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Abstract

Background: Children exposed to natural disasters are vulnerable to developing posttraumatic stress disorder (PTSD).
Previous studies using resting-state functional neuroimaging have revealed alterations in graph-based brain topological
network metrics in pediatric PTSD patients relative to healthy controls (HC). Here we aimed to apply deep learning (DL)
models to neuroimaging markers of classification which may be of assistance in diagnosis of pediatric PTSD.

Methods: We studied 33 pediatric PTSD and 53 matched HC. Functional connectivity between 90 brain regions from
the automated anatomical labeling atlas was established using partial correlation coefficients, and the whole-brain
functional connectome was constructed by applying a threshold to the resultant 90 * 90 partial correlation matrix.
Graph theory analysis was used to examine the topological properties of the functional connectome. A DL algorithm
then used this measure to classify pediatric PTSD vs HC.

Results: Graphic topological measures using DL provide a potentially clinically useful classifier for differentiating
pediatric PTSD and HC (overall accuracy 71.2%). Frontoparietal areas (central executive network), cingulate cortex, and
amygdala contributed the most to the DL model’s performance.

Conclusions: Graphic topological measures based on fMRI data could contribute to imaging models of clinical utility
in distinguishing pediatric PTSD from HC. DL model may be a useful tool in the identification of brain mechanisms
PTSD participants.

Keywords: Deep learning, Posttraumatic stress disorder, Graph measure, Topological properties, Classification
Psychoradiology, Psychoradiology

Background
Posttraumatic stress disorder (PTSD) is a delayed and
lasting dysfunctional response to psychological stress.
Patients usually have a long illness with recurring

symptoms, often complicated by comorbidities such as
substance abuse, depression, anxiety disorder, aggressive
behavior, self-injury and suicide, as well as medical com-
plications such as chronic pain and infection, cardiovas-
cular disease and increased risk of dementia [1, 2]. The
overall burden of disability and premature death caused
by PTSD is therefore high [3]. Children are more vulner-
able to PTSD than adults, being 12–25% more likely to
develop depression, suicidal behavior and cognitive im-
pairment [4]. The etiology and neuropathology of this
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complex disease are still not clear [5], and accurate
prognosis suffers from the lack of reliable biomarkers.
Two decades ago it was hoped that neuroimaging-based

biomarkers would prove diagnostically and prognostically
effective in a number of neuropsychiatric diseases. This
hope has not yet been realized, as research has revealed an
increasingly complex picture of subtle, distributed brain
changes varying with individual clinical characteristics.
Neuroimaging biomarkers capable of distinguishing PTSD
from non-PTSD subjects have received attention [6–9], and
two recent studies obtained good results using resting-state
fMRI [7, 9]. The brain is a highly interconnected network,
and the development of psychiatric illness appears increas-
ingly linked to dysfunctional integration of networks be-
tween the cortex and subcortical regions. Many studies
have therefore taken whole-brain network metrics and used
them as input to a single subject classification [10–12]. Re-
cent advances in psychoradiology, allow the direct noninva-
sive characterization of brain network topology in
neuropsychiatric patients [13–15] and advances in graph-
based theoretical analysis have enabled quantification of the
whole brain’s topological properties [16, 17], revealing a
‘small-world’ organization (characterized by both high local
specialization and high global integration between brain re-
gions) [18, 19], whose networks are anatomically and func-
tionally disrupted in psychiatric disease [20]. We used
graph-based analysis to investigate the disrupted topology
of the functional brain connectome in PTSD, which throws
some light on the pathogenesis of pediatric PTSD as well as
yielding potential biomarkers of the disease [21].
‘Deep learning’ (DL) describes a group of representation-

learning methods that can automatically identify the optimal
representation from the raw data with high order complex-
ity and abstraction [22]. A number of studies have applied
DL techniques to the classification of psychiatric disorders
based on anatomical brain images obtained by MRI [23] or
functional MRI images [24] or by combining structural and
functional neuroimaging data [25, 26]. Also, DL has yielded
promising results in medical image analysis [27, 28], and
may yield higher classification accuracy than alternative
methods such as support vector machines (SVM) [29, 30].
It can use the trained network to calculate the low-
dimensional code of individual brain features quickly and ef-
fectively, so as to deduce the deep structure and further
characterise the complex nonlinear relationships [31, 32].
There is precedent in PTSD for nonlinear responses to e.g.
therapy [33], and it seems reasonable to expect that the
complexity of functional and structural patterns in the
pathophysiology might be beyond what traditional linear
methods (e.g., PCA, sparse learning) can explain [34].
To date, most studies of neuroimaging-based predic-

