Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(4-Methylphenyl)-1-phenylsulfonyl-3nitro-1,2-dihydroquinoline

J. Kanchanadevi,^a G. Anbalagan,^b V. Saravanan,^c A. K. Mohanakrishnan^c and V. Manivannan^d*

^aDepartment of Physics, Velammal Institute of Technology, Panchetty, Chennai 601 204, India, ^bDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, ^cDepartment of Organic Chemistry, University of Madras, Guindy campus, Chennai 600 025, India, and ^dDepartment of Research and Development, PRIST University, Vallam, Thanjavur - 613 403, Tamil Nadu, India Correspondence e-mail: crystallography2010@gmail.com, phdguna@gmail.com

Received 25 July 2011; accepted 28 July 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.151; data-to-parameter ratio = 20.9.

In the title compound, $C_{22}H_{18}N_2O_4S$, the dihedral angle between the phenylsulfonyl ring and the methylphenyl ring is 67.78 (7)°. In the crystal, molecules are linked by weak intermolecular $C-H \cdots O$ interactions into a zigzag chain along the [101] direction.

Related literature

For the biological activity of quinoline derivatives, see: Franck et al. (2004); Zouhiri et al. (2005); Paul et al. (1969). For a related structure, see: Xu et al. (2011).

Experimental

Crystal data C22H18N2O4S

 $M_r = 406.44$

Z = 4

Mo $K\alpha$ radiation

 $0.35 \times 0.30 \times 0.25 \text{ mm}$

 $\mu = 0.19 \text{ mm}^-$

T = 295 K

Monoclinic, $P2_1/n$ a = 9.7349(5) Å b = 17.0241 (9) Å c = 12.1068 (6) Å $\beta = 90.240 \ (2)^{\circ}$ V = 2006.42 (18) Å³

Data collection

Bruker Kappa APEXII CCD	26473 measured reflections
diffractometer	5485 independent reflections
Absorption correction: multi-scan	3224 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.028$
$T_{\min} = 0.945, \ T_{\max} = 0.955$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ 263 parameters $wR(F^2) = 0.151$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^-$ S = 1.03 $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$ 5485 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4\cdots O4^{i}$	0.93	2.60	3.418 (4)	148
Symmetry code: (i)	$x - \frac{1}{2}, -v + \frac{1}{2}, z$	$-\frac{1}{2}$.		

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2758).

References

Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Franck, X., Fournet, A., Prina, E., Mahieux, R., Hocquemiller, R. & Figadere, B. (2004). Bioorg. Med. Chem. Lett. 14, 3635-3638.

Paul, J. S., Reynolds, R. C. & Montgomery, P. O'B. (1969). Cancer Res. 29, 558-570.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Xu, L., Xu, B.-L., Lu, S.-J., Wang, B. & Kang, T.-G. (2011). Acta Cryst. E67, 0957

Zouhiri, F., Danet, M., Benard, C., Normand-Bayle, M., Mouscadet, J. F., Leh, H., Thomas, C. M., Mbemba, G., D'Angelo, J. & Desmaele, D. (2005). Tetrahedron Lett. 46, 2201-2205.

supplementary materials

Acta Cryst. (2011). E67, o2225 [doi:10.1107/S1600536811030455]

2-(4-Methylphenyl)-1-phenylsulfonyl-3-nitro-1,2-dihydroquinoline

J. Kanchanadevi, G. Anbalagan, V. Saravanan, A. K. Mohanakrishnan and V. Manivannan

Comment

The quinoline and its derivatives have received much scientific attention during recent years, because of their wide spectrum of pharmacological activities (Franck *et al.*, 2004; Zouhiri *et al.*, 2005). In addition, the nitroquinoline derivatives possess a potent mutagenic, carcinogenic and carcinostatic agent (Paul *et al.*, 1969).

The geometric parameters of the title molecule (Fig. 1) agree well with a reported similar structure (Xu *et al.*, 2011). The phenylsulfonly ring and the methylphenyl ring are oriented at an angle of 67.78 (7)°. The sum of bond angles around N1 [$352.34(13)^{\circ}$] and N2 [$359.95(2)^{\circ}$] indicates the *sp*² hybridization state of atoms N1 and N2 in the molecule. The crystal packing is controlled by a weak intermolecular C—H···O interaction.

