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Muscle lipid oxidation is stimulated by peroxisome proliferator-activated receptor (PPAR) & or adiponectin receptor signalling.
We studied human myocyte expression of the PPARS and adiponectin receptor genes and their relationship to lipid parameters of
the donors. The mRNA levels of the three adiponectin receptors, AdipoR1, AdipoR2, and T-cadherin, were highly interrelated (r >
0.91). However, they were not associated with GPBARI, an unrelated membrane receptor. In addition, the adiponectin receptors
were positively associated with PPARS expression (r = 0.75). However, they were not associated with PPARa. Using stepwise
multiple linear regression analysis, PPARS was a significant determinant of T-cadherin (P = .0002). However, pharmacological
PPARS activation did not increase T-cadherin expression. The myocyte expression levels of AdipoR1 and T-cadherin were inversely
associated with the donors’ fasting plasma triglycerides (P < .03). In conclusion, myocyte expression of PPARS and the adiponectin

receptors are highly coordinated, and this might be of relevance for human lipid metabolism in vivo.

1. Introduction

In states of increased circulating nonesterified fatty acids
(NEFA), such as fasting, high dietary fat intake, or obesity,
appropriate fatty acid oxidation by skeletal muscle and
liver is crucial to maintain insulin sensitivity and glucose
tolerance. Impairment of fatty acid oxidation, for example,
due to genetics, provokes increments in plasma NEFA levels,
ectopic lipid deposition in nonfat tissues, enhanced hepatic
VLDL production, and finally hyperlipidaemia [1]. Insulin
resistance, glucose intolerance, and type 2 diabetes may arise
from enhanced fatty acid signalling in skeletal muscle and
liver initiated by the elevated plasma NEFA levels per se or
by the accumulation of ectopic lipids [2].

Peroxisome proliferator-activated receptor (PPAR) d,
a nuclear receptor and transcription factor, represents an

important regulator of fatty acid oxidation in rodent and
human skeletal muscle. PPARS is activated by long-chain
NEFA and, in concert with coactivator proteins, such as
PPARy coactivator 1, induces the expression of genes
involved in cellular fatty acid uptake, B-oxidation, and
energy uncoupling [3]. Alternatively, muscular fatty acid
oxidation is stimulated by adiponectin, an insulin-sensitizing
adipokine negatively associated with adipose tissue mass.
Adiponectin signalling triggers phosphorylation and inac-
tivation of acetyl-CoA carboxylase promoting a decline in
cytosolic malonyl-CoA levels and, thereby, enhancing fatty
acyl-CoA import into mitochondria and $-oxidation [4, 5].
The functions of adiponectin are mediated via three different
receptors, that is, AdipoR1, AdipoR2, and T-cadherin, which
are abundant in skeletal muscle. AdipoR1 and AdipoR2 were
shown to bind trimeric full-length adiponectin as well as
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its proteolytically cleaved globular domain, while T-cadherin
binds hexameric and high-molecular-weight oligomeric
forms of adiponectin [6].

Whether the PPARS and adiponectin receptor signalling
pathways are linked at any cellular level is currently un-
known. In this gene expression study, we therefore investi-
gated whether the expression of the genes encoding PPARS
(PPARD) and the adiponectin receptors AdipoR1 (ADI-
POR1), AdipoR2 (ADIPOR?2), and T-cadherin (CDH13) is
interrelated. To this end, we used in vitro differentiated
human skeletal muscle cells (myotubes) from 39 young
and healthy human donors. Since basal gene expression of
human myotubes was previously shown to reflect in vivo
phenotypes of the donors [7-9], we furthermore assessed
whether these genes’ expression levels associate with in vivo
lipid parameters of the donors.

2. Materials and Methods

2.1. Cell Culture. Primary human skeletal muscle cells were
grown from satellite cells obtained from vastus lateralis
muscle biopsies and differentiated to myotubes, as previously
described [10]. Some myotube cultures were treated for 20 h
either with 0.1% DMSO for carrier control or with 1 gmol/L
of the PPARGJ-specific agonist GW501516 (Alexis Biochemi-
cals, Griinberg, Germany).