tors of classification have examined adult patients or
mixed pediatric and adult samples. However, biomarkers
may be differentially expressed in pediatric and adult

patients [35], and studying patients early in their illness
course with limited psychotropic exposure can minimize
the confounding effects of illness course and medication.
Here we confined ourselves to pediatric patients and
age-matched controls.
Recent studies of other neuropsychiatric diseases have

used novel graph-based analytic methods as input for
single-subject classification [36, 37]. To extend these, we
combined them with DL, by following a DL-based di-
mension reduction phase by an SVM classification phase
[34]. We hypothesized (i) that the use of DL would en-
hance the effectiveness of graph-based metrics derived
from resting-state fMRI data. Given previous reports
that the central executive network (CEN), amygdala, and
parietal gyrus are important siters of dysregulation areas
in PTSD [21, 38], we also hypothesized (ii) that these re-
gions would make the greatest contributions to classifi-
cation performance.

Methods
Participants
The participants are survivors of a massive earthquake
in the Sichuan Province of western China in 2008. From
a total of 4200 earthquake survivors screened between
January and August 2009, we selected participants who
(i) physically experienced the earthquake, (ii) personally
witnessed death, serious injury, or the collapse of build-
ings, (iii) were younger than 18 years of age, (iv) had an
intelligence quotient > 80 and (v) had no diagnosis of
PTSD prior to the earthquake. Each participant was
interviewed and screened using the PTSD checklist
(PCL) [39], and the Clinician-Administered PTSD Scale
(CAPS) was completed when PCL scores were ≥ 35 [40].
The subjects were considered eligible for inclusion in
the PTSD group with a CAPS score of ≥50. Those with
PCL scores < 30 was considered eligible as non-PTSD
controls [41]. This yielded a total of 161 potential PTSD
patients and 99 non-PTSD. In these subjects, the pres-
ence/absence of PTSD and psychiatric comorbidities
were confirmed by the Structured Clinical Interview for
DSM-IV (SCID; Diagnostic and Statistical Manual of
Mental Disorders, Fourth Edition [42]). Both the chil-
dren and their parents were interviewed, and the infor-
mation from parents was combined with the psychiatrist
to support the diagnosis.
Exclusion criteria were: (i) history of depression, bipo-

lar or psychotic disorder, or neurologic disorder (n =
42), (ii) contraindication to MR imaging (n = 30), (iii)
treatment with psychiatric medications within 2 months
before recruitment for MRI scanning (n = 24), (iv)
unavailability of key data (n = 12); (v) left handedness
(n = 10); (vi) CAPS score > 35 but < 50 (n = 8) [41], and
(vii) history of brain injury (n = 7). With these exclusions
to obtain a relatively homogeneous sample, we recruited
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for the present study 33 drug-free first-episode pediatric
PTSD and a demographically matched group of 53
healthy control (HC) subjects who did not develop
PTSD.
This study was approved by the Research Ethics Com-

mittee of the West China Hospital of Sichuan University.
Each child’s guardian provided written, informed con-
sent, and children provided assent prior to participation.

Data acquisition
A resting-state fMRI dataset was acquired using a 3 T
magnetic resonance system (GE EXCITE, Milwaukee,
WI) with an eight-channel phased array head coil. The
participants were instructed to keep their eyes closed
and to think of nothing in particular during the acquisi-
tion. The sequence parameters were repetition time/
echo time (TR/TE) 2000/30 ms; flip angle 90°; 30 axial
slices per volume; 5 mm slice thickness (no slice gap);
matrix 64 × 64; field of view (FOV) 240 × 240 mm2; voxel
size 3.75 × 3.75 × 5mm3. A total of 200 volumes were
collected for each subject.

