtilis, B. amyloliquefaciens, B. licheniformis,
B. velezensis, and others [16]. B. subtilis and B. licheniformis are high potential microbial
sources of γ-PGA [3,11]. Bacillus species, such as γ-PGA producers, can be separated into
two types: glutamic acid-dependent and glutamic acid-independent strains; the former
need an external supply of glutamate to produce γ-PGA, and the latter can produce γ-PGA
without extra adding glutamate [1,9]. Most γ-PGA producers are known as glutamic
acid-dependent strains, such as B. subtilis F-2-01, B. subtilis MR-141, B. subtilis C10, B. subtilis
chungkookjang, B. subtilis GXA-28, B. licheniformis ATCC 9945a, B. licheniformis A35, and
B. licheniformis WX-02 [24,43–48]. Relatively few strains, such as B. subtilis TAM-4, B. subtilis
C1, B. subtilis 5E, B. licheniformis A35, B. licheniformis S173, and B. amyloliquefaciens LL3,
are glutamic acid-independent strains [11,42,49–51]. Although, compared to glutamic
acid-independent strains, glutamic acid-dependent strains are generally better producers
and have attracted much attention to relatively high yield of γ-PGA, the current problem
is high cost of production [1,9,10]. Instead, glutamic acid-independent strains are more
desirable for realistic demands of yield and productivity. They mean not only low cost but
also simple fermentation processes. However, lower γ-PGA productivity is the primary
limitation [3].

Nowadays, most commercial γ-PGA is mainly synthesized by Bacillus species and
safely used in various well-established processing fields [1,4,5,8,10]. B. subtilis, as a tradi-
tional model organism, is a class of gram-positive, endospore-forming, and rod-shaped
bacteria. It has applications in such fields as food and medicine as a Generally Recognized
as Safe (GRAS) microbial producer. Furthermore, most importantly, it possesses the best-
characterized γ-PGA production abilities [1,11]. Both the genome and molecular genetics
relationship of B. subtilis have been clarified, and the manipulation is well established.
B. licheniformis is another type of gram-positive, endospore-forming bacteria. At present, it
has been exploited for γ-PGA production [1]. In addition, B. methylotrophicus, B. anthracis,
and B. thuringiensis also have the great productivity of γ-PGA [26,52]. However, these
strains have less relevant studies about γ-PGA production [53]. They all cannot be the great
producers because of some natural flaws; e.g., B. anthracis is a pathogenic bacterium, and it
is not viable for industrial applications.

In fact, engineered microorganisms have also been used as a suitable device for γ-PGA
biosynthesis [1,11,54,55]. Escherichia coli are the most used host for heterologous expression.
C. glutamicum is a good native L-glutamic acid producer [5,19]. Therefore, it is regarded as
a host for producing recombinant γ-PGA. Similarly, B. subtilis can also be the homologous
host engineered to produce γ-PGA [5,19]. However, the final yield of γ-PGA is and remains
far below that of native strains.

4. Synthetic Pathway of γ-PGA

The microbial synthetic pathway of γ-PGA principally covers three distinct stages:
racemization, polymerization and transfer, and catabolism (Figure 2) [10,11,22]. Glycol-
ysis, the Pentose Phosphate Pathway (PPP), Tricarboxylic Acid (TCA) cycle, amino acid
metabolism, and glutamate synthesis all participate in γ-PGA biosynthesis [56].
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Figure 2. The synthetic pathway of γ-PGA. Main biologically synthetic pathway of γ-PGA involves
three steps: racemization, polymerization and transfer, and catabolism. Various substrates (e.g.,
glucose, citric acid, glycerol, biomass materials, and by-products) enter by the main anabolism
pathway. For glutamate-independent strains, they can utilize exogenous nutrients to product γ-
PGA through glycolysis, PPP, and TCA cycle. Instead, for glutamate-dependent strains, glutamic
acid or glutamate are added to the medium directly to product γ-PGA. PPP, Pentose Phosphate
Pathway; G3P, glyceraldehyde 3-phosphate; TCA cycle, Tricarboxylic Acid cycle; E1, pyruvic acid
aminotransferase (L-Glutamic acid); E2, alanine racemase; E3, pyruvic aminotransferase (D-Glutamic
acid); RacE, glutamate racemase; Pgs, γ-PGA synthetase (four gene subunits operons: pgsB, C, A
and E); GDH, glutamate dehydrogenase; GS, glutamine synthetase; GOGAT, glutamate synthase
or glutamine oxoglutarate aminotransferase. PgdS, γ-PGA hydrolase; Ggt, γ-glutamyl transferase;
CwlO, cell wall lyases.
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4.1. The Racemization Pathway of γ-PGA

Racemization is the first step of anabolism. Under the catalytic action of gluta-
mate racemase (RacE), exogenous or endogenous L-glutamate are converted directly to
D-glutamate [11]. Then these glutamic acids monomers incorporate into the growing
L-chain [15,21]. In B. subtilis, racE/glr and yrpC have been identified as two homologs of
RacE coding genes, and racE/glr has proven to be essential for the direct conversion between
L-glutamate and D-glutamate [57]. For indirect conversion pathway, with pyruvate as
the precursor, three enzymes catalyze the transformation of pyruvate to D-glutamic acid
(L-glutamic acid/pyruvic acid aminotransferase, D-glutamic acid/pyruvic acid amino-
transferase, and alanine racemase) [1,20].

