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Epistasis, i.e., the fact that gene effects depend on the genetic background, is a
direct consequence of the complexity of genetic architectures. Despite this, most
of the models used in evolutionary and quantitative genetics pay scant attention to
genetic interactions. For instance, the traditional decomposition of genetic effects models
epistasis as noise around the evolutionarily-relevant additive effects. Such an approach
is only valid if it is assumed that there is no general pattern among interactions—a
highly speculative scenario. Systematic interactions generate directional epistasis, which
has major evolutionary consequences. In spite of its importance, directional epistasis is
rarely measured or reported by quantitative geneticists, not only because its relevance is
generally ignored, but also due to the lack of simple, operational, and accessible methods
for its estimation. This paper describes conceptual and statistical tools that can be used to
estimate directional epistasis from various kinds of data, including QTL mapping results,
phenotype measurements in mutants, and artificial selection responses. As an illustration,
I measured directional epistasis from a real-life example. I then discuss the interpretation
of the estimates, showing how they can be used to draw meaningful biological inferences.
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1. INTRODUCTION
An ability to understand and predict how genes affect morpho-
logical, physiological, and behavioral characteristics is of crucial
importance in biology. This also poses a considerable challenge,
given the complexity of the genetic architecture of quantitative
traits (Flint and Mackay, 2009). This complexity is not only due
to the large number of genetic, environmental, and physiolog-
ical factors involved, but also to their multiple and nonlinear
interactions. In particular, it was noticed very early in the his-
tory of genetics that the same genetic change often produces
differing effects depending on the genetic background of the
experimental species, population, or individual (Phillips, 1998;
Wade et al., 2001; Phillips, 2008). The biological consequences of
this phenomenon, known as “epistasis,” have triggered a consid-
erable amount of discussion. A whole century of active research
in genetics and molecular biology has revealed the ubiquity of
epistatic interactions associated with the organization of biologi-
cal systems as networks of interacting molecules (Omholt et al.,
2000). However, we are still far from being able to integrate
epistasis into a consensual, explicit, and predictive theoretical
framework.

In the classical analysis of genetic variance (Fisher, 1918), epis-
tasis is considered as a source of noise. Most epistatic effects are
not transmitted from parent to offspring, and therefore, are not
involved in the response to natural or artificial selection. Epistatic
variance—the contribution of epistasis to genetic variance in a
population—can be calculated (Cockerham, 1954; Kempthorne,
1954; Lynch and Walsh, 1998; Álvarez-Castro and Carlborg, 2007;
Gjuvsland et al., 2007), but is almost meaningless in terms of pre-
dicting the genetic properties of a population (Barton and Turelli,
2004; Hansen, 2013; Álvarez-Castro and Le Rouzic, 2014), and

may be negligible compared to evolutionarily-relevant additive
genetic variance (Hill et al., 2008; Hemani et al., 2013).

Another idea, which has become popular only in recent
decades, is that epistasis matters because of its capacity to
affect additive variance rather than because of its contribution
to interaction variance (Cheverud and Routman, 1995). In an
epistatic genetic architecture, the effects of alleles on the pheno-
type depend on the genetic background. Accordingly, changes in
the genetic background promoted by genetic drift (Goodnight,
1987, 1988; Barton and Turelli, 2004; Turelli and Barton, 2006;
Álvarez-Castro et al., 2009; Jarvis and Cheverud, 2009) or by
selection (Carter et al., 2005; Hansen et al., 2006; Hallander
and Waldmann, 2007; Le Rouzic et al., 2013) may reveal, hide,
or revert allelic effects, and thus significantly affect the genetic
variance.

1.1. DIRECTIONAL EPISTASIS
Epistasis can only exert a significant long-term influence on
populations if individual epistatic effects do not tend to can-
cel out each other, i.e., if a general pattern emerges. The most
obvious pattern is the directionality of epistasis, the fact that
genetic interactions can be biased toward either high or low phe-
notype values. Estimates of directional epistasis allow to make
useful predictions about the evolutionary potential of popula-
tions: if additive genetic variance is a measure of evolvability
(Houle, 1992; Hansen et al., 2011), then the directionality of epis-
tasis is a measure of genetic architecture asymmetry, i.e., how
evolvability is influenced by the direction of evolution. When
epistasis is positive, evolution is easier in the direction of high,
rather than low, phenotypic values (because additive genetic vari-
ance tends to increase with the phenotypic value). In contrast,
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negative epistasis favors evolution toward low phenotypic
values.

In spite of its predictive and descriptive value, directional epis-
tasis is rarely reported for quantitative characters (Pavlicev et al.,
2010). This can be attributed to two main factors: (i) many (if
not most) quantitative geneticists are used to measuring epista-
sis via epistatic genetic variance, in spite of its marginal interest,
and (ii) very few statistical or computational tools have been
devised for measuring directional epistasis. The aim of this article
is to present several methods for estimating directional epista-
sis from genetic and phenotypic data, and to propose accessible
statistical procedures for computing epistasis. Several such meth-
ods will be illustrated from a real-life biological example, the
genetic architecture of bodyweight in chicken, which displays a
clear and consistent signal of positive epistasis. The data is based
on a long-term artificial selection experiment on chicken body
weight, and features (i) times series of the phenotypic response to
selection, (ii) Quantitative Trait Locus (QTL) mapping data from
a cross between the divergent lines, and (iii) minimal line-cross
information (means of F1 and F2 populations) from the QTL
setting.

1.2. GENETIC MODELS
In general, measuring the directionality of epistasis requires a
model of genetic effects, i.e., a mathematical description of the
relationships between the data (for instance, individual genotypes
or phenotypes) and parameters to be estimated. The desirable
properties for a “good” model of genetic effects depend on both
the biological question and the nature of the data, and have
resulted in rewarding (and sometimes conflictual) discussions
(Cheverud and Routman, 1995; Hansen and Wagner, 2001b; Kao
and Zeng, 2002; Yang, 2004; Zeng et al., 2005; Wang and Zeng,
2006; Álvarez-Castro and Carlborg, 2007; Aylor and Zeng, 2008;
Hansen, 2014).

Genetic models can be conveniently divided into physiolog-
ical and statistical models (Cheverud and Routman, 1995). In
physiological (or functional: Hansen and Wagner, 2001b) mod-
els, genetic effects are described relative to a reference genotype,
which can be arbitrary (for instance, one of the parental strains
in an intercross) or conventional (typically, the wild genetic
background). Functional models are generally rooted in tradi-
tional Mendelian genetics, in which a limited number of geno-
types are experimentally generated and compared to reference
strains. In contrast, statistical models quantify genetic effects in
polymorphic populations across multiple genotypes. They are
derived from the classical decomposition of genetic variance.
Statistical genetic effects depend on allelic frequencies, and thus
change when populations evolve; they provide a population-
specific description of the genotype-to-phenotype map. In spite
of obvious historical and conceptual divergences, it is sometimes
possible to express both functional and statistical models in com-
mon mathematical frameworks, and to transform functional into
statistical estimates (and vice versa) by means of “change of ref-
erence” operations (Hansen and Wagner, 2001b; Álvarez-Castro
and Carlborg, 2007; Le Rouzic and Álvarez-Castro, 2008).