Data preprocessing
The image data was preprocessed by SPM12 (http://
www.fil.ion.ucl.ac.uk/spm). The first 10 time points were
discarded to avoid instability of the initial MRI signal.
After correction for intravolume acquisition time delay
and head motion, the images were spatially normalized
to a 3 × 3 × 3mm3 Montreal Neurological Institute 152
template and then linearly detrended and temporally
bandpass filtered (0.01–0.08 Hz) to remove low-
frequency drift and high-frequency physiological noise.
Finally, the global signal, the white matter signal, the
cerebrospinal fluid signal, and the motion parameters
(three translational and three rotational parameters)
were all regressed out [43]. According to the record of
head motions within each fMRI run, all participants
whose head motion exceeded 1.0 mm of translation or
1.0° of rotation in any direction were excluded. We also
calculated the mean frame-wise displacement (FD) for
two groups, and there was no difference in the mean FD
between these two groups [44].

Network construction and topological properties
The network was constructed using GRETNA (http://
www.nitrc.org/projects/gretna/) [45, 46]. We applied a
wide range of sparsity (S) thresholds to all correlation
matrices. The value of S was chosen to ensure that thre-
sholded networks were estimable for the small-
worldness scalar and the small-world index (σ) was >
1.0. The range of our S thresholds was set to 0.05 < S <
0.40 with an interval of 0.01 [45, 47]. For each network
metric, the area under the curve (AUC) was calculated,
which provides a summarized scalar for the topological

characterization of brain networks independent of a sin-
gle threshold selection. The AUC metric has been
proven to be sensitive in the detection of topological al-
terations of brain networks.
First, the automated anatomical labeling (AAL) atlas

[48] was used to divide the whole brain into 90 cortical
and subcortical regions of interest, and each was consid-
ered a network node. Next, the mean time series was ac-
quired for each region. The partial correlations of the
mean time series between all pairs of nodes (represent-
ing their conditional dependencies by excluding the ef-
fects of the other 88 regions) were considered the edges
of the network [45, 49]. This process resulted in a 90 ×
90 partial correlation matrix for each subject, which was
converted into a binary matrix (i.e., adjacency matrix)
according to a predefined threshold (see below for the
threshold selection), where the entry aij = 1 if the abso-
lute partial correlation between regions i and j exceeds
the threshold and aij = 0 otherwise [45].
For the brain networks at each sparsity level, we calcu-

lated both global and node network metrics. The global
metrics examined included small-world parameters (for
definitions see [47]) including the clustering coefficient
Cp, characteristic path length Lp, normalized clustering
coefficient γ, normalized characteristic path length λ, and
small-worldness σ, as well as network efficiency parame-
ters (for details see [50]), including the local efficiency Eloc
and global efficiency Eglob. We calculated Lp as the har-
monic mean distance between all possible pairs of regions
to address the disconnected graphs dilemma [51]. The
node metrics examined included the node degree, effi-
ciency, and betweenness centrality [52]. Finally, global and
nodal network topological properties were included to es-
tablish a 277-dimensional graphic feature vector, where
features 1–7 were global properties (Cp, Lp, γ, λ, Eloc, Eglob)
and features 8–277 were three nodal properties (degree,
betweenness, efficiency) of 90 AAL regions.

Machine learning model
A two-stage classification pipeline was implemented to
differentiate PTSD from HC, in which a feedforward
multi-layer neural network was adopted as the initial
stage for dimensionality reduction [31]. A strength of
this approach is that the neural network can thereby ob-
tain a higher-order (non-linear) representation of the
features. A deep neural network facilitates the extraction
of optimal low-dimensional representations without re-
quiring expert feature engineering knowledge. The hier-
archical network architecture enables dimensionality
reduction level by level, and the training process updates
network parameters iteratively to automatically optimize
low-dimensional representations in the output layer [22].
The two-stage pipeline has been reported to outperform
traditional machine learning and feature engineering
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methods in an application to predicting autism develop-
ment in at-risk infants [34]. Accordingly, we used a two-
stage pipeline with some novel graphic features.
SVM was performed as the second stage to individu-