Experimental

To a solution of N-(2-formylphenyl) benzenesulfonamide (0.50 g, 1.91 mmol) in dry benzene (20 ml), DABACO (0.10 g, 0.95 mmol) and 1-methyl-4-(2-nitrovinyl)benzene (0.41 g, 2.29 mmol) were added. The reaction mixture was stirred at reflux condition for 24 hrs under N₂ atmosphere. The reaction mass was quenched with ice water (50 ml), extracted with chloroform (3×10 ml) and dried (Na₂SO₄). The solvent was removed under reduced pressure. Then the column chromatographic purification of crude product afforded pure dihydro nitroquinoline 18 as pale yellow solid with a yield of 82% and a melting point of 451 K.

Refinement

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic C—H, C—H = 0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for C—H, C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃.

Figures

Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Fig. 2. The packing of the title compound, viewed down the a axis. The C—H···O hydrogen bonds are shown as dashed lines.

2-(4-Methylphenyl)-1-phenylsulfonyl-3-nitro-1,2-dihydroquinoline

F(000) = 848
$D_{\rm x} = 1.346 {\rm Mg} {\rm m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 5485 reflections
$\theta = 2.1 - 29.4^{\circ}$
$\mu = 0.19 \text{ mm}^{-1}$
T = 295 K
Block, pale yellow
$0.35\times0.30\times0.25~mm$

Data collection

Bruker Kappa APEXII CCD diffractometer	5485 independent reflections
Radiation source: fine-focus sealed tube	3224 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.028$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\text{max}} = 29.3^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
ω and ϕ scans	$h = -13 \rightarrow 7$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$k = -23 \rightarrow 23$
$T_{\min} = 0.945, \ T_{\max} = 0.955$	$l = -14 \rightarrow 16$
26473 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.151$	H-atom parameters constrained
<i>S</i> = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.066P)^2 + 0.3469P]$ where $P = (F_o^2 + 2F_c^2)/3$
5485 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
263 parameters	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$

0 restraints

$$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.19131 (16)	0.20602 (10)	0.83358 (16)	0.0572 (4)
C2	0.1021 (2)	0.14330 (13)	0.8465 (2)	0.0782 (6)
H2	0.0747	0.1278	0.9168	0.094*
C3	0.0545 (2)	0.10423 (15)	0.7552 (3)	0.0984 (9)
Н3	-0.0059	0.0624	0.7640	0.118*
C4	0.0945 (3)	0.12577 (17)	0.6509 (3)	0.1007 (9)
H4	0.0622	0.0981	0.5898	0.121*
C5	0.1819 (2)	0.18787 (15)	0.6368 (2)	0.0822 (6)
Н5	0.2078	0.2028	0.5660	0.099*
C6	0.23211 (18)	0.22870 (11)	0.72767 (15)	0.0580 (4)
C7	0.32475 (19)	0.29435 (10)	0.71606 (15)	0.0583 (5)
H7	0.3352	0.3188	0.6479	0.070*
C8	0.39412 (17)	0.31926 (10)	0.80240 (15)	0.0551 (4)
С9	0.38459 (17)	0.27927 (10)	0.91304 (14)	0.0534 (4)
Н9	0.4006	0.3186	0.9707	0.064*
C10	0.48831 (16)	0.21338 (10)	0.92830 (13)	0.0483 (4)
C11	0.59619 (17)	0.20168 (11)	0.85758 (14)	0.0562 (4)
H11	0.6054	0.2337	0.7958	0.067*
C12	0.69139 (18)	0.14296 (12)	0.87689 (16)	0.0639 (5)
H12	0.7646	0.1368	0.8285	0.077*
C13	0.68006 (18)	0.09341 (11)	0.96638 (15)	0.0588 (4)
C14	0.5720 (2)	0.10586 (12)	1.03651 (17)	0.0709 (5)
H14	0.5621	0.0734	1.0977	0.085*
C15	0.4780 (2)	0.16477 (12)	1.01928 (16)	0.0671 (5)
H15	0.4068	0.1720	1.0693	0.080*
C16	0.06971 (19)	0.37453 (12)	0.92595 (15)	0.0646 (5)
C17	0.1392 (2)	0.44441 (15)	0.9176 (2)	0.0860 (7)
H17	0.2226	0.4515	0.9540	0.103*
C18	0.0829 (4)	0.50453 (16)	0.8536 (3)	0.1066 (9)
H18	0.1291	0.5521	0.8465	0.128*
C19	-0.0370 (4)	0.4936 (2)	0.8029 (3)	0.1156 (11)
H19	-0.0737	0.5344	0.7610	0.139*
C20	-0.1077 (3)	0.4253 (2)	0.8102 (2)	0.1116 (10)
H20	-0.1919	0.4195	0.7746	0.134*
C21	-0.0529 (2)	0.36413 (16)	0.8715 (2)	0.0861 (7)
H21	-0.0988	0.3163	0.8757	0.103*
C22	0.7804 (2)	0.02762 (14)	0.9861 (2)	0.0873 (7)
H22A	0.8684	0.0491	1.0056	0.131*
H22B	0.7889	-0.0032	0.9201	0.131*
H22C	0.7480	-0.0050	1.0451	0.131*
N1	0.24454 (14)	0.24821 (9)	0.92602 (12)	0.0584 (4)
N2	0.48784 (19)	0.38510 (10)	0.79296 (19)	0.0773 (5)
01	0.02787 (19)	0.24655 (12)	1.03159 (17)	0.1265 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