With respect to epistasis, another useful distinction can be
made between unidimensional and multidimensional models

(Kondrashov and Kondrashov, 2001; de Visser et al., 2011).
Unidimensional epistasis describes the general curvature of the
genotype-phenotype map, and can be interpreted as the average
effect of allelic substitutions that would be observed if all loci
were exchangeable. Multidimensional epistasis accounts for the
complexity of the genotype-phenotype relationship, by charac-
terizing all pairs of loci that have a specific epistatic effect. While
directional epistasis is unidimensional by definition, it can be
measured based on either unidimensional or multidimensional
models.

Several models of directional epistasis will be reviewed below,
starting from the multilinear model of epistasis, originally func-
tional and multidimensional, which has been extended toward
statistical and unidimensional formulations. I will then present
and discuss alternative functional unidimensional models that are
commonly used to measure epistasis for fitness, and show how
they can be applied to quantitative characters.

2. MULTILINEAR EPISTASIS
2.1. THE MULTILINEAR MODEL OF GENETIC INTERACTIONS
2.1.1. General framework
The multilinear model of genetic interactions developed by
Hansen and Wagner (2001b) extends and makes explicit the con-
cept of directional epistasis in quantitative genetics, and makes
it possible to build genotype-to-phenotype maps implementing
directional epistasis. In its original multidimensional form, the
model expresses the phenotype z as a multilinear function of the
genotype G of an individual. For two loci, labeled “1” and “2”
respectively,

zG = zR + y1R + y2R + y1R y2Rε12. (1)

Genetic effects are measured relative to an arbitrary reference
genotype for which y1 = y2 = 0, associated with a reference phe-
notype zR. The effect of substituting the genotype of interest at
locus 1 in the reference genotype R is y1R , and conversely, y2R is
the effect at locus 2. When introducing the genotype of interest
at both loci, in the absence of epistasis, the phenotype is expected
to change by y1R + y2R . Any deviation from this expected additive
outcome is attributable to epistasis. The originality of the multi-
linear model is to assume that this deviation is proportional to the
product of allelic effects, the proportionality coefficient ε12 quan-
tifying the strength and directionality of epistasis between loci 1
and 2.

The multilinearity arises from the fact that any change in
the genotype of a locus when keeping the genetic background
constant leads to a proportional change in the phenotype. For
instance, Equation (1) can be reformulated as zG = a + fy1R (with
a = zR + y2R and f = 1 + y2Rε12), illustrating that the genotype-
phenotype map is always linear with respect to single genotypes
(Figure 1).

The epistatic coefficient, ε12, is expressed in terms of inversed
phenotypic units (e.g., if the trait is measured in cm, ε will
be in cm−1), which is not intuitive and does not allow com-
parisons between traits. Hansen and Wagner (2001b) suggest
measuring epistasis by computing epistatic factors, f1 = 1 + y2ε12

and f2 = 1 + y1ε12, which quantify how much locus 1 is affected
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by locus 2, and vice versa; f = 1 implies no epistasis, f < 1
negative (antagonistic) epistasis, and f > 1 positive (synergistic)
epistasis.

2.1.2. Statistical formulation
The multilinear model is built as a functional model, since it
defines genetic effects relative to a reference genotype, but a
“change of reference” tool can be used to recompute genetic
effects in any genotype or weighted combination of genotypes.
When genetic effects are calculated relative to the average geno-
type of a population, the marginal contributions of individual loci
coincide with additive effects, and the model can be considered to
be statistical.

The multilinear model can also be used as a local approxima-
tion on a non-multilinear genotype-phenotype map. There are
various ways of generating genotype-phenotype maps, which are
multidimensional mathematical functions g(y1, y2, . . . , yn) that
provide a deterministic phenotypic value for a series of genotypic
values yi at n loci. Such mathematical maps are often defined
in theoretical work intended to explain the evolution of popu-
lations in complex genetic landscapes. Furthermore, even if the
lack of large empirical genotype-phenotype data sets means that
it is not yet realistic to attempt to do so, it is in principle possi-
ble to fit smooth surfaces (such as multidimensional splines) to
experimental measurements, and thus generate models of genetic
landscapes that could be analyzed mathematically (and tested
empirically).

In any case, the multidimensional directional epistasis coef-
ficients εij, which measures the curvature of the genotype-
phenotype function between loci i and j, can be directly quantified
as εij = D2

ij/DiDj, where Di = ∂g/∂yi is the value of the first par-
tial derivative of function g taken at the reference point, and
D2

ij = ∂2g/∂yi∂yj is the mixed partial derivative (the curvature of
the function g across both loci). This result illustrates the fact
that the multilinear model is similar to a Taylor expansion of

the genotype-phenotype map that ignores intra-locus curvature
(Hansen and Wagner, 2001b) (see Appendix I and Figure 2).

2.1.3. Composite directional epistasis
The original multilinear model is multidimensional, as it involves
as many εij parameters as pairs of loci. A unidimensional (and

FIGURE 2 | The multilinear model (blue surface) is a local

approximation of the interlocus curvature in a complex

genotype-phenotype map. When the average genotype is chosen as the
reference (red point), the multilinear approximation is able to predict the
evolutionary properties of the population in a more precise way than the
additive model.

FIGURE 1 | Multilinear genotype-phenotype maps for two loci,

illustrating positive (synergistic) and negative (antagonistic) epistasis.

y1 and y2 represent the genotype values at both loci. The red lines

highlight the multilinearity of the model: if the genetic background is kept
constant, phenotype change depends linearly on the genotype at each
locus.
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statistical) version of the model was proposed in Carter et al.
(2005), with the composite directional epistasis coefficient εc cal-
culated as the average εij coefficient weighted by the additive
genetic variance explained by each pair of loci:

εc =
∑

i

∑
j �= i VAi VAjεij∑

i

∑
j �= i VAi VAj

. (2)

Both uni- and multi-dimensional versions of the model can be
extended to higher orders of interactions and to multiple traits
(Hansen and Wagner, 2001b).

