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Functional magnetic resonance imaging (fMRI) is an indirect
measure of brain activity, i.e. it is a convolution of the latent
(unmeasured) neural signal and the hemodynamic response
function (HRF). As such, the HRF has been shown to vary across
brain regions and individuals. The shape of the HRF is controlled
by both neural and non-neural factors. The shape of the HRF can be
characterized by three parameters (response height, time-to-peak
and full-width at half-max). The data presented here provides the
three HRF parameters at every voxel, obtained from U.S. Army
soldiers (N¼87) diagnosed with posttraumatic stress disorder
(PTSD), with comorbid PTSD and mild-traumatic brain injury
(mTBI), and matched healthy combat controls. Findings from this
data and further interpretations are available in our recent
research study (Rangaprakash et al., 2017) [1]. This data is a
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valuable asset in studying the impact of HRF variability on fMRI
data analysis, specifically resting state functional connectivity.

& 2017 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Specifications Table
ubject area
 Brain imaging

ore specific sub-
ject area
Functional magnetic resonance imaging, hemodynamic variability, hemody-
namic response function parameters, reliability of fMRI, posttraumatic stress
disorder
ype of data
 Image: brain maps of voxel-wise HRF parameters for every subject

ow data was
acquired
Siemens Magnetom Verio 3T MRI Scanner (Siemens Healthcare, Erlangen,
Germany)
ata format
 NifTi (.nii)

xperimental
factors
Three different populations were considered: those with posttraumatic stress
disorder (PTSD), those with comorbid PTSD and post-concussion syndrome (PCS)
and healthy combat controls (matched in age, race and education)
xperimental
features
Resting-state: participants were requested to have their eyes open and fixated on
a white cross displayed on a dark background on the display, using an Avotec
projection system. They were asked to not think of anything specific. Each
resting-state scan lasted for 5 min.
ata source
location
Auburn, AL, United States of America (GPS coordinates: 32.586, −85.494)
ata accessibility
 Data is available with this article.
D
Value of the data

� This data characterizes the hemodynamic response function (HRF) variability in functional mag-
netic resonance imaging (fMRI) data obtained from soldiers with posttraumatic stress disorder
(PTSD), mild-traumatic brain injury (mTBI) and matched combat controls, and hence is a valuable
asset for studying the impact of HRF variability on several types of fMRI data analyses, including
resting-state functional connectivity [1].

� The data characterizes HRF variability in different psychiatric populations (PTSD and comorbid
PTSD/mTBI) and matched combat controls, and hence could be used to model the common and
distinguishing HRF characteristics among these clinical groups [1].

� The HRF is an indirect marker of underlying neurochemical balances since the shape of the HRF is
altered by the underlying neurochemistry [2–4]. Hence this data could be used to understand the
relationship between HRF and underlying neurochemistry in a healthy population, as well as in
psychiatric populations like PTSD and comorbid PTSD and mTBI.
1. Data

The data presented here comprises of the three HRF parameters that characterize the shape of the
HRF – response height, time-to-peak and full-width at half-max. Each of these parameters are
available at every voxel of the brain for every subject. The data is presented as 3D NifTi images (.nii),
with one image file per parameter per subject.
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2. Experimental design, materials and methods

2.1. Participants

Active-duty U.S. Army soldiers, aged 18–50 years, were recruited (N¼87, male) from Fort Benning,
GA, USA and Fort Rucker, AL, USA to participate voluntarily in acquiring this data. All soldiers were
first assessed by a licensed medical practitioner (i.e. clinician referral) at these locations Symptom
severity measures were administered when they arrived for their MRI session. Participants were
grouped based on clinician referral, and symptom severity for PTSD (the PTSD Checklist-5 [PCL5]
score) and post-concussion syndrome or PCS (the neurobehavioral symptom inventory [NSI] score).
PCS is a chronic outcome of mTBI, wherein symptoms persist several months after the concussion.
Participants were grouped into PTSD (N¼17), comorbid PCS and PTSD (PCSþPTSD, N¼42), and
combat controls (N¼28, groups matched in education, race and age). All participants reported having
combat experience in Afghanistan (Operation Enduring Freedom, OEF) and/or Iraq (Operation Iraqi
Freedom, OIF). The data acquisition was conducted in accordance with the Declaration of Helsinki
(latest version). The procedures and protocol were approved by the Headquarters, U.S. Army Medical
Research and Materiel Command (MRMC), IRB (HQ USAMRMC IRB) and Auburn University's Insti-
tutional Review Board (AU-IRB).