2.2. Myotube Donors. The 39 donors were young and healthy
Caucasian participants of the Tibingen family study for
type 2 diabetes and gave informed written consent to the
study. All individuals were metabolically characterised by
an oral glucose tolerance test, as described earlier [11]. The
subject characteristics are given in Table 1. The study was in
accordance with the principles of the Declaration of Helsinki,
and the protocol was approved by the Ethics Committee of
the Medical Faculty of the University of Ttiibingen.

2.3. Quantitative RT-PCR (qPCR). Myotubes were washed
with PBS and harvested by trypsinisation. RNA was isolated
with RNeasy columns (Qiagen, Hilden, Germany). Total
RNA treated with RNase-free DNase I was transcribed into
cDNA using AMV reverse transcriptase and the First Strand
cDNA kit from Roche Diagnostics (Mannheim, Germany).
qPCR was performed in triplicate with SYBR Green I dye
on a LightCycler (Roche Diagnostics, Mannheim, Germany).
The primers were purchased from TIB MOLBIOL (Berlin,
Germany): ADIPORI mRNA forward 5-ATTGAGGTA-
CCAGCCAGATG-3, reverse 5-GAGGTCTATGACCAT-
GTAGC-3"; ADIPOR2 mRNA forward 5 -GATTGTCAT-
CTGTGTGCTGG-3', reverse 5 -CTGGAGACTGGTAGG-
TATCA-3’; CDHI13 mRNA forward 5-TGCTGATAACCC-
TGGAGGAC-3', reverse 5-ATGGGCAGGTTGTAGTTT-
GC-3’; GPBARI mRNA forward 5-GCTGCTTCTTCC-
TGAGCCTAC-3/, reverse 5'-GTTGGGAGCCAAGTAGAC-
GAG-3"; PPARD mRNA forward 5 -AAGAGGAAGTGG-
CAGAGGCA-3, reverse 5-TGCCACCAGCTTCTTCTT-
CT-3"; PPARA mRNA forward 5-CCATCGGCGAGGATA-
GTTCT-3', reverse 5 -CTGCGGTCGCACTTGTCATA-3';
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28S-rRNA forward 5'-ACGGCGGGAGTAACTATGACT-3',
reverse 5'-CTTGGCTGTGGTTTCGCT-3'. The annealing
temperatures were ADIPORI mRNA -66°C; ADIPOR2
mRNA*—-64°C; CDHI3 mRNA —66°C; GPBARI mRNA
—68°C; PPARD mRNA*-67°C; PPARA mRNA*-67°C;
28S-rRNA —63°C. All reactions contained 4 mmol/l MgCl,
(reactions marked with asterisk additionally contained 5%
DMSO) and were run for 45 cycles. Cellular mRNA contents
are given in fg mRNA (or rRNA)/ug total RNA. The basal
expression levels are given in Table 1. Furthermore, we per-
formed probe-based qPCR (LightCycler, Roche Diagnostics)
using probes from the Universal ProbeLibrary (Roche Diag-
nostics) and primers from TIB MOLBIOL to determine the
mRNA expression levels of ADIPORI1, ADIPOR2, CDH13,
PPARD, UCP3, TFAM, PPARGCIA, and the housekeeping
gene RPS13 (primer sequences and PCR conditions can be
provided upon request).

2.4. Oral Glucose Tolerance Test (OGTT) and Hyperinsulinae-
mic-Euglycaemic Clamp. Both procedures were performed as
previously described in detail [11].

2.5. Laboratory Measurements. Glucose was determined
using a bedside glucose analyzer (Yellow Springs Instru-
ments, Yellow Springs, OH, USA). Insulin was determined by
a microparticle enzyme immunoassay (Abbott Laboratories,
Tokyo, Japan). NEFA and glycerol were measured using enzy-
matic assays from WAKO Chemicals (Neuss, Germany) and
Sigma (Deisenhofen, Germany), respectively. Triglycerides,
total, HDL, and LDL cholesterol were determined with stan-
dard colorimetric methods using a Roche/Hitachi analyzer
(Roche Diagnostics, Mannheim, Germany). Adiponectin was
determined by a radioimmunoassay (Linco Research, St.
Charles, MO, USA).