2.2. DIRECTIONAL EPISTASIS FROM PHENOTYPIC DATA
2.2.1. Response to artificial selection
Directional epistasis affects evolution, as it changes the amount of
genetic variation available depending on the direction of pheno-
typic change (Hansen et al., 2006). For instance, selection in the
direction of positive epistasis tends to increase the frequency of
synergistic genetic interactions, thus enhancing the effect of selec-
tion. In contrast, selection in an antagonistic system decreases
the genetic variance, and thus decreases the selection response.
These effects can be experimentally observed, especially with bidi-
rectional artificial selection responses, since they are expected to
generate asymmetric responses in up- and down-selected lines.

2.2.1.1. Theoretical framework. It is possible to model the
expected impact of directional epistasis on genetic variance and
to predict the difference between up- and down-selected lines as
a function of the epistatic coefficients. Using a series of simplify-
ing assumptions detailed in Appendix II, the selection response
under a constant selection gradient after t generations is expected
to be:

μt � μ0 − log (1 − 2�μ0εt)

2ε

≈ μ0 + �μ0 t + ε�2
μ0

t2 + . . . , (3)

where μ0 is the initial mean phenotype, �μ0 is the initial selection
response (after the first generation), and ε is the directionality
of epistasis. The second part of the equation is the second-
order Taylor approximation around t = 0, illustrating the linear
selection response expected by the traditional breeder’s equa-
tion (�μ0 t), and how directional epistasis appears as a quadratic
term. Here, ε is the unidimensional directional epistasis, and thus
corresponds to εc in Equation (2).

A convenient way to estimate directional epistasis from bidi-
rectional selection responses is to compute the up/down asym-
metry through the average selection response, A(t) = 1

2 (up(t) +
down(t)) (Figure 3). If epistasis is directional and relatively weak
(�μ0ε � 1), A(t) changes approximately with t2, such that
A(t) � ε�2

μ0
t2. It is thus possible to estimate �μ0 as the slope at

origin of the selection response, and then ε through a quadratic
regression on the average up/down response. Including the effects
of e.g., inbreeding, linkage disequilibrium, or canalization, is pos-
sible, but requires to numerically maximize the likelihood of
complex models. This can be done with the software package sra
for R, described in Le Rouzic et al. (2011).

FIGURE 3 | Top: Theoretical response to bidirectional constant selection
under positive directional epistasis (ε = +0.005, �μ0 = 1). Bottom: the
selection response is asymmetric, and the up-down average increases
almost quadratically with time, the quadratic coefficient being ε�2

μ0
.

2.2.1.2. Example: artificial selection on body weight. For more
than 50 years, two chicken (Gallus gallus) lines were selected for
high and low body weight at 56 days, respectively (Siegel, 1962;
Liu et al., 1994; Dunnington and Siegel, 1996). The experiment is
still ongoing; here, I consider the latest phenotypic results avail-
able (54 generations, Dunnington et al., 2013). For simplicity,
only the time series of mean phenotypes are considered, although
some variance estimates were also available in this case.

The impact of artificial selection was considerable (Figure 4).
In the high-selection line, the body weight at 8 weeks rose
from 800 g (male-female average) to 1650 g. In the low-selected
line, the average body weight decreased to around 150 g, lead-
ing to an impressive order-of-magnitude difference between
high- and low-selected lines, well beyond the differences usu-
ally observed between closely-related species, and spanning more
than one third of the relative weight diversity in the entire 20
Myr-old Galliformes order. The selection response was asymmet-
ric: although the selection strength was identical in both lines,
progress was slower in the low line. This can easily be attributed
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FIGURE 4 | Top: male-female average experimental selection response on
chicken bodyweight, digitalized from Figures 1, 2 in Dunnington et al.
(2013). The initial selection response �μ0 , estimated by a linear regression
over the first 20 generations (dashed segments), was 25.6 g per generation
in the high line, and −19.6 g per generation in the low line. Bottom:

quadratic regression on the up- and down-selection average, illustrating the
cumulative effect of directional epistasis. The quadratic coefficient (which is
an approximation of �2

μ0
ε), estimated by a non-linear, least-square

regression, was 0.033 g per generation squared.

to epistasis, given the expected differences in the genetic back-
grounds of 1500 vs. 150 g birds.

Using the procedure described in Equation (3), the strength
of directional epistasis could be estimated from a quadratic
regression over the high-low asymmetry. Estimating the initial
selection response at around |�μ0 | = 22.6 g per generation on
average, directional epistasis is ε � +6.6 × 10−5 g−1. Although
apparently small, this figure is statistically significant and gener-
ates cumulative effects on genetic architectures: Any phenotypic
change corresponding to the initial (first-generation) selection
response induces an increase of allelic effects of 0.15% in the

high line, and decreased accordingly in the low line. The same
allele is thus expected to display a >10% difference in the
two extreme genetic backgrounds, representing weak, but non-
negligible, epistasis.

Of course, this estimate relies on major assumptions about the
underlying process. Several genetic or non-genetic factors other
than epistasis could affect the available genetic variance, and thus
bias ε. For instance, the quadratic approximation relies on the
hypothesis that the selection gradient is constant over the entire
time series, whereas in fact we know from e.g., Dunnington et al.
(2013) that the selection intensity actually increases with time.
Meanwhile, the reduced population size in the experiment nec-
essarily generated a significant amount of inbreeding (even with
a carefully-designed breeding scheme), which decreases the vari-
ance due to genetic drift. However, these mechanisms are unlikely
to generate misleading estimates of ε, since (i) they affect both the
up and down lines in the same way, and so cannot generate any
asymmetry, and (ii) they tend to offset each other, as the selection
strength increases while the genetic variance decreases.

More worrisome is the possibility of uncontrolled natural
selection in the low line. A fraction of the smallest birds appeared
to be sterile or unviable, which could contribute to the slowing-
down of the response. Such a mechanism could generate an
asymmetric response, and thus spurious positive estimates of the
epistatic coefficient. Nevertheless, this seems rather unlikely, given
the behavior of the twelve relaxed selection lines presented in
Dunnington et al. (2013). Indeed, when selection was stopped in
both lines, the populations did not tend to evolve back to the orig-
inal phenotype, as would have been expected if natural selection
was preventing the population from responding to artificial selec-
tion. The phenotypic data therefore seems to be compatible with
a genetically-driven asymmetry, due to smaller allelic effects in
low-weight chickens (i.e., positive epistasis).