In the presence of large amounts of L-glutamic acid, Bacillus species will initiate the
transformation pathway to produce D-glutamic acid. In L-glutamic acid-dependent strains,
once the L-glutamate is imported from the medium into the cytoplasm, part of them is
immediately converted to D-glutamic acid and involved in the downstream synthesis path-
way [3]. In L-glutamic acid-independent strains, all L-glutamic acid required is generated
from external carbon sources [19]. With catalytic activity of glutamate dehydrogenase
(GDH), these strains produce L-glutamic acid by transforming citric acid into both isoc-
itric acid and α-ketoglutaric acid in TCA cycle [19]. Or L-glutamic acid production relies
on glutamine synthetase-glutamate synthase (GS-GOGAT) pathway. Pyruvic acid and
α-ketoglutaric acid are mutually transmitted by aminotransferase [58]. C. glutamicum has
also been well-established for γ-PGA biosynthesis. Clearly, it has two completely different
pathways: the GS-GOGAT pathway regulated by GlnA, GltB, and GltA and the NADPH-
dependent pathway regulated by RocR, RocG, and GudB (RocR, a transcriptional regulator
of glutamate; RocG, expressed by rocR; GudB, glutamate dehydrogenase) [3,19].

4.2. The Polymerization and Regulation Pathway of γ-PGA

The next steps are polymerization and transfer. L-glutamic acid and D-glutamic
acid monomers are transfered from cytoplasm to cell membrane with the membrane-
embedded γ-PGA synthetase (Pgs) [10,11,18]. Pgs are responsible for assembling them into
γ-PGA [5]. Pgs is encoded by an active membrane enzyme complex (four gene subunits
operons: pgsB, C, A, and E) and the γ-PGA-release gene (PgsS) (Figure 3) [2,59]. PgsBCA
has been identified as the unique mechanism of γ-PGA microbial synthesis in Bacillus
species [5,60]. The expression level of PgsBCA has a direct effect on γ-PGA biosynthesis [19].
PgsB and PgsC make up the main components of the catalytic site. PgsA removes the
long chains on the active site; it participates in the integration of γ-PGA long chains
and later transfer [13,60]. PgsBCA is necessary for polymerizing and transporting γ-
PGA to the compact cell membrane [12]. High concentrations of PgsB, PgsC, and PgsA
can biosynthesize γ-PGA from a lack of PgsE; therefore, PgsE may be dispensable [60].
However, PgsE is essential for γ-PGA biosynthesis when Zn2+ is present because PgsBCA
complex is extremely unstable and highly hydrophobic, and PgsE could affect PgsBCA
disaggregation in Bacillus species [61]. The homologs of PgsBCA are YwsC and YwtAB in
B. subtilis and CapBCA in B. anthracis [1,45]. γ-PGA can be anchored at the peptidoglycan
of cellular surface with CapD catalysis or released into the medium with PgsS catalysis [52].

Meanwhile, γ-PGA biosynthesis is regulated by two intracellular signal transduction
mechanisms: one is ComP-ComA regulator, and another is DegS-DegU regulator [62].
DegQ regulated by these two mechanisms inhibits the γ-PGA production and then effec-
tively down-regulates the expression level of degradation enzymes [63]. SwrA is another
regulator of PgsBCA. The fully activated PgsBCA operon needs the simulaneous presence
of SwrA and phosphorylated DegU (DegU-P), but one of the two exists separately and
does not have much impact on pgsBCA transcription [18,64]. High level of DegU-P could
completely replace SwrA in directly activating PgsBCA expression [65]. Overall, these
mechanisms are all involved in transcriptional regulation. Both ComP-ComA and DegS-
DegU systems regulate the front-end transcription, while SwrA assists in regulation at the
post-transcription [66].
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for assembling L-glutamic acid and D-glutamic acid units into γ-PGA. Pgs is encoded by an active
membrane enzyme complex (pgsB, C, A, and E) and the γ-PGA-release gene (PgsS).

4.3. The Catabolism Pathway of γ-PGA

γ-PGA is a secondary metabolite for the Bacillus species. However, production strains
of γ-PGA may possibly degrade and utilize γ-PGA as substrates [24]. The catabolism
pathway of γ-PGA is rigorously controlled by the intracellular regulatory mechanisms [19].