2.6. Selection and Genotyping of Single Nucleotide Polymor-
phisms (SNPs). To study the influence of genetic variation on
PPARD, ADIPORI, ADIPOR2, and CDH13 expression, we
selected the unlinked PPARD SNPs rs2267668 A/G (intron
2) and rs1053049 T/C (3'-untranslated region) and the
ADIPORI promoter SNP rs6666089 for which we previously
reported in vivo functionality [11-13]. For genotyping,
DNA was isolated from whole blood using a commercial
DNA isolation kit (NucleoSpin, Macherey & Nagel, Diiren,
Germany). Genotyping was performed with TaqMan assays
(Applied Biosystems, Foster City, CA, USA). All SNPs passed
the quality controls. Details on this as well as on minor allele
frequencies, genotyping success rates, and Hardy-Weinberg
equilibrium are reported in the aforementioned references.

2.7. Statistics. To approximate normal distribution, all data
were log, transformed prior to statistical analysis. Two-group
comparisons were performed using unpaired Student’s ¢-test.
To adjust the dependent variable for confounding variables,
multiple linear regression models were used (standard least
squares method). Stepwise multiple linear regression analysis
was performed to identify the best predictor for the depen-
dent variable. A P value <.05 was considered statistically
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TasLE 1: Clinical characteristics and myotube gene expression data of the donors (N = 39).
Parameter Women Men P, p,
N 18 21 — —
Age (y) 28+7 25+ 4 12 —
BMI (kg/m?) 24.1 £4.0 22.8+2.9 2 5
Body fat (%) 27+ 8 186 .0002 .0006
Waist-hip ratio 0.79 = 0.09 0.84 +0.05 .0155 .0006
Fasting plasma glucose (mM) 4.75 = 0.40 4.76 = 0.47 1.0 .8
120-min plasma glucose (mM) 5.24 +1.25 5.40 = 1.15 .6 .5
ADIPORI mRNA 369 = 198 343 £ 185 1.0 —
ADIPOR2 mRNA 149 =75 131 = 64 7 —
CDHI13 mRNA 601 = 324 537 £295 8 —
GPBARI mRNA 3.16 + 0.94 2.68 +£0.70 .16 —
PPARD mRNA 81.8 +40.2 84.6 + 38.4 .8 —
PPARA mRNA 47.8 +11.0 49.0 8.5 .6 —
28S-rRNA 2.70 +1.19 x 10° 2.61 +1.18 x 10° 9 —

Data are given as means + SD. Gene expression data are given in fg mRNA (or rRNA)/ug total RNA. Statistical analysis was performed after In-transformation
of the data. P;: unadjusted P values (Student’s t-test); P;: P values after adjustment (multiple linear regression analysis): BMI, body fat, and waist-hip ratio
were adjusted for age; plasma glucose concentrations were adjusted for age and body fat.

significant. The statistical software package JMP 4.0 (SAS
Institute, Cary, NC, USA) was used.

3. Results

The basal myotube mRNA expression levels were CDHI3 >
ADIPORI > ADIPOR2 > PPARD (Table 1). No significant
differences were seen in PPARD, ADIPORI, ADIPOR2, or
CDH13 mRNA levels between myotubes from male versus
female donors (Table 1).