2.2.2. Line-cross analysis
With the improvement in sequencing and genotyping technolo-
gies, the phenotype-based methods developed and used by quan-
titative geneticists for most of the 20th century to investigate
genetic architectures without resorting to genotype data are cur-
rently losing popularity. However, they are still both elegant and
informative, especially when used to estimate general properies
of populations such as unidimensional directional epistasis. One
of the most powerful (and simple) of these biometric methods
consists of crossing individuals or strains of interest in order to
generate hybrid and backcross populations, from which the phe-
notypic means and variances can be determined. The knowledge
of the transmission mechanisms of genetic factors from parents
to offspring makes it possible to disentangle the impact of addi-
tive, dominance, and epistatic effects on the genetic differences
between the original individuals (Lynch and Walsh, 1998 p. 205).

A set of equations that can be used to compute additive, dom-
inance, and directional epistatic effects from parental, intercross,
and backcross populations are provided in Hansen and Wagner
(2001b) (see Demuth and Wade, 2005, for an alternative model).
Directional epistasis is unidimensional, and thus corresponds
to the εc parameter of Equation (2). Below, a slightly different
parameterization will be used, in which both parental populations
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are separated by four additive effects, so that the model is identi-
cal to a 2-locus QTL effect model in a diploid species. The model
was set up so that genetic effects cancel out in the F2 population,
but a different reference point can be chosen (using the genetic
effect matrices provided in, e.g., Álvarez-Castro and Carlborg,
2007). Average phenotypes for both parental populations (P1 and
P2) and the first two intercross populations F1 and F2 can be
express as functions of four parameters: a reference μ (arbitrar-
ily, the mean F2), additive and dominance effects A and D, and
the directional epistasis coefficient ε.

P1 = μ − 2A − D + ε(A2 + AD + 1

4
D2)

P2 = μ + 2A − D + ε(A2 − AD + 1

4
D2)

F1 = μ + D + 1

4
εD2 (4)

F2 = μ.

This simple model can be illustrated by the data from the exper-
imental cross between the two chicken strains (Dunnington and
Siegel, 1996; Marquez et al., 2010). In this experiment, the two
generations of crossing necessary to generate a polymorphic F2

population for QTL mapping makes it possible to sketch a min-
imal line-cross analysis. Both parental populations as well as F1

and F2 individuals were raised in the same location, with the same
food, and at the same density; their average weights at 8 weeks
were 170 and 1412 for both parental chicken populations respec-
tively, 650 g for the F1, and 624 g for the F2. Both F1 and F2 are
below the parental arithmetic average (791 g), suggesting the pres-
ence of dominance and/or epistatic effects (Álvarez-Castro et al.,
2012).

Although not perfect, this setting makes it possible to estimate
up to four genetic parameters. Two models, with and without
dominance, were tested, and gave very similar results (Equation 4
and Table 1). The dominance effect, when estimated, was an
order of magnitude below the additive contribution. Epistasis was
positive, and of similar magnitude in both models.

2.3. DIRECTIONAL EPISTASIS FROM QTL DATA
Nowadays, data sets often consist of individuals in which both the
phenotype and the genotype at loci of interest are known. This is
for instance the case after the mapping of Quantitative Trait Loci
(QTLs), either by linkage or association methods. Such data sets
represent a valuable source of information about epistasis, and in

Table 1 | Epistatic line-cross analysis of the chicken lines.

Effect No dominance Dominance

Reference μ 637 g 624 g

Additive A 310 g 318 g

Dominance D - 26 g

Directional epistasis ε 1.6 × 10−3 g−1 1.9 × 10−3 g−1

The full model (involving dominance) has no degree of freedom, so that

statistical errors cannot be estimated.

particular about multidimensional epistasis, which can hardly be
estimated from phenotypic data.

2.3.1. Linear and multilinear models of genetic effects
In most cases, QTL mapping procedures only focus on marginal
(additive and dominance) effects, and do not explicitly consider
genetic interactions (Carlborg and Haley, 2004). However, epis-
tasis may be of major interest, both for improving QTL detection
(Carlborg et al., 2003, 2004, 2006), and for the biological inter-
pretation of the genotype-phenotype relationship (Malmberg
and Mauricio, 2005; Le Rouzic et al., 2007, 2008). Mapping
procedures accounting for epistasis generally rely on compo-
nents of the interaction variance (Cockerham, 1954; Kempthorne,
1954; Lynch and Walsh, 1998), which makes it necessary to
estimate four genetic effects for each pair of loci (additive-
by-additive, additive-by-dominant, dominant-by-additive, and
dominant-by-dominant statistical effects). More recently, “vari-
ance QTL” approaches have been proposed to map loci involved
in various kinds of interactions, including gene-gene and gene-
environment interactions (Rönnegård and Valdar, 2012). Until
recently, there was no QTL mapping method based on direc-
tional epistasis (Slatkin and Kirkpatrick, 2012), and estimation
from genotype-phenotype data usually relied on model fitting on
a predefined set of candidate loci (Cheverud et al., 2001; Le Rouzic
et al., 2008; Shao et al., 2008; Pavlicev et al., 2010; Jarvis and
Cheverud, 2011).

The traditional genetic regression model, ignoring dominance
(and dominance-related epistatic components), can be written as:

Py1,y2 = μ + α1S1 + α2S2 + αα12S12. (5)

This model has 4 parameters for a pair of loci: μ is the inter-
cept of the model (reference point), α1 and α2 are the additive
effects for both loci, and αα12 — a traditional (and proba-
bly unfortunate) notation, not to be confused with the product
α × α12 — is the additive-by-additive effect. The S coefficients
determine the genetic model, i.e., the weights of the genetic
effects for each genotype. For instance, consider a haploid two-
locus two-allele system with the reference genotype (arbitrar-
ily) set to A1B1. In the reference genotype, all S coefficients
are set to 0 (μ, the reference point, thus corresponds to the
intercept of the model). For genotype A1B2, S1 = 0, S2 = 1
(because 1 effect α2 has been added to the model, given the
substitution of a B2 allele), and S12 = 0. In genotype A2B2,
S1 = 1, S2 = 1, and S12 = 1, reflecting the possibility of an
interaction between A2 and B2 alleles. Of course, different ref-
erence points can be chosen, including mixtures of genotypes
in specific frequencies (such as in the F2 model, considering
even allelic frequencies and Hardy-Weinberg proportions). The
models becomes more complex with diploid genotypes (which
include dominance effects), but the principle remains the same.
Below, I used the model “NOIA” proposed by Álvarez-Castro
and Carlborg (2007), which has some interesting statistical fea-
tures. In particular, the model is orthogonal (provided there
is no linkage disequilibrium) even if the population is not at
Hardy-Weinberg proportions. In “NOIA,” the S coefficients are
stored as a genetic design matrix, and the model can be extended
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(to include more alleles and/or more loci) using simple matrix
algebra.