ally discriminate PTSD from HC [53]. This has been
widely applied in neuroimaging machine learning stud-
ies, and performs well [54]. By finding the hyperplane
maximizing the margin between binary classes in the
feature space, SVM can learn the classification strategy
from a training set and use it to predict individual val-
idation sample. Here we fed the resulting low-
dimensional features into a binary linear SVM classifier.
During the training process at the SVM stage, 5-fold
nested cross-validation was performed to find the opti-
mal hyperparameter C from C = {10−3, 10−2, 10−1, 1, 101,
102, 103, 104} via grid search. Once the optimal hyper-
parameter for each fold was determined, SVM was
trained again with the whole training set and evaluated
on the validation set.
The whole two-stage classification pipeline was

trained and evaluated with 10-fold stratified cross-
validation. In this scheme the participants were di-
vided into 10 non-overlapping partitions, each with
the same proportion of patients and HC. In each one
of the 10 iterations of the cross-validation, 9 parti-
tions were used as the training set to train the SVM
model, and then the trained model was used to ob-
tain predictions in the remaining partition. These pre-
dictions were used to calculate the performance
metrics (balanced accuracy, specificity, and sensitivity),
and since the test set was not part of the training
process, the resulting values were unbiased. The re-
ported performance in each case is the mean value
across the cross-validation iterations. All these ma-
chine learning analyses were programmed using Py-
thon language (Version: 3.8, https://www.activestate.
com/products/python/), where the neural network was
implemented in the Pytorch library [55], and the
SVM was implemented based on LIBSVM [56] in the
Scikit-Learn library [57]. The first step of DL model
was described in detail in Additional file 1. To esti-
mate the significance of the machine learning model,
we performed a nonparametric permutation test to
calculate the p value for the balanced accuracy [58].
This involved repeating the classification procedure
1000 times with different random permutations of the
group labels. We then counted the number of times
the balanced accuracy was higher for the permuted
labels than the real labels, and divided this number
by 1000 to calculate the p value.

Feature contribution to the classification performance
Identifying the features with the highest discriminative
power in classifying performance can yield clinical/

pathophysiological implications beyond mathematical
model performance as assessed in conventional neuro-
imaging machine learning studies. For the novel two-
stage pipeline in DL, we tried to find such discriminative
patterns from the dimensionality reduction stage. We
extracted all the weight matrices W = {W1,W2. W3,W4}
connecting consecutive layers L = {l1, l2, l3, l4, l5} from the
fine-tuned network, where li denotes the i-th layer and
Wi denotes the weight matrix connecting li and li + 1. As
described elsewhere [34], each node’s contribution in a
given layer i was estimated from the weight matrix Wi.
We started from l4 and worked backward, keeping nodes
with the greatest contributions whose summed contribu-
tions represent more than 50% of the weight contribu-
tion in l4. Next, node contributions in l3 were estimated
using a partition of weight matrix W3 restricted to those
surviving nodes in l4. This calculation was propagated
backward until we reached the l1 where contributions of
raw features are available. The resulting top 10 features
with the greatest contributions were reported.
Figure 1 shows an overview of the classification ap-

proach showing the main steps in the pipeline. Figure 2
shows the deep network training model. The Supple-
mentary Figure illustrates this process, using a simple
example of a 3-layer network; see [34] for details.

Other statistical methods
The statistical significance of between-group differences
in demographic and clinical characteristics was tested by
the two-tailed two-sample t test (continuous variables)
or the two-tailed Pearson Chi-square test (categorical
variables).

Results
Demographic and clinical characteristics
There were no significant differences in age, gender,
education between pediatric PTSD and HC (p > 0.05;
Table 1).

Classification performance
The single-subject classification of pediatric PTSD and
HC using graph-based topological metrics was assessed
for accuracy, sensitivity and specificity at 10-fold cross-
validation. The average accuracy of classification was
71.2 ± 12.9%, the average sensitivity was 59.7 ± 21.9%
and the average specificity was 82.7 ± 13.9% in the DL
model (p < 0.001).