Participants were grouped based on PTSD symptom severity using the PCL5 score and clinician
referral, post-concussive symptoms using the NSI score and medical history (including combat-
related mTBI). The PCL5 [5] is a self-report measure that assesses the DSM-V symptoms of PTSD. Items
are rated on a 5-point Likert scale, wherein 1 refers to "Not at all" and 5 refers to "Extremely". With an
aggregate of 20 items, a total score is obtained in the range 20–100 by summing the scores of each
item, with a cut-score of 38 for the diagnosis of PTSD [6]. The NSI [7]) is a self-report questionnaire
that assesses post-concussive symptoms in individuals sustaining a traumatic brain injury. For each
symptom, participants rate severity (in the past month) on a 5-point Likert scale ranging from 0
(none) to 4 (highly severe). With an aggregate of 22 items, a total score is obtained in the range 0–88
by summing the scores of each item, with a cut-score of 26 for the diagnostic classification of PCS.

(i) Subjects sustaining a history of mTBI, post-concussive symptoms, PCL5 score greater than 38,
NSI score greater than 26, no record of a psychotic, mood, or substance dependency disorder, and
clinician referral were identified as the comorbid PCSþPTSD group. (ii) Subjects with no history of
mTBI in the previous five years, a PCL5 score greater than 38, NSI score less than 26, no record of a
psychotic, mood, or substance dependency disorder, and clinician referral were identified as the PTSD
group. (iii) Subjects with a PCL5 score less than 38 and NSI score greater than 26, with no record of
mild-to-severe TBI, no DSM-5 or DSM-4-TR diagnosis of any psychiatricdisorder (based on medical
records) were identified as the combat control group after clinical assessment by a study physician.
All participants reported a prior deployment(s) in a combat environment.

2.2. Procedures

When the participants arrived at our research lab, they went through re-screening for eligibility,
screening for MR contraindications and re-consenting to ascertain full comprehension of the pro-
cedures, benefits and their rights.

fMRI: A Siemens MAGNETOM Verio 3T MRI scanner was used to acquire MRI data (Siemens
Healthcare, Erlangen, Germany). Participants were scanned using a T2* weighted multiband echo-
planar imaging (EPI) sequence (resting-state: they would have their eyes open, and fixated on a white
cross displayed on a dark background on the digital display, using an Avotec projection system; and
were asked to not think about anything specific). Acquisition parameters were as follows: TR/
TE¼600/30 ms, multiband factor¼2, FA¼55°, voxel size¼3×3×4 mm3 and 1000 time points. Brain
coverage excluded the cerebellum. Two separate scans were carried out for every subject (same day),
which provided us twice the number of data points compared to the number of subjects. A 32-
channel head coil was used to acquire brain imaging data.
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2.3. FMRI data pre-processing

Standard fMRI pre-processing steps were undertaken (realignment [six parameters], normal-
ization to MNI space, linear detrending, and regressing out nuisance covariates (six head-motion
parameters, cerebrospinal fluid and white matter signals). Spatial smoothing was not performed. Pre-
processing was undertaken in Data-Processing Assistant for Resting-State fMRI (DPARSF v1.7) [8],
which is based on Resting-State fMRI Data Analysis (REST) Toolkit [9] and Statistical Parametric
Mapping (SPM8) [10].
2.4. Obtaining the HRF parameters

The 3Dþtime fMRI data went through voxel-wise temporal hemodynamic deconvolution to
obtain latent neural time series at every voxel. We employed a popular technique proposed by Wu
et al. [11]. This technique has received increasing acceptance and popularity, owing to its robustness,
interpretability, validity, simplicity of implementation, and an increasing awareness in the research
community on the need for deconvolution. Several recent works have employed it (for example, see
[12–15]). This deconvolution is blind since we have access to only one variable (fMRI timeseries),
using which it estimates both the HRF and the latent neural timeseries. In short, the method models
resting state fMRI data as event-related timeseries with randomly occurring events employing point
processes [16,17], and then evaluating voxel-wise HRFs using Weiner deconvolution.

Deconvolution resulted in the estimation of HRF at every voxel in every subject, which was
characterized by three HRF parameters – response height (RH), time-to-peak (TTP), and full-width at
half-max (FWHM). These voxel-wise HRF parameters for all subjects have been made available with
this article. All data analysis was performed on the Matlab® platform.

Our main findings associated with this data and further interpretations are part of our recent
research study [1].
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