It is possible to modify the above framework to estimate direc-
tional epistasis. The strategy proposed by Le Rouzic and Álvarez-
Castro (2008) is based on a non-linear, least-square regression,
very similar to the framework proposed in Equation (4) for
the analysis of line crosses: the model explicitly decomposes
the epistatic parameter as a multilinear combination of additive
effects, assuming that ααij = αi × αj × εij:

Py1,y2 = μ + α1S1 + α2S2 + α1α2ε12S12. (6)

This setting can easily be extended to account for dominance
and higher-order epistasis (Álvarez-Castro and Carlborg, 2007;
Le Rouzic and Álvarez-Castro, 2008; Pavlicev et al., 2010). When
εij is estimated for each pair of loci, the model describes mul-
tidimensional epistasis. There are two distinct ways to estimate
unidirectional epistasis from this setting. The first method is to
assume that ε is identical between loci, i.e., replacing εij by a
constant ε in Equation (6). The second strategy is to estimate
independent εij values for each pair of loci, and to compute
the composite epistasis εc using Equation (2). This last strategy
is more theoretically-grounded than the former, but it rapidly
becomes impractical when the number of loci increases: the num-
ber of interactions increases quadratically with the number of
loci, which reduces the precision of pairwise interaction estimates.

2.3.2. Application to QTLs for body weight
Individuals from both the high and low chicken lines were inter-
crossed at generation 46, to form the F1 and F2 populations
described above. The 795 surviving individuals from the F2 pop-
ulation were phenotyped for various characters and genotyped
for 145 genetic markers on 25 chromosomes. The QTL mapping
analysis identified 6 significant loci (four major loci and two of
lesser effect). These significant loci combined explained around
10% of the phenotypic variance, and strong epistatic interactions
have been reported among them (Carlborg et al., 2006; Le Rouzic
et al., 2007; Álvarez-Castro et al., 2012). For the sake of both
simplicity and statistical power, only the four major QTLs are
considered in the subsequent analyses.

There are 24 second-order epistatic interactions between four
loci (6 additive-by-additive, 6 dominance-by-dominance, and 12
additive-by-dominance interactions). It is possible to estimate
all of them using a model performing the traditional decom-
position of genetic effects (here, I used the software package
noia for R, Le Rouzic and Álvarez-Castro, 2008), but interpret-
ing these 24 independent epistatic estimates is complicated: in
spite of the large sample size (around 800 individuals), only 4
(out of 24) epistatic estimates reached the 5% p-value thresh-
old, and none remained statistically significant after correction
for multiple-testing. There were no obvious signs of directional
epistasis (11 positive estimates out of 24), even when focusing on
additive-by-additive epistasis (3 positive estimates out of 6).

Fitting a unidimensional multilinear model of epistasis leads
to a much more conclusive analysis. The estimated constant ε

coefficient is positive (ε = +0.057 g−1). The weighted compos-
ite parameter, calculated from Equation (2), is also positive and

of the same order of magnitude (εc = +0.020 g−1). The multi-
linear model fits better than the traditional genetic-effects model
with pairwise epistasis, outperforming it by 13.5 AIC units (�AIC
scores >10 can be considered to be conclusive, Burnham and
Anderson, 2002). The multilinear model is also considerably
better than models without epistasis (�AIC = 18.5). The undis-
putable statistical superiority of the multilinear model translates
into a substantial gain in explanatory power: the four-locus model
without epistasis explains only 5.4% of the total phenotypic
variance, while the multilinear model explains 7.8%.

3. REGRESSIONS AGAINST THE NUMBER OF MUTATIONS
While it is particularly rare to find estimates of directional epis-
tasis for quantitative characters in general (Pavlicev et al., 2010),
the sign of epistasis has been frequently estimated for fitness. The
importance of directional epistasis for the logarithm of fitness
has now been fully acknowledged by evolutionary biologists, as
it affects the evolution of sex, recombination, mutation rates, and
other related phenomena (Phillips et al., 2000). Here I will review
two models frequently used in this context, and show how they
can be modified to fit other quantitative traits. According to the
previous definitions, these models are both functional and unidi-
mensional, as they estimate directional epistasis with reference to
the “wild type” with no mutations.

3.1. MODEL DESCRIPTION
A common way to estimate directional epistasis for (log) fitness
is a “power” (or “multiplicative”) model W = αnβ (illustrated in
Figure 6), where W stands for the log-fitness, α is the effect of a
single mutation, n is the number of mutations, and β measures
directional epistasis. The model is based on the fact that the fit-
ness of the reference individual or strain (n = 0) is 1, so that the
intercept of the model is log (1) = 0 by construction. Fitness in
single mutants (n = 1) is not affected by epistasis, which makes
it possible to estimate α. Epistasis appears for n ≥ 2, generat-
ing deviations from linearity. β > 1 represents positive epistasis,
while β < 1 stands for negative epistasis. The parameters of
the model are usually estimated through non-linear regressions
(least squares) or by non-linear generalized model approaches
(maximum likelihood).

An alternative setting is the quadratic model W = −(αn +
1
2β ′n2) (Elena and Lenski, 1997; Kouyos et al., 2007) (for con-
sistency with the literature, I have retained the same notation,
although it should be noted that β and β ′ have different units,
and β ′ > 0 means positive epistasis). This latter model has some
interesting theoretical properties associated with the Gaussian fit-
ness function, and is more firmly grounded in classical population
genetics theory (Charlesworth, 1990; Otto, 2007).

Alternative parameterizations of the above models appear in
the literature (e.g., estimating −α instead of α, or β − 1 instead
of β, which provides a more straightforward interpretation of
“positive” and “negative” epistasis). This framework is gener-
ally used in two different experimental contexts: estimating the
directionality of deleterious mutations (in which case, α < 0, and
negative epistasis means that the deleterious mutations act syn-
ergistically to decrease fitness), or estimating epistasis among the
beneficial mutations accumulated during an artificial evolution
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experiment (α > 0, and negative epistasis represents the antago-
nistic effects of mutations) (Lenski et al., 1999; Wilke and Adami,
2001; Maisnier-Patin et al., 2005). These symetric interpretations
are arguably confusing, and the literature is not always consistent
with regard to the association between the sign of directional epis-
tasis and the synergistic or antagonistic properties of mutations
(e.g., Szathmáry, 1993).