Three types of hydrolases can degrade γ-PGA: (1) native γ-PGA hydrolase (PgdS),
whose coding gene is located in the downstream of PgsBCA operon, cleaves the γ-glutamyl
bonds with strict regulation inside of hosts; (2) cell wall lyases (D- or L-endopeptidase), such
as CwlO, CwlS, LytE, and LytF, disconnects between the glutamic acid residues peptide
bonds; and (3) γ-glutamyl transferase (excision or incision enzyme, Ggt) hydrolyzes the
γ-PGA from the N-terminal and releases shorter D- or L-glutamic acid residues to form di-
and tripeptides of γ-glutamic acid in vitro [56,67–69].

The genes encoding Ggt (PgdS, YwtD, and Dep) are in plasmid and lie directly in the
downstream of PgsBCA operon in the Bacillus species with the same orientation [67]. The
above situation indicates that the enzymes are stably expressed under the ComP-ComA
and DegS-DegU regulators.

5. Improvement of Microbial γ-PGA Synthesis

Although microbial synthesis of γ-PGA has been well developed, yield and produc-
tivity remain the core constraints for its industrial application [11]. Most cost of γ-PGA
production depends on culture medium and producing strains [70]. Metabolic regulation,
including genetic manipulation, culture medium, and culture condition optimization, is an
effective way to solve the above bottleneck problems. However, the final yield of γ-PGA has
so far not matched and even falls far below the productivity of the native producers [71].

5.1. Genetic Manipulation

Thus far, most native producers of γ-PGA are Bacillus species. Parts of them have
great productivity. B. subtilis has been widely applied in industry by simple screening and
improvement (Tables 1 and 2) [1]. Production strains of γ-PGA have always been isolated
from traditional fermented soybean products or some specific environments. However,
the high production cost of glutamate-dependent strains and low substrate conversion
rate of glutamate-independent strains should not be ignored. Genetic manipulation is a
proven effective way to regulate the γ-PGA production [19]. Genetic manipulation is the
key process of constructing genetically engineered strains. It mainly contains knock-out
genes and construction plasmid. Genetic manipulation can promote or inhibit expression
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of enzymes and thus influences γ-PGA biosynthesis and degradation directly or indirectly
in Bacillus species.

Table 1. Sources of γ-PGA production trains.

Strains Source Main Medium
Components Cultural Conditions Final Yield (g/L) Ref.

B. subtilis ZJU-7 Isolated from
fermented bean curd

Glucose,
L-glutamic, yeast extract,
NaCl, Ca2+, Mg2+, Mn2+

Bioreactor, pH 6.5, 37 ◦C 101.1 [72]

B. subtilis NX-2

Isolated from soil
samples

Glucose,
glutamic, (NH4)2SO4,

yeast extract, K2HPO4,
Mg2+, Mn2+

APFB (aerobic plant
fibrous-bed bioreactor)

immobilized cell
fermentation, pH 7.0,

32 ◦C

71.21 [73]

Isolated from soil
samples

Cane molasses,
monosodium glutamate

liquid waste
Bioreactor, pH 7.0, 32 ◦C 52.1 [74]

B. subtilis MJ80 Isolated from soil
samples

Glutamic acid,
starch, urea, citric acid,

glycerol, NaCl, K2HPO4,
Mg2+, Mn2+

Fermenter for
immobilized cell

fermentation, pH 7.0,
37 ◦C

68.7 [75]

B. subtilis HB-1 Isolated from soil
samples

Glutamate, xylose,
corncob fibers
hydrolysate,

yeast extract, NaCl

Bioreactor, pH 6.5, 37 ◦C 28.15 [76]

B. methyotrophicus
SK 19.001

Isolated from soil
samples

Glucose,
yeast extract, K2HPO4,

Mg2+, Mn2+
Flask, pH 7.2, 37 ◦C 35.34 [27]

B. licheniformis
P-104

Isolated from
Chinese soybean

paste

Glucose, glutamate,
citric acid, (NH4)2SO4,
K2HPO4, Mg2+, Mn2+

Bioreactor, pH 7.0, 37 ◦C 41.6 [77]

Table 2. Genetic manipulations of γ-PGA.

Strains Engineering Methods Main Medium Components Final Yield (g/L) Ref.

B. subtilis ISW1214 Carrying the plasmid of γ-PGA
synthetic system

Sucrose, xylose, NaCl,
NaHPO4, KH2PO4, Mg2+ 9.0 [54]

B. subtilis PB5249 Deletion of genes (pgdS and ggt)
Glucose, L-glutamic acid, citric
acid, NH4Cl, K2HPO4, Mg2+,

Mn2, Ca2+, Fe2+
40 [78]

B. licheniformis WX-02

Expression of glr gene for encoding
glutamate recemase

Glucose, L-glutamic acid, citric
acid, NH4Cl, NaCl, K2HPO4,

Mg2+, Mn2+, Ca2+, Zn2+
14.38 [79]

Enhanced expression of pgdS gene
Glucose, glutamate, citric acid,
NH4Cl, K2HPO4, Mg2+, Mn2,

Ca2+, Zn2+
20.16 [80]

Substituted by the native glpFK
promoter with the constitutive

promoter (P43), ytzE promoter (PytzE),
and bacABC operon promoter (PbacA)

Sodium glutamate, citric acid,
glycerol, 17.65 [81]

Over-expression of glpK, glpX, zwf,
and tkt1 promoters

Sodium citrate, glycerol,
NaNO3, NH4Cl 12.83 [81]
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Table 2. Cont.