Using bivariate regression analysis, the mRNA expression
levels of all three adiponectin receptors, each normalised for
the housekeeping gene 28S-rRNA, were highly interrelated
(all7 = 0.91, all P < .0001). Since both the dependent and the
independent variable were normalised for 28S-rRNA in these
initial analyses, these unusually strong correlations could,
theoretically, have reflected the correlation of 28S-rRNA with
itself. To avoid this bias, we no longer normalised the mRNA
levels for 28S-rRNA but adjusted the mRNA levels of the gene
selected as dependent variable for 28S-rRNA using multiple
linear regression models. As presented in Figures 1(a)-1(c),
the strong correlations between the adiponectin receptors
remained unaffected by this procedure. This strengthens the
observation that the basal expression of all three adiponectin
receptors in human myotubes is highly coordinated. For
additional control, we studied the association between the
three adiponectin receptors and GPBARI encoding the
unrelated membrane-type bile acid receptor known to be
expressed in skeletal muscle. After adjustment for 28S-rRNA,
none of the adiponectin receptors was significantly correlated
with GPBARI (all P = .2).

Then, we analysed the association between the adi-
ponectin receptors and PPARD. After adjustment for 28S-
rRNA, the mRNA levels of all three adiponectin receptors
were strongly correlated with PPARD expression (Figures
1(d)-1(f)). A similar association between the adiponectin

receptors and PPARA which encodes PPARe, the second
PPAR family member with pro-oxidative properties and of
importance in muscle, was not found (all P > .2). This
underscores the specificity of the association between the
adiponectin receptors and PPARD at the gene expression
level.

To further strengthen the relationship between the adi-
ponectin receptor and PPARS genes, we analysed these
genes’ expression levels according to SNPs in PPARD and
ADIPORI. As depicted in Figure 2, homo- and heterozygous
carriers of the minor allele of ADIPORI SNP rs6666089
(dominant model) revealed significantly reduced expression
levels of ADIPORI (P = .0317) and CDHI13 (P = .0349)
and tended to associate with reduced PPARD (P = .06; P
for trend in the additive model = .0242) and ADIPOR2 (P =
.1; P for trend in the additive model = .0284) expression.
Heterozygous minor allele carriers of PPARD SNP rs1053049
(homozygous carriers of the minor allele were absent in
this small group) showed significantly higher expression
of PPARD (P = .0048), ADIPOR2 (P = .0207), and
CDH13 (P = .0334) and tended to associate with elevated
expression of ADIPORI (P = .06) as presented in (Figure 3).
PPARD SNP 152267668 had markedly weaker effects and,
thus, revealed significant association with PPARD expression
only (P = .0258) (data not shown). These results support
the idea that the expression of the adiponectin receptor and
PPARGS genes is highly coordinated.

Using stepwise multiple linear regression analysis, we
observed that PPARD is, independently of the other genes,
a significant determinant of CDHI3 (P = .0002), but not
of ADIPORI or ADIPOR2 (both P > .05). This suggested
that CDH13 represents a novel PPARGS target gene. To address
this issue, myotubes were treated for 20 h with the PPARS-
specific agonist GW501516 (1 pmol/l) and DMSO (0.1%)
for carrier control. However, GW501516 treatment did not
significantly increase CDHI13 mRNA expression as compared
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Frcure 1: Correlations between ADIPORI1, ADIPOR2, CDH13, and PPARD mRNA contents of skeletal muscle cells from 39 human donors
(N = 39). To approximate normal distribution, all data were log, transformed prior to statistical analysis. The dependent variable was

adjusted for 28S-rRNA using multiple linear regression models.

to DMSO (P = .8, n = 16), whereas it increased the ex-
pression of the described PPARS target genes PDK4 and
ANGPTLA4 (for data, see [9]).

To assess whether the highly coordinated expression of
PPARD and the adiponectin receptor genes—all located on
different chromosomes—is caused by a common regulatory
miRNA, we screened the miRBase Targets database, Release
Version v5 (at http://microrna.sanger.ac.uk/targets/v5/), for
common miRNA binding sites in the four genes. In ADI-
POR2, only one putative binding site was identified, namely,
for miRNA-617. The other genes, however, did not reveal