3.2. MODEL FITTING
These models are clearly not suited for fitting traditional quan-
titative genetics data, in which there are no “wild type” or
“mutants.” However, it is still possible to define the following con-
tinuous function for a phenotype P, which behaves in a similar
fashion as the power model:

P(m) =

⎧⎪⎨
⎪⎩

μ + αmβ, if m > 0

μ, if m = 0

μ − α|m|1/β, if m < 0,

(7)

where m is a real number analogous to the “number of muta-
tions” compared to the reference genotype, α and β have the
same meaning as in the power model (α is the average effect of
the first mutation, and β is the epistatic coefficient, with β = 1
standing for no epistasis). μ is the intercept of the model, i.e., the
phenotype of the “reference genotype.” This function is not dif-
ferentiable at m = 0, but this is unlikely to affect the estimates.
In order to obtain a proper analogy with traditional quantitative
genetics, the mean F2 (same number of alleles from both parental
lines) was chosen as the reference. m, the “number of mutations”
parameter, thus stands for the number of additional “high-line”
(H) alleles in a genotype compared to the reference. Considering
the 4 significant QTLs, m = 0 for the reference (mean F2) geno-
type (which has 4 low-line alleles and 4 high-line alleles), m = −4
in the full low-line genotype (8 alleles from the low-line), and
m = +4 in the full high-line genotype. An equivalent formulation
(P(m) = μ + αm + 1

2β ′m2) can also be defined for the quadratic
model.

Fitting the “continuous power model” of Equation (7) to the
data by a non-linear, least-square procedure leads to the follow-
ing estimates (estimate ± std. err.): α = 13.0 ± 5.8 g; β = 2.18 ±
0.41 (Figure 5). This is indicative of strong (and statistically sig-
nificant) positive epistasis. The first allelic substitution in the
reference background (average F2 individual) is thus expected to
have an effect of 13 g, the second substitution will affect the phe-
notype by 45.9 g (two “high” substitutions) or 4.9 g (two “low”
substitutions). The epistatic effect is extreme for the fourth sub-
stitution, which is predicted to have an effect of 124 g in the
“high” direction (i.e., 10 times the estimated effect in the aver-
age genetic background) but only 3 g in the “low” direction. The
estimate of directional epistasis in the power model is heavily
influenced by the few “extreme” genotypes: the 7 individuals with
eight “H” alleles are all far above the average, which contributes
to the excessive curvature of the genotype-phenotype relation-
ship (Figure 5). Yet, epistasis is still present when all extreme
genotypes (full homozygotes LL and HH) are removed, with an
estimate of β = 1.83 ± 0.50.

FIGURE 5 | The continuous version of the power model (Equation 7,

solid line) and the quadratic model of epistasis (dashed line) applied

to the chicken QTL data. The reference genotype contains as many “low”
(L) alleles as “high” (H) alleles. The x-axis scales from −4 (LL genotype at
all loci) to +4 (HH genotype at all loci). Intermediate numbers of mutations
are due to genotype uncertainties when QTLs are not in total linkage
disequilibrium with markers.

Estimates from the quadratic model are α = 23.1 ± 4.7 g, and
β ′ = 8.3 ± 4.0 g. In spite of the similar notation, β ′ is not on the
same scale as β, and directional epistasis, although significantly
positive, is smaller here (the two first allelic substitutions in the
direction of higher phenotypes have an effect of 27.3 and 35.6 g
respectively, vs. 19.0 g and 10.7 g for one and two substitutions
toward lower phenotypes).

4. DISCUSSION
4.1. MODEL COMPARISONS
Although they all provide an estimate of unidimensional direc-
tional epistasis, the models reviewed in this paper have been
designed to address different questions, and based in different
sub-fields of population and quantitative genetics.

The multilinear model provides an explicit description of epis-
tasis between a set of loci, as in classical quantitative genetics
models, and can be extended to fit to phenotypic data. On the
opposite, both “regression” models suppose that epistatic pat-
terns follow a general function. This incompatibility between
models of directional epistasis for fitness and traditional quan-
titative genetics models is probably an important factor in the
lack of experimental measurements of directional epistasis for
quantitative traits (Hansen and Wagner, 2001a; Pavlicev et al.,
2010).

In addition to the fact that models are not designed to be
applied to the same kind of data (the need to compare geno-
types to an arbitrary wild type or the assumption of constant
mutational effect size are difficult to overcome for quantitative
genetics data), models also carry conceptual differences about the
nature of epistatic interactions. For instance, the power model
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necessarily involves highly complex epistatic interactions (Hansen
and Wagner, 2001a). Quantitative genetics rely on linear models
of genetic effects, in which interactions are calculated iteratively as
the deviation between mutant phenotypes and the sum of lower
effect interactions. The multilinear model follows this tradition,
and is built as a sum of effects involving one locus (marginal
effects), two loci (pairwise interaction effects), three loci, etc.
For instance, second-order epistasis is the difference between the
double mutant and twice the single mutant effect (Figure 6).
In contrast, in the power model, there are as many interaction
effects as there are mutations, which leads to very complex epista-
sis. For most realistic values of β (0 < β < 2), the second- and
third-order interactions have opposite effects—in other words,
if combining two mutations has antagonistic effects, combining
three of them will have synergistic effects (the triple mutant is
closer to additivity than predicted by the sum of second-order
interactions). Moreover, the magnitude of high-order epistatic
effects can represent a substantial fraction of lower-order effects
(Figure 6), suggesting that combined mutant phenotypes are
heavily impacted by the emergent properties of specific combi-
nations of allelic substitutions, and thus difficult to predict from
experimental results.

This issue is avoided with the quadratic model, which is lim-
ited to interactions between pairs of loci. However, this quadratic
model implies that mutational effects can switch signs depending
on the genetic background (sign epistasis). This property, which
is sometimes perceived as undesirable when considering epistasis

FIGURE 6 | Illustration of high-order epistatic effects in the power

model (here with negative epistasis, αnβ with α = 0.1 and β = 0.8).

The second-order epistatic effect is negative (the power model is always
below the additive prediction), but the third-order effect is positive (the
power model is always above the quadratic model). The sign of the
interactions thus alternates when β < 2, and their relative size does not
decrease rapidly. As a result, the effect of combining several mutants
cannot be properly inferred from simpler combinations—for instance, the
prediction for four mutants is not much better for the second-order epistatic
model than for the additive model, and can even be worse with more
substitutions.

for fitness (Wilke and Adami, 2001), could explain the persistence
of alternative models. Another side effect of most unidimensional
models of epistasis for fitness is that mutations are assumed to be
of constant size. Relaxing this assumption significantly alters the
evolutionary properties of the system (Butcher, 1995; Otto and
Feldman, 1997), casting doubts on the operational meaning of β

(or β ′) parameters.