Strains Engineering Methods Main Medium Components Final Yield (g/L) Ref.

B. amyloliquefaciens

Deletion of gene (epsA-O, sac, lps, pta,
pgdS, cwlO, luxS, and rocG), expression
of synthetic small synthetic regulator

RNAs (repressed the expression of
rocG and glnA gene)

Sucrose, (NH4)2SO4, K2HPO4,
KH2PO4, Mg2+ 20.3 [82]

B. amyloliquefaciens LL3

Double knockout of gene (pgdS
and cwlO) Sucrose, (NH4)2SO4, NaCl,

K2HPO4, KH2PO4

7.12 [68]

Gene knockout of rocR, rocG, gudB,
and odhA 5.68 [83]

Gene knockout of fadR, lysC, aspB,
pckA, proAB, rocG, and gudB

Tryptone, xylose, yeast extract,
NaCl, ampicillin,

chloramphenicol, or
tetracycline

4.84 [84]

Enhancing NADPH level by inserting
a strong promoter PC2up

6.46 [84]

For native strains, genetic manipulation targeting γ-PGA synthesis pathway is a
common strategy. Deletion the transcriptional regulating gene rocR or the glutamate
dehydrogenase gene gudB individually can effectively increase the yield of γ-PGA in
B. amyloliquefaciens LL3 [83]. In B. amyloliquefaciens, NK-A6 deleted fadR, lysC, aspB, pckA,
proAB, rocG, and gudB for partial blockade of downstream metabolic pathways; B. amy-
loliquefaciens NK-A7 inserted a strong promoter PC2up for enhancing NADPH level by
genetic manipulation; and B. amyloliquefaciens NK-A11 deleted the srf and itu operons,
and these engineered bacteria synthesized 4.84, 6.46, and 7.53 g/L γ-PGA, respectively,
all higher than the original strains of B. amyloliquefaciens LL3 [84]. Some strains, such as
B. subtilis 168 and B. subtilis DB430, have the necessary synthesis gene cluster but cannot
produce γ-PGA [59,85]. A mutant integrated PgsBCA or ywsC-ywtAB gene cluster with
the regulating gene SwrA can increase intracellular level of DegU-P and SwrA and the pro-
duction of γ-PGA. Besides, PgsBCA embedded into chromosome with a strong promoter
can efficiently enhanced the production of γ-PGA.

Moreover, γ-PGA may be hydrolyzed and acts as a carbon or nitrogen source by
production strains of γ-PGA if lacking external nutrient supply [19]. Repressing γ-PGA hy-
drolase by gene engineering could reduce loss of production and change molecular weight
of γ-PGA [39,78]. Some research paid attention to the expression of γ-PGA hydrolases
manipulated by gene knockout. Compared to wild strains, mutant deleted ggt in B. subtilis
NAFM5 had higher molecular weight, but the yield of γ-PGA might be comparable [86].
In B. subtilis and B. amyloliquefaciens, deleting cwlO gene increased production even with
higher molecular weight of γ-PGA relative to the wildtype strain [77], and deleting pgdS
gene just increased molecular weight slightly [69]. However, the combined deletion of pgdS,
cwlO, or ggt in the above strains resulted in a 93% increase in production compared to the
wildtype [65,80]. Besides, deleting luxS gene in B. amyloliquefaciens NK-E10 resulted in a
slightly improved production ability of γ-PGA [82].

In addition, enhancement of carbon flux conversion to γ-PGA biosynthesis, elimination
of by-products or undesired precursor, and inhibition of other drain energy pathways
can promote γ-PGA production and purity [42]. Carbon metabolism may be impacted
positively by extra ATP, then improved by γ-PGA production [87]. Polysaccharides, major
by-products and contaminates of γ-PGA, consume large amounts of the carbon sources
and metabolic energy [19]. Mutants knocked out the synthetic genes of exopolysaccharides
and lipopolysaccharide to obtain more and purer γ-PGA [82,88]. Compared with no
removal of lipopolysaccharides in medium, the purity of γ-PGA in B. amyloliquefaciens
NK-E5 increased to 95% [82]. Similarly, mutants removing the synthetic genes of both
lactate and acetate, toxic compounds adversely impact cell growth, produced the same
effects as the above study. However, approaches of eliminating glutamate-consuming
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pathways did not increase the yield of γ-PGA because the gene manipulations resulted
in a metabolic imbalance with other related pathways in cells [19,82]. Just when γ-PGA
is biosynthesized, energy-consuming substances synthesis also take places in cells, such
as antibiotics. Repression of these energy-consuming substances synthetic pathways by
gene knockout may increase production relative to the native strains but may not always
be helpful [89].