any bona fide binding site for miRNA-617. Thus, miRNAs
are improbable to represent the unifying link between these
genes. To approach whether the genes are under the control
of a common transcription factor, we performed in silico
analyses of the sequences spanning from 3 kb upstream to
1 kb downstream of the transcription initiation sites. Using
AliBaba 2.1 (at http://www.gene-regulation.com/pub/pro-
grams/alibaba2/index.html?), PROMO 3.0 (at http://alggen.
Isi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=
TF_8.3/, MATCH 1.0 (athttp://www.gene-regulation.com/cgi-
bin/pub/programs/match/bin/match.cgi/), and P-MATCH 1.0
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FiGure 2: Impact of the ADIPORI promoter SNP rs6666089 on ADIPORI, ADIPOR2, CDH13, and PPARD mRNA contents of human
skeletal muscle cells. mRNA data were normalised for 28S-rRNA and are given in arbitrary units (AUs). To approximate normal distribution,
mRNA data were log, transformed prior to statistical analysis. The rs6666089 genotype was determined by TaqMan assay. Since there were
only two homozygous carriers of the A-allele among the muscle cell donors, we joined them with the heterozygous subjects to form the “XA”

group. Data are presented as means + SE.

(at http://www.gene-regulation.com/cgi-bin/pub/programs/
match/bin/match.cgi/), and P-MATCH 1.0 (at http://www.gene
-regulation.com/cgi-bin/pub/programs/pmatch/bin/p-match
.cgi/) freeware for prediction of transcription factor binding
sites, we identified three transcription factors, that is, signal
transducer and activator of transcription 5A, specificity pro-
tein 1, and CCAAT/enhancer-binding protein «, with puta-
tive binding sites in all four gene sequences. RNA inter-
ference-mediated knockdown of these candidates in C2C12
myocytes did however not affect the expression of PPARD
or the adiponectin receptor genes (data not shown). Addi-
tionally, we knocked down FoxO1, one of the known tran-
scriptional regulators of the murine Adiporl and Adipor2
genes [14]. This manipulation did however not affect the ex-
pression of the adiponectin receptor and PPARS genes either
(data not shown). Thus, the common upstream regulatory
mechanism remains elusive.

Since both adiponectin and PPARS signalling regulate
muscle metabolism and mitochondrial biogenesis, we inves-
tigated whether the expression of genes crucially involved in
these processes, that is, PPARGCIA (encoding PPARy coac-
tivator la), UCP3 (encoding uncoupling protein 3), and
TFAM (encoding mitochondrial transcription factor A), is
correlated with the expression of ADIPORI, ADIPOR?2,
CDH13, and PPARD. After adjustment for the housekeeping
gene, we found significant associations of ADIPOR1, CDH13,
and PPARD expression levels with PPARGCIA, UCP3, and
TFAM (all P < .045). ADIPOR?2 was significantly associated
with TFAM only (P = .007). This strengthens the role of
these receptors in mitochondrial oxidative metabolism.

Finally, we assessed whether the basal myotube expres-
sion levels of PPARD and the adiponectin receptor genes are
of relevance in vivo and reflect fasting plasma lipid parame-
ters of the myotube donors. After adjustment for gender, age,
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F1GURre 3: Impact of PPARD SNP rs1053049, located in the 3'-untranslated region of the gene, on PPARD, ADIPOR1, ADIPOR2, and CDH13
mRNA contents of the human skeletal muscle cells. mRNA data were normalised for 28S-rRNA and are given in arbitrary units (AUs). To
approximate normal distribution, mRNA data were log, transformed prior to statistical analysis. The rs1053049 genotype was determined
by TagMan assay. There were no homozygous C-allele carriers among the muscle cell donors. Data are presented as means + SE.

and BMI, the fasting plasma triglyceride concentrations were
inversely associated with the ADIPORI and CDH13 mRNA
contents normalised for 28S-rRNA (Figures 4(a) and 4(c)).
Moreover, even though not significant, the ADIPOR2 and
PPARD mRNA contents tended to inversely associate with
plasma triglycerides (Figures 4(b) and 4(d)). No significant
associations were detected with fasting plasma NEFA, glyc-
erol, total-, HDL-, or LDL-cholesterol concentrations (all
P>.1).