4.2. FULL-GENOME EPISTASIS
For most of the 20th century, the concept of genotype-to-
phenotype map was mostly virtual, and mainly used for the-
oretical purposes. The possibility to access complete individual
genomes for a reasonable price has not really been anticipated
by quantitative geneticists, and we are now in the uncomfort-
able situation of not being able to properly translate the massive
amount of data collected experimentally into ground-breaking
theoretical insights. Indeed, it is widely acknowledged that the
revolutionary improvement in the quality and quantity of geno-
typic information has not generated a proportional improvement
in our ability to describe the genetic architecture of quantitative
traits from genome-wide association studies. This “missing her-
itability” problem might be partly due to our inability to detect
properly epistatic interactions (Maher, 2008; Zuk et al., 2012;
Hemani et al., 2013).

Identifying interacting pairs of loci from a genotype-
phenotype dataset schematically follows two strategies: (i) com-
bine epistatic and marginal effects while mapping loci, with
the hope to increase the genetic signal (Carlborg and Haley,
2004), or (ii) first map loci based on their marginal effects, and
estimate epistasis a posteriori between pairs of significant loci.
Although theoretically elegant, the first strategy generally col-
lapses with high-quality sequencing data because there are so
many pairwise combinations to be tested that statistical noise
overcomes the genetic signal by orders of magnitude. So far,
the second strategy is thus unavoidable for estimating epistasis
from high-throughput sequencing data. On the one hand, some
epistatic loci will not be detected (in particular, those involved
in sign epistasis, which may have no marginal effect). On the
other hand, we know from Equation (2) that the impact of
loci on the composite epistatic coefficient is weighted by their
(marginal) genetic variance, meaning that the loci with no addi-
tive effects will not affect directional epistasis. Consequently, esti-
mating epistatic noise in general remains a complex task, and may
require further statistical development. When it comes to direc-
tional epistasis, focusing on major loci is much less problematic
and ensures a proper estimation of this biologically meaningful
parameter.

4.3. CONSISTENCY ACROSS ESTIMATES
This paper illustrates the estimation of epistasis directionality by
several methods, using independent data describing the same bio-
logical system. The various estimates are reported in Table 2. The
units and the meaning of the epistatic coefficients differ according
to the method. In order to facilitate the comparison, an epistatic
factor f100 is provided. This factor corresponds to the coefficient
by which genetic effects change when body weight increases by
(arbitrarily) 100 g.
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Table 2 | Summary of the directional epistasis estimates from

different sources of data and different methods.

Source of data Method Estimate f 100

Selection response Quadratic
approximation
(Equation 3)

ε = 6.6 × 10−5 g−1 1.007

Line cross Line cross analysis
(Equation 4)

ε = 1.9 × 10−3 g−1 1.19

QTL Multilinear
regression

ε = 5.7 × 10−2 g−1 6.7

QTL Power model
(Equation 7)

β = 2.18 6.6

QTL Quadratic model β ′ = 8.3 g 2.0

Estimates can be compared with the f100 factor.

Directional epistasis estimates are consistently positive, and
in most cases statistically significant. This provides strong con-
firmation that the genetic architecture of the weight differences
between the high and low chicken lines is characterized by positive
epistasis. However, the epistatic coefficients vary by several orders
of magnitude in the different experiments; two categories of esti-
mates can be defined: epistasis is strong when measured from
the genotype data (increasing the phenotype by 100 g multiplies
the allelic effects by 2 to almost 7), but weaker when measured
from phenotype data (increasing the phenotype by 100 g increases
allelic effects by 0.7 to 19%).

These measures are not necessarily contradictory, because
epistasis can be restricted to a specific subset of the genetic
architecture. As the epistatic coefficient measures the “average”
curvature of the genotype-phenotype map, it is strongly affected
by the nature of the data (and more specifically, the span of the
data in terms of number of loci and phenotype range), as it seems
to be the case for the chicken bodyweight (Figure 7). The extreme
epistatic factors measured from the QTL data can be attributed to
several factors. The four large-effect QTLs are not a random sam-
ple of loci, their effect is statistically inflated by detection bias (the
Beavis effect: Beavis, 1994; Xu, 2003), and their strong epistatic
interactions remain atypical (Carlborg et al., 2006). Their inter-
action pattern involves sign epistasis (Le Rouzic et al., 2007), so
that additive effects vanish in some genetic backgrounds: increas-
ing a small effect by a large factor does not necessarily mean that
the absolute interaction effect is huge. In any case, even if posi-
tive epistasis is very strong for the 4 major loci, these QTLs only
explain 7% of the total phenotypic variance, and the F2 popu-
lation covers only 50% of the phenotype range of the parental
lines. If directional epistasis is not a property of the whole genetic
architecture, but merely reflects specific interactions between a
few loci, data involving more loci and more genetic backgrounds
would be expected to reveal less directional epistasis, which seems
to be the case here with a striking regularity among the three
independent data sources (Figure 7).

5. CONCLUDING REMARKS
Unidimensional directional epistasis measures how the properties
of genetic architectures change with the phenotype. It has often

FIGURE 7 | Negative relationship between the span of the phenotypes

in the data set and the directional epistasis coefficient.

been confused with scaling. Scale transformation is a common
operation in biology, often motivated by the need to make the
data suitable for a particular statistical analysis (e.g., enforcing
normality). Changing the scale of the phenotype measurement
impacts on directional epistasis (Pavlicev et al., 2010), and it
is possible to find an arbitrary scale transformation on which
directional epistasis becomes negligible (or even is canceled out)
in a data set. Applying such ad hoc mathematical operations to
phenotypes prior to analysis could hardly be considered good
practice. First, it has been repeatedly pointed out to biologists
that, according to measurement theory, scales do actually have
a meaning, and are thus not interchangeable (Wagner et al.,
1998; Houle et al., 2011). One of the best examples is fitness,
which is essentially multiplicative (Wagner, 2010). Epistasis on fit-
ness thus has to be measured as the deviation from log-linearity,
which justifies models of directional epistasis presented above.
Obviously, directional epistasis following the power model can-
cels out on a log scale, but such a double log transformation
would be meaningless, and should not be seriously considered.
A second reason why scale change does not solve the problem
of directional epistasis is that one should not necessarily expect
consistent directionality. As exemplified by the chicken example,
and illustrated in Figure 2, directionality is a local measure of
the interlocus curvature of the genotype-phenotype map. It is
thus likely that directionality could itself evolve as the phenotype
changes (in the presence of third-order epistasis and higher-
order interactions, directionality could even change when the
phenotype remains constant). Therefore, comparing the proper-
ties of genetic architectures across populations or species requires
measuring directional epistasis on a common scale.