Recombinant expression in homologous or heterologous hosts is another effective strat-
egy for increasing γ-PGA production (Table 3). Genetic recombination is divided up into
homologous expression and heterologous expression. Genetic manipulation recombined
by E. coli and C. glutamicum is heterologous expression. Genetic manipulation recombined
by Bacillus species is homologous expression. The xylose-induced plasmid pWH1520 with
pgsBCA operon can be introduced into B. subtilis MA41 with the disruption of native pgsBCA
gene, and then, γ-PGA synthetase can be successfully expressed [54]. Plasmid harboring
the energy-saving NADPH-GDH pathway in B. amyloliquefaciens NK-1 could increase the
yield of γ-PGA by 9%. Genetic expression patterns, including constitutive and inducible
expressions, are the key factors affecting γ-PGA yield [78,90]. Inducible expression can
accumulate γ-PGA in a short time. Besides, the operon pgsBCA of B. licheniformis NK-03
and racE of B. amyloliquefaciens LL3 were simultaneously cloned into an induced plasmid
and co-expressed in E. coli JM109 for microbial synthesis of γ-PGA. Constitutive promoter
(PHCE) from the D-amino acid aminotransferase (D-AAT) gene of Geobacillus toebii was
recombined and expressed efficiently in E. coli/pCOpgs for γ-PGA biosynthesis. The final
yield of γ-PGA is 3.7 g/L in the optimized medium [91].

Table 3. Genetic manipulations of γ-PGA.

Strains Genetic Engineering Main Medium Components Final Yield (g/L) Ref.

C. glutamicum ATCC
13869

Cloning and expressing pgsBCA of
B. licheniformis TKPG011

Glucose, (NH4)2SO4, soy
protein hydrolysate, thiamine
hydrochloride, KH2PO4, Mg2+,

Mn2, Fe2+, Ca2+

18 [92]

C. glutamicum ATCC
13032

Cloning and expressing pgsABC from
B. licheniformis NK-03

Glucose, tryptone, yeast
extract 0.7 [93]

E. coli BL21 Cloning and overexpressing γ-PGA
biosynthesis genes

Glucose, L-glutamic acid, yeast
extract, (NH4)2SO4

3.7 [91]

E. coli LRP Expressing pgsBCA and race from
B. amyloliquefaciens LL3 Glucose, yeast extract, NaCl, 0.7 [1]

E. coli JM 109

Cloning pgsBCA and racE from both
B. licheniformis NK-03 and

B. amyloliquefaciens LL3 and
co-expression

Glucose, L-glutamic acid, yeast
extract, NaCl, (NH4)2SO4,
K2HPO4, KH2PO4, Mg2+,

0.65 [55]

B. subtilis PB5249 ∆pgdS∆ggt deletion mutants

glucose, L-glutamate, citric
acid, NH4Cl, K2HPO4,

MgSO4·7H2O, MnSO4·H2O,
FeCl3·6H2O, CaCl2·2H2O

40 [78]

B. subtilis WB600 Overexpressing pWB980-pgsBCA Glucose, sodium glutamate,
MgSO4, (NH4)2SO4, K2HPO4

1.74 [94]

B. subtilis ISW1214 Overexpressing
pWH1520-PxylA-pgsBCA

Sucrose, xylose, NaCl, MgSO4,
KH2PO4, NaHPO4

9.0 [54]

B. licheniformis WX-02

Overexpressing pHY300PLK-P43-glr Sucrose, (NH4)2SO4, MgSO4,
KH2PO4, K2HPO4

14.38 [79]

Overexpressing
pHY300PLK-PpgdS-pgdS

Glucose, sodium glutamate,
sodium citrate, NH4Cl,

MgSO4, ZnSO4, MnSO4,
CaCl2, K2HPO4

20.16 [80]
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Table 3. Cont.

Strains Genetic Engineering Main Medium Components Final Yield (g/L) Ref.

B. amyloliquefaciens LL3
∆pgdS∆cwlO deletion mutants Sucrose, (NH4)2SO4, MgSO4,

KH2PO4, K2HPO4
7.12 [68]

∆rocR∆rocG∆gudB∆odhA deletion
mutants

Sucrose, (NH4)2SO4, MgSO4,
KH2PO4, K2HPO4

5.68 [83]

B. amyloliquefaciens
∆cwlO∆epsA-Ovgb deletion mutants

Sucrose, (NH4)2SO4, MgSO4,
FeSO4·4H2O, CaCl2·2H2O,

MnSO4·4H2O, ZnCl2,
KH2PO4, K2HPO4,

5.12 [68]

Repressed both rocG and glnA genes Sucrose, (NH4)2SO4, MgSO4,
KH2PO4, K2HPO4

20.3 [82]

Among others, C. glutamicum may be considered as a suitable host for recombinant
production of γ-PGA, which is a native L-glutamate producer. When glutamate was
deficient, heterologous expression of PgsBCA operon still resulted in the yield up to 0.7 g/L
for C. glutamicum [19].