Regions with greatest contribution to single subject
classification
To identify the classification pattern in patient and HC
group, we investigated feature contributions to the non-
linear dimensionality reduction in patient group in the
DL model. The 10 features with the highest contribution
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Fig. 1 Overview of the employed classification approach showing the main steps of the pipeline. The raw images were preprocessed, and then
the whole brain functional connection matrix was calculated to obtain the graphic topological attributes. Finally, the deep learning model was
used to classify the groups

Fig. 2 Deep network training. (a) An unsupervised step is first performed that sequentially trains individual autoencoders (AE). (b) The supervised
step stacks the initialized AEs (thus creating the deep network) and then adds one additional layer for the supervised training only (the training
label layer) which contains the binary diagnosis label for each binary high-dimension feature vector in the training population [38]
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values across the DL models are reported in Table 2 and
represented graphically in Fig. 3. These regions were
mainly located in frontoparietal areas, with some spread
to subcortical regions such as the anterior cingulate cor-
tex, median cingulate cortex, and amygdala.

Discussion
We set out to classify between pediatric PTSD and HC
using the DL model applied to graphic topological mea-
sures, and then explored the regions making the greatest
contribution to classification performance. Consistent
with our first hypothesis, we found that using topo-
logical properties in DL we could distinguish PTSD from
HC at the individual level with significant accuracy. This
supports the emerging notion that graphic topological
properties based on resting-state functional neuroimag-
ing data can be a powerful tool for characterizing brain

disorders at the level of the individual [21]. Such
methods have achieved 86% accuracy in distinguishing
patients with amnestic mild cognitive impairment from
healthy controls [9], and 70–80% accuracy in distin-
guishing schizophrenic patients from non-psychiatric
controls [10]. In PTSD, Zilcha-Mano et al. [9] were able
to discriminate between 51 PTSD individuals and 76
trauma-exposed healthy control subjects with an accur-
acy of up to 70.6% by using a whole-brain data-driven
definition of functional connectivity biomarkers and reg-
ularized partial correlations which revealed differences
in functional connectivity within executive control net-
work and salience network between the two groups.
DL methods can automatically identify the optimal

representation from the raw data without the need for
specialized feature engineering. This is achieved by using
a hierarchical structure with varying levels of complexity,
including the application of consecutive nonlinear trans-
formations to the raw data. An essential aspect of DL
that differentiates it from other machine learning
methods is that the features are not manually engi-
neered; instead, they are learned from the data, resulting
in a more objective and less bias-prone process. Com-
pared with other machine learning methods such as
SVM, DL can achieve higher orders of abstraction, com-
plexity and higher classifier accuracy [29, 30], which
makes DL more suitable for detecting complex, scattered
and subtle patterns in the data [59].
Consistent with our second hypothesis, a few regions

make the largest contribution to classification perform-
ance: frontoparietal regions (central executive, CEN) and
subcortical areas like (median and anterior) cingulate
cortex and amygdala. The CEN is associated with the
progress of goal-directed behaviors, such as working
memory and attention control [60], and it has also been
reported as impaired in PTSD [21, 38]. Specifically, CEN
functional disruptions are associated with PTSD

Table 1 Demographic and clinical characteristics of participants
a

Variables PTSD HC p value

Sample size 33 53 –

Age (years) b 14.3 ± 3.3 15.0 ± 2.3 p = 0.235 c

Age at trauma (years) b 12.3 ± 1.8 13.9 ± 2.3 p = 0.554 c

Gender (male/female) 13/20 26/27 p = 0.381 d

Handedness (right/left) 33/0 53/0 –

Education (years) 8.8 ± 2.9 9.5 ± 2.4 p = 0.138 c

Time since trauma (months) b 10.5 ± 1.5 13.3 ± 1.4 p < 0.001 c

PCL 55.7 ± 5.8 23.8 ± 2.9 p < 0.001 c

CAPS 65.5 ± 6.6 – –
aData are presented as mean ± standard deviation
bAge defined at the time of MRI scanning
cp by two-tailed two-sample t test
dp by two-tailed Pearson Chi-square test
Abbreviations: PTSD posttraumatic stress disorder, HC healthy control, PCL PTSD
checklist, CAPS clinician-administered PTSD scale

Table 2 Top 10 most relevant topological properties of brain regions for Deep Learning classification analysis a