Recent conceptual and theoretical advances have convincingly
demonstrated that what matters in epistasis is not its direct con-
tribution to genetic variation (interaction variance), but rather
its propensity to (indirectly) influence the evolution of additive
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genetic variance. This propensity can be estimated by looking
for specific patterns among epistatic interactions. The direction-
ality of epistasis may be the most obvious, but other patterns
are also emerging as candidate contributors to the evolvabil-
ity of genetic architectures, such as the monotonicity of the
genotype-phenotype relationship (closely linked to sign epistasis)
(Gjuvsland et al., 2011, 2013), and the robustness or canalization
of genetic architectures (Hermisson and Wagner, 2004; Draghi
et al., 2010; Fraser and Schadt, 2010; Le Rouzic et al., 2013).

In quantitative genetics and breeding, correctly describing
epistasis can improve the prediction of selection responses.
In evolutionary genetics, epistasis determines the structure of
genetic diversity and variability. At the phylogenetic scale, direc-
tional epistasis could contribute to biased anagenesis patterns and
affect evolutionary trajectories. Most molecular mechanisms do
not simply add up, and the genotype-phenotype relationship has
to be curved to some extent. Is the observed curvature (quanti-
fied with one or several of the methods described here) consistent
with predictions from system-biology models? To what extent is
it constrained by the physical properties of the phenotypic trait?
Does it vary depending on the trait, on the species? Does it evolve
rapidly? The importance of determining directional epistasis for
a wide diversity of traits in many organisms has probably been
underestimated in the past, but now appears to be a key toward
obtaining a better understanding of the general properties of
genetic architectures.
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APPENDIX I: MULTILINEAR EPISTASIS ON A CONTINUOUS
GENOTYPE-PHENOTYPE MAP
TWO LOCI
The multilinear model of Hansen and Wagner (2001b) is defined
based on a reference genotype, and proposes a change-of-
reference operation to recompute the genetic effects in a different
genotype, assuming a multilinear genotype-phenotype map. In
an arbitrary genotype-phenotype relationship, the multilinear
model can be considered to be a local approximation of the mul-
tilocus curvature, and epistatic coefficients can be calculated from
Taylor polynomial coefficients.

Let g(y1, y2) be a continuous and differentiable (at least
twice) two-dimensional Genotype-Phenotype function associat-
ing a phenotype value P to any genotype combination (y1, y2)
at two loci. The gradient vector at a particular genotype � =
(�1, �2) is D (Di = ∂g(y1, y2)/∂yi|�1,�2 ), and the Hessian matrix
is D2 (D2

i,j = ∂2g(y1, y2)/∂yi∂yj|�1,�2 ). The second-order Tailor
series around this genotype � is:

P(y1, y2) � g(�1, �2) + D1(y1 − �1) + D2(y2 − �2)

+ 1

2
D2

1,1(y1 − �1)2 + 1

2
D2

2,2(y2 − �2)2

+ D2
1,2(y1 − �1)(y2 − �2). (A1)

Rescaling as y′
1 = D1(y1 − �1) and y′

2 = D2(y2 − �2) and
neglecting the quadratic terms leads to a multilinear approxima-
tion taking the genotype � as a reference point:

P(y′
1, y′

2) � g(�1, �2) + y′
1 + y′

2 + y′
1y′

2

D2
1,2

D1D2
, (A2)

where it appears clearly that the directionality coefficient of
Hansen and Wagner (2001b) is εij = D2

i,j/DiDj. The quadratic

terms 1
2 D2

1,1y′ 2
1 and 1

2 D2
2,2y′ 2

2 disappear from the equation as a
consequence of the multilinear approximation.

SEVERAL LOCI
The previous approximation can be extended to several loci in a
straightforward way:

εij = ∂2g

∂yi∂yj

∣∣
�

/ ∂g

∂yi

∣∣
�

∂g

∂yj

∣∣
�
. (A3)

Developing the third-order Taylor series and neglecting all
quadratic terms, the third-order epistatic coefficients can be writ-
ten as follows:

εijk = ∂3g

∂yi∂yj∂yk

∣∣
�

/ ∂g

∂yi

∣∣
�

∂g

∂yj

∣∣
�

∂g

∂yk

∣∣
�
. (A4)

The multilinear approximation can thus be easily extended to
any number of loci and any order of epistasis, with the nth order
epistasis coefficient being the nth mixed partial derivative of the
genotype-phenotype function scaled by the product of the first-
order derivatives of this function for all loci involved in the
interaction.

APPENDIX II: EFFECT OF DIRECTIONAL EPISTASIS ON
ARTIFICIAL SELECTION RESPONSE
The impact of directional epistasis on the response to direc-
tional selection is rather complex to predict precisely for arbi-
trary time periods (Carter et al., 2005). Nevertheless, useful
approximations can still be derived by making realistic assump-
tions about the properties of genetic architectures. For instance,
Le Rouzic et al. (2011) proposed a model that can be simplified as:

μt + 1 = μt + VAt βt (A5a)

VAt + 1 = VAt + 2βtεV2
At

(A5b)

Equation (A5a) is the traditional breeder’s equation, formu-
lated as in Lande and Arnold (1983), where VA is the addi-
tive genetic variance, and β the selection gradient, i.e., the
slope of the regression between phenotype and relative fitness.
Equation (A5b) approximates the impact of directional epistasis
on additive variance, summarized by the directionality coeffi-
cient ε.

This model requires 3 parameters: μ0, the initial phenotype,
the initial additive variance VA0 , and the epistatic parameter ε.
Fitting the model by maximizing its likelihood for phenotype
times series including means and variances provide convincing
estimates of epistasis, especially when the data include bidirec-
tional artificial selection (Le Rouzic et al., 2011).

Unfortunately, variance time series are not always available
from historical data, because either they were measured but not
reported in the corresponding publications, or simply because
they were not computed, as only the mean phenotype was the cen-
ter of interest. Moreover, fitting such a complex multidimensional
non-linear model can be tricky, and requires significant computer
programming input (and possibly having to solve numerical con-
vergence issues). Proposing simpler formulas could therefore be
helpful, as they may allow any biologist with basic statistical
knowledge to report the strength of directional epistasis based on
average phenotype data.

The following calculation is based on several approximations,
the main ones being that selection is expected to be constant
(βt = β), and that linkage disequilibrium can be ignored. If direc-
tional epistasis is the only phenomenon affecting the selection
response, the additive genetic variance is expected to change as in
Equation (A5b). Approximating the discrete process by a contin-
uous function leads to the ordinary differential equation dVA

dt =
2βεV2

A, which can be solved as:

VAt = VA0

1 − 2βVA0εt
. (A6)

Assuming that directional epistasis is not very strong
(εβVA0 � 1), the expected phenotype at time t results
from the product between the (supposedly constant) selection
gradient β and the cumulative change in VA, which can be
calculated as:

μt = μ0 + β

∫ t

0
VAτ dτ = μ0 − log (1 − 2βVA0εt)

2ε
. (A7)
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