5.2. Culture Medium Optimization

Optimized medium composition can effectively promote cell growth and thus accu-
mulate large amounts of precursors for γ-PGA synthesis (Table 4) [71]. More importantly,
engineered strains that metabolize cheap substrates are an effective strategy for cost re-
duction of γ-PGA production. Carbon sources as major substrates result in directly or
indirectly influence in γ-PGA production. Glucose, sucrose, glutamic acid, citric acid, and
glycerol are the common carbon sources with different metabolic pathways and influences
for γ-PGA production [95]. Glucose and citric acid are the most utilized carbon sources by
Bacillus species [96]. Glucose metabolism is related to protein metabolism, such as several
stress-response proteins [97]. Carbon catabolite may affect γ-PGA synthetic enzyme activity.
Glucose may suppress the transcription of degQ operon during γ-PGA synthesis. Both
citric acid and glutamic acid could serve as promoters for γ-PGA production [98]. Though
fructose, maltose, and xylose show a positive effect on cell growth, almost no change
was shown in γ-PGA production. Adding metabolic precursors of γ-PGA production as
carbon sources may obtain higher yields, possibly because of enzymes activity enhanced of
metabolic pathways [42]. Culture medium with L-glutamine and α-ketoglutaric acid can
effectively increase the yield of γ-PGA up to 20% for B. subtilis BL53 [99]. The molecular
weight also increased to 570 kDa [100]. Citric acid reached maximum yield to 28.3 g/L
when compared with other organic acids, such as succinic acid, malic acid, and oxalic
acid [47]. Organic acids involved in metabolic pathways often impact γ-PGA biosynthesis
by adjusting enzymes activities. Most glutamic acid-independent strains prefer glucose and
glycerol. Glycerol never inhibits related enzymes for γ-PGA production [97]. Compared
with glucose, cells in glycerol can be more permeable, which may help the produce and
release of γ-PGA [101,102]. Other biomass materials or by-products also can efficiently
convert into high-value γ-PGA. Agro-industrial wastes were exploited as raw materials,
such as cane molasses, corncobs, rapeseed meal, soybean residue, monosodium glutamate
for processing wastewater, rice straw, and crude glycerol and its hydrolysate [74,96,103].
Besides, some carbonaceous substances might replace common carbon sources, such as
algae, chicken manure, animal feathers, and dairy products [104–107]. The yield of γ-PGA
reached 65 g/L in an optimized culture medium containing glutamic acid extracts, soybean
residue, and chicken manure [108].
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Table 4. The culture methods of γ-PGA.

Strains Cultural Methods Final Yield (g/L) Ref.

B. subtilis NX-2
Using a two-stage strategy for agitation speed control 40.5 [109]

Adding hydrogen peroxide 33.9 [110]

B. subtilis CGMCC 0833 Applying pH-shift control strategy 27.7 [111]

B. subtilis F-2-01 Adding more carbon sources (L-glutamic acid
and glycerol) 45.5 [43]

B. subtilis BL53 Adding some precursors 25.2 [112]

B. subtilis C10 Abundant supply of organic acid 27.7 [47]

B. subtilis GXA-28 Addition of KCl 25.62 [113]

B. licheniformis TISTR 1010
Different feeding strategies

(glucose, citric acid, NH4Cl, NaCl, Mg2+, Mn2, Ca2+,
K2HPO4, Tween-80)

27.5 [114]

B. licheniformis ATCC 9945A Different feeding strategies
(L-glutamic acid, citric acid, glycerol, NH4Cl)

23.0 [98]

35.0 [115]

57.5 [116]

B. licheniformis WBL-3

Optimized culture medium
(L-glutamic acid, citric acid, glycerol, NH4Cl) 22.8 [102]

Optimized culture medium
(glutamic acid, citric acid, glycerol) 19.3 [102]

B. licheniformis P-104 Optimized culture medium
(glutamate, glucose, citric acid, (NH4)2SO4) 41.6 [77]

B. licheniformis NCIM 2324

Addition of metabolic precursors
(α-ketoglutaric acid) 35.75 [18]

Optimized culture medium
(L-glutamic acid, citric acid, glycerol, (NH4)2SO4,

K2HPO4, Mg2+, Mn2+)
26.12 [18]

Optimization effecting factors at a time
(L-glutamic acid, sugarcane juice, citric acid, NH4Cl) 35.75 [18]

B. licheniformis WX-02 Adding pH stress treatment 36.26 [101]

B. velezensis NRRL B-23189 Optimized culture medium
(molasses, citric acid, NH4Cl) 4.82 [117]

B. methylotrophicus SK 19.001 Optimized culture medium
(glucose, citric acid, NH4Cl) 35.3 [27]

The nitrogen-containing compounds also can affect γ-PGA production. NH4
+, an inor-

ganic nitrogen source, easily form monomers of γ-PGA with α-ketoglutarate by transamina-
tion reaction [118]. The synthetic pathway of γ-PGA needs free amino groups. Glutamate
is the most common nitrogen source for B. subtilis. Most L-glutamic acid is metabolized as
a nitrogen source, and only a small amount is used to synthesize γ-PGA [119]. In addition,
others nitrogenous substances are also suitable alternatives of nitrogen sources. With
fishmeal waste as the nitrogen source in optimized culture medium, the yield of γ-PGA is
increased up to 25 g/L [24].