Topological property Brain regions Contributions

Nodal betweenness Middle frontal gyrus R 0.0079

Nodal betweenness Amygdala L 0.0078

Nodal betweenness Supplementary motor area R 0.0077

Nodal betweenness Rolandic operculum L 0.0076

Nodal degree Middle frontal gyrus R 0.0075

Nodal degree Superior parietal gyrus L 0.0074

Nodal efficiency Anterior cingulate and paracingulate L 0.0072

Nodal degree Median cingulate and paracingulate L 0.0072

Nodal betweenness Median cingulate and paracingulate L 0.0071

Nodal efficiency Middle frontal gyrus R 0.0071
aAll brain regions are from AAL (automated anatomical labelling)
Abbreviation: R, L right, left hemisphere
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symptoms of decreased cognitive functioning across
multiple domains, as well as emotion under-modulation
associated with impaired regulation of limbic structures
[61–63]. For instance, a recent study found that in the
resting-state, subtype non-differentiated PTSD patients
demonstrate reduced CEN convergence, which was asso-
ciated with decrease orbitofrontal-amygdala connectivity
in PTSD, an indicator of reduced prefrontal regulation
acting on the resting limbic system [63]. The amygdala
is a core area in current neurocircuit models of stress
and PTSD [64, 65]. Among its multiple functions, the
best known is to encode and extinguish the memory of
fearful stimuli [65, 66] so as to direct physiological and
behavioral responses to such stimuli. In addition, the
amygdala plays an essential role in fear generalization
[67], arousal [68] and processing of rewards [69], all of
which may be disrupted in PTSD. Exaggerated amygdala
activity in response to trauma-related and more generic
stimuli is a frequent finding in fMRI studies of PTSD
[70, 71]. Recent research has enlarged the functions
traditionally ascribed to the cingulate to include emotion
[72], pain management [73] and cognitive control [74,
75]. A recent meta-analysis concludes that cingulate
plays an important role in emotion and cognitive pro-
cessing in patients with PTSD [76].

Neuroimaging is still far from becoming a routine tool
in clinical psychiatry, mainly because there is still insuffi-
cient evidence of diagnostic and prognostic effectiveness.
We followed recent recommendations on avoiding
methodological issues that may in the past led to over-
optimistic results [77–79]. A major challenge in applying
machine learning to high-dimensional neuroimaging
data is the risk of overfitting, i.e., the learning of irrele-
vant fluctuations within a dataset that limits
generalizability to other datasets. To avoid that, we ap-
plied DL technology to conduct a dimension reduction
and mitigate the effect of spurious signals. We also tried
to minimize the risk of overfitting through the use of
region-level features rather than voxel-level data (which
are associated with more noise and a higher risk of over-
fitting) [30]. One limitation is that we only explored
topological properties based on the AAL brain atlas. Al-
though AAL is widely accepted in neuroimaging studies,
it has drawbacks. Future studies should verify our results
using the new brain atlases that are now being used in
neuroimaging and machine learning studies, such as the
Power 264-region atlas [80] and the Dosenbach’s 160
functional atlas [81]. Another limitation is that our
PTSD participants were exposed to a specific traumatic
event (an earthquake), which might limit the

Fig. 3 Regions providing the greatest contribution to single subject classification of patients and controls. The nodes (brain regions) were
mapped onto the cortical surfaces using the BrainNet Viewer package (http://www.nitrc.org/projects/bnv). For brain regions, red represents the
nodal betweenness, blue represents the nodal efficiency, and yellow represents the nodal degree. Abbreviation: DCG, median cingulate and
paracingulate gyri; ROL, Rolandic operculum; AMYG, amygdala; ACG, anterior cingulate and paracingulate gyri; MFG, middle frontal gyrus; SMA,
Supplementary motor area; SPG, superior parietal gyrus; R, right hemisphere; L, left hemisphere
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generalizability of our results. This can be tested by rep-
lication using subjects exposed to other traumatic
events.

Conclusion
Despite these limitations, the present study demon-
strates DL as an objective and useful classifier which
could differentiate pediatric PTSD and HC based on
graphic topological measures using resting-state MRI
data with promising accuracy. Further, the CEN, parietal
gyrus, cingulate cortex, and amygdala provide the great-
est contribution to classification performance in DL
model, suggesting that investigating these core nodes
may give insight into the heterogeneous clinical profiles
of individuals with PTSD. Further studies will be needed
to assess the clinical applicability of our method.
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