In addition, we assessed these genes’ association with in
vivo parameters of glucose metabolism. However, we did not
detect any significant association of PPARD and adiponectin
receptors expression with fasting insulin concentrations (all
P = .3), fasting and 120-min glucose concentrations (all P >
.3), or with insulin sensitivity indices derived from the OGTT
and the hyperinsulinaemic-euglycaemic clamp (all P > .5),
respectively. Serum adiponectin levels did not associate with
the expression of PPARD, ADIPORI1, ADIPOR2, or CDH13
either (all P > .3).

4. Discussion

In this study, we could demonstrate, also by assessing SNP
effects, that two signalling pathways known to mediate lipid-
burning and formerly considered independent, that is, the
PPARS and the adiponectin pathway, are closely linked at
the gene expression level. The most obvious mechanism pos-
sibly underlying this phenomenon, that is, transcriptional
regulation of the adiponectin receptor genes by PPARS,
could be excluded since PPARS activation using a specific
and well-described pharmacological agonist had no effect
on adiponectin receptor expression. Therefore, we assessed
other conceivable upstream regulatory factors. Using RNA
interference, transcription factors identified as putative can-
didates for binding to all four promoters, such as signal trans-
ducer and activator of transcription 5A, specificity protein
1, and CCAAT/enhancer-binding protein «, turned out not
to be involved in this highly coordinated gene regulation,
neither did FoxO1, a known transcription factor regulating
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FIGURE 4: Association of myotube ADIPORI, ADIPOR2, CDH13, and PPARD mRNA contents with fasting plasma triglyceride concentra-
tions of the 39 human donors (N = 39). mRNA data were normalised for 285-rRNA and are given in arbitrary units (AUs). To approximate
normal distribution, all data were log, transformed prior to statistical analysis. Plasma triglycerides were adjusted for gender, age, and BMI

using multiple linear regression models.

the murine Adiporl and Adipor2 genes. miRNAs targeting
all four genes could also not be identified. Thus, the unify-
ing regulatory mechanism responsible for our observation
remains to be uncovered in further studies addressing other,
for example, epigenetic mechanisms (DNA methylation,
histone modification, and nucleosome positioning).

Most importantly, we could demonstrate that myotube
expression of PPARD and the adiponectin receptors inversely
reflects the fasting plasma triglyceride concentration of the
donors. There may be two explanations to this: either circu-
lating triglycerides via their products of lipolytic breakdown,
that is, via NEFA, affect the expression of PPARD and the
adiponectin receptor genes or increased expression of these
genes reduces the plasma triglyceride concentration. At least
for PPARD, we were recently able to show that, with the
only exception of stearate, no long-chain fatty acid is able to

change its expression [9]. Thus, an influence of triglyceride-
derived NEFA on these genes’ coordinated expression
appears less plausible. Instead, it is well known that the
adiponectin and PPARS pathways stimulate -oxidation and,
in this way, may reduce the plasma triglyceride concentration
of the donors. Since plasma triglycerides are a well-known
readout of the hepatic lipid load [15], this association is
in line with the observation that an impairment of fatty
acid oxidation provokes increments in plasma NEFA levels,
ectopic lipid deposition in nonfat tissues, and enhanced
hepatic VLDL production [1] and underscores the idea of
a muscle-liver axis with muscle fatty acid oxidation being
an important determinant of hepatic lipid storage. In this
context, metabolic signals from f-oxidation (acyl-carnitines)
or muscle-derived humoral mediators (myokines) may
represent interesting candidate mediators of muscle-liver



crosstalk. Finally, this translational finding provides evidence
that our in vitro data are of relevance for humans in vivo and
may explain the biological variance between individuals in
terms of good versus bad fat burners.

5. Conclusions

Expression of PPARD, ADIPOR1, ADIPOR2, and CDH13 in
human skeletal muscle cells is highly coordinated, and this
might be of relevance for human lipid metabolism in vivo,
as reflected by these genes’ consistent inverse association
with plasma triglycerides. Thus, the upstream regulatory
factor(s) responsible for this coordinated gene expression
could represent promising future targets for the control of
circulating lipids and hepatic fat load.
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