Inorganic salts can also affect γ-PGA production. Metal ions serve as cofactors in
utilization of carbon sources. Mn2+ can significantly enhance the glutamate racemase
activity of γ-PGA, and then, the yield of γ-PGA can increase from 9.25 to 28.42 g/L [20,98].
The molecular weight and yield of γ-PGA can be regulated by sodium salts of culture
medium for halotolerant strains as well as in other extremophilic bacteria [46]. Besides,
γ-PGA derivatives with phosphorylation, esterification, or sulfonation can be directly
produced by adding agents into the growth media, such as phosphoric acid. γ-PGA
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derivatives have greater potential than native γ-PGA and have been unprecedentedly used
in various fields [7].

Exogenous additives of the culture medium are useful for γ-PGA production. Addi-
tives influence cellular membrane permeability and then regulate substrate availability.
Tween 80 and DMSO can increase utilization of carbon sources [118].

It has been proven that suitable culture conditions, such as temperature, oxygen
content, pH, and the inoculation amount. can effectively improve the yield of γ-PGA.
Most Bacillus species are mesophilic and aerobic strains, tend to thrive well on optimum
temperature range, and effect γ-PGA synthesis [48]. Some thermoacidophiles still maintain
thermal stability in high temperature [120,121]. In addition, some strategies for maintaining
oxygen supply, such as adding oxygen-carrying agent or one cultured in a fermenter, can
enhance the γ-PGA production [99]. Another important factor is pH for γ-PGA biosynthesis
because reactions involving glutamate are pH sensitive [11]. pH-controlling strategy further
increases the utilization of glutamate and hence improves the γ-PGA production. The
amount of inoculation is determined by the type of bacteria, culture composition, and
culture conditions [122]. Inappropriate concentration of inoculum causes excessive nutrient
competition or inhibition of the growth of viable cells and thus would reduce γ-PGA
biosynthesis.

The optimization and integration of various conditions is the focus of current research,
which take less fermentation time, has lower production costs, and has more stable pro-
ductivity and yield. A series of methods, such as batch, fed-batch, continuous culture,
and symbiotic fermentation (mixed strains or substrates are co-cultured), were tested at
small scale to optimize the productivity of γ-PGA [8,54,123,124]. Clearly, these combined
methods are highly effective. The yield of γ-PGA was increased to 2.19 g/L in a fermenter
by fed-batch of glucose supply [72].

6. Purification of γ-PGA

γ-PGA is synthesized by Bacillus species outside the cells, which makes its purification
relatively simple. The yield and molecular weight of γ-PGA, determined by biosynthesis,
are the key factors affecting its purification [118]. Moreover, it has been confirmed that the
purity of γ-PGA relates to culture mediums and conditions [112,125]. The higher the yield
or/and the molecular weight of γ-PGA, the higher the viscosity and the more difficult the
purification is [11]. Besides, part of γ-PGA is adhered to cell wall peptidoglycan rather
than being secreted into the medium, which apparently makes purification of γ-PGA more
difficult [1,14]. Precipitation and filtration are commonly used to purify γ-PGA. The first
step is removal of the cells of fermented broth before purification, which can simplify
the purification process. Diluting the medium or adjusting the pH value to about 3 can
reduce the viscosity and help to remove the producing strains [126]. Then, the broth
is removed by elementary precipitation and filtration. The normal method is organic
solvents precipitation [42]. However, some of water-soluble organic solvents will degrade
γ-PGA into oligomers or monomers. Ethanol remains the preferred precipitator of γ-PGA
precipitation from a cell-free broth [126]. However, it results in the co-precipitation of
other macromolecular substances, such as proteins and polysaccharides [11,26]. Obviously,
further effective purification may be required for separation, such as filtration and buffer
exchange, according to the physicochemical properties’ differences in γ-PGA and other
constituents [116]. Diafiltration and ultrafiltration are commonly used and cost-effective
filtration technologies [126]. Continuous fermentation integrated with a membrane-based
filtration technology has been applied to industry [127]. However, membrane-based
filtration technique is usually exceedingly slow. Besides, metal ions also can be used to
precipitate and isolate γ-PGA, and Cu2+ has been proven to be an effective precipitator at
500-mM concentration with recovery of 95% [42]. Still, most of the metal ions are toxic, and
it is also possible to contaminate the γ-PGA and environment [11,128]. Next, crude γ-PGA
can be extracted by centrifugation and redissolved in distilled water for dialysis. The final
step is lyophilization for obtaining purified γ-PGA [100].
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7. Application of γ-PGA

Due to the various biological characteristics, such as water-solubility, thickness, moist
quality, edible nature, non-toxicity, non-immunogenic nature, and antioxidant and antimi-
crobial activities., γ-PGA has been applied extensively in the food field, medical field, in
environmental engineering field, and other industrial fields [4–13].

7.1. Food Industry

In the food industry, as an edible, non-toxic, strong water-retaining antioxidant and
antimicrobial biopolymer, γ-PGA can replace the existing as a kind of emerging dietary
supplement in functional food. As a texture enhancer and stabilizer, γ-PGA can improve
the quality of starch, wheat gluten (WG), and their containing products [31]. For fermented
protein products, γ-PGA can stabilize the viability of microorganisms, texture, aroma, and
flavor of foods during the production, transportation, and sale of products, such as yo-
ghurts [129]. It has been shown that γ-PGA can relieve bitter taste as a bitterness-masking
agent in substances of amino acids, peptides, quinine, caffeine, minerals, etc., and as a
thickener added to fruit juice beverages [82]. Based on the anti-freezing activity, γ-PGA
is also a cryoprotectant to preserve the viability of probiotics during freeze-drying [130].
γ-PGA, with a molecular weight of lower than 20,000 Da, has higher anti-freezing activ-
ity than glucose and is more effectively protective to Lactobacillus paracasei than sucrose,
trehalose, and sorbitol [29,81]. Furthermore, γ-PGA can increase the Ca2+ bioavailability
and effectively prompt intestinal absorption [131]. Besides, the study of its antioxidant
mechanism has demonstrated that γ-PGA can protect the gastrointestinal tract against
oxidative damage [40].

7.2. Agricultural Field

γ-PGA shows great promise in agroecosystem due to its biological properties of water
solubility, strong water retention, high biodegradability, high cation exchange capacity,
and metal-chelating ability. For instance, γ-PGA is increasingly garnering interest in
soil dynamics and plant growth as an environment-friendly fertilizer synergist [104]. γ-
PGA may improve uptake of water-soluble nutrients and increase both root biomass and
activity [28]. γ-PGA can be exogenously applied to protect seedlings from the adverse
effects [132]. Moreover, based on biocontrol capacity and antimicrobial activities, γ-PGA
has been used in abiotic or biotic stress resistances against hostile conditions [133]. As a
biological chelating agent, γ-PGA is extremely beneficial to alleviate toxic accumulation
caused by heavy metals of crops and farmland pollution [134].

7.3. Bio-Medical Field

γ-PGA has exhibited great potential in pharmaceutical manufacturing, which involves
tissue engineering, delivery systems, and preventive, immunological, and therapeutic
effects [11,135]. γ-PGA, a natural, non-toxic, and non-immunogenic biomacromolecule, can
significantly decrease the toxic effects and improve the efficiency of drugs when combined
with other matters [11]. Especially, biodegradable γ-PGA has a bright potential in drug-
delivery platforms and as suitable carriers for gene therapy [81]. Molecular weight of
γ-PGA was the decisive factor for considering the drug-delivery properties, including
controlling or delaying the release [11]. γ-PGA has been used as new biological adhesives,
formed by chemical cross-linking with other substances [40]. Besides, γ-PGA can induce a
higher immunogenicity of vaccine antigens as a good adjuvant [136]. Furthermore, γ-PGA
has showed excellent protection of Caco-2 cell and probiotics from oxidative damage [137].

7.4. Other Fields

γ-PGA is a natural, high-performance, hydrophilic humectant and dispersant in
cosmetics because of its hydroscopicity, surface adhesion, antioxidant effects, and cyto-
protection [41]. γ-PGA is expected to be the most useful flocculating agent due to its
biodegradability and non-toxicity toward humans and the environment, which is superior
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to other conventional agents [19,138]. γ-PGA will be utilized not only in biomass waste
and wastewater treatments in the industry but also in domestic water processing [81].
Besides, numerous chemically modified derivatives of γ-PGA have been developed so far
as biopolymers utilized as novel biomaterials [12]; e.g., esterified γ-PGA can be used as an
excellent thermoplastic for its capability to form biodegradable fibers and film [44,81].

8. Conclusions

γ-PGA is a promising biomacromolecule constituent of D- and/or L-glutamic acids,
which has been applied worldwide in various industrial sectors, such as food processing,
agricultural production, emerging medicine, environmental engineering, the cosmetic in-
dustry, and other related fields. Currently, microbial synthesis is a commonly used method
to produce γ-PGA, and Bacillus species are natural, dominant, and safely produced. The
molecular composition, molecular weight, synthesis productivity, and yield of γ-PGA
directly affect its biological properties, which finally determined its industrial applications.
At present, with the gradual increase in industrial demand, γ-PGA is of great interest for
potential bio-based materials even if may impact existing industries and conventional com-
mercialized polymers. Therefore, though microbial synthesis is the extremely economical
and effective way to produce γ-PGA, cost of production and yield are the major constraints
of industrial applications. The improvement of γ-PGA biosynthesis, including potential mi-
crobial producers screening, genetic manipulation, culture medium, and culture condition
optimization of the producing strains, can increase yield and reduce production costs. The
subsequent research will certainly be focused on novel theoretical studies and advanced
technologies of γ-PGA microbial synthesis in the future.
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