supplementary materials

02	0.2199 (2)	0.33166 (15)	1.09148 (12)	0.1231 (8)
O3	0.5112 (2)	0.41204 (10)	0.70211 (16)	0.1096 (6)
O4	0.5403 (2)	0.41024 (12)	0.8764 (2)	0.1219 (7)
S1	0.13716 (6)	0.29822 (4)	1.00593 (4)	0.0809 (2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0441 (8)	0.0530 (10)	0.0747 (12)	0.0120 (7)	0.0062 (8)	0.0164 (9)
C2	0.0526 (10)	0.0659 (13)	0.1161 (18)	0.0055 (9)	0.0055 (11)	0.0266 (13)
C3	0.0614 (13)	0.0625 (14)	0.171 (3)	0.0024 (11)	-0.0212 (17)	0.0103 (18)
C4	0.0879 (17)	0.0826 (18)	0.131 (3)	0.0143 (14)	-0.0380 (17)	-0.0154 (17)
C5	0.0858 (15)	0.0804 (16)	0.0801 (15)	0.0196 (13)	-0.0177 (12)	-0.0004 (12)
C6	0.0548 (9)	0.0569 (10)	0.0622 (11)	0.0153 (8)	0.0004 (8)	0.0097 (9)
C7	0.0646 (10)	0.0564 (10)	0.0541 (10)	0.0179 (8)	0.0164 (8)	0.0176 (8)
C8	0.0548 (9)	0.0469 (9)	0.0638 (11)	0.0081 (7)	0.0159 (8)	0.0115 (8)
С9	0.0556 (9)	0.0530 (10)	0.0517 (9)	0.0065 (7)	0.0101 (7)	0.0039 (7)
C10	0.0486 (8)	0.0493 (9)	0.0469 (9)	0.0009 (7)	0.0006 (7)	0.0010 (7)
C11	0.0541 (9)	0.0612 (11)	0.0534 (10)	0.0070 (8)	0.0056 (7)	0.0073 (8)
C12	0.0552 (9)	0.0707 (12)	0.0658 (11)	0.0123 (9)	0.0033 (8)	0.0006 (10)
C13	0.0575 (10)	0.0541 (10)	0.0645 (11)	0.0066 (8)	-0.0135 (8)	-0.0024 (9)
C14	0.0784 (12)	0.0683 (13)	0.0661 (12)	0.0075 (10)	-0.0006 (10)	0.0229 (10)
C15	0.0688 (11)	0.0702 (12)	0.0623 (11)	0.0096 (9)	0.0140 (9)	0.0164 (9)
C16	0.0582 (10)	0.0726 (13)	0.0632 (11)	0.0162 (9)	0.0233 (9)	-0.0002 (9)
C17	0.0782 (13)	0.0806 (16)	0.0993 (17)	0.0089 (12)	0.0215 (12)	-0.0109 (13)
C18	0.128 (2)	0.0684 (16)	0.124 (2)	0.0191 (17)	0.041 (2)	0.0056 (16)
C19	0.134 (3)	0.112 (3)	0.100 (2)	0.055 (2)	0.030 (2)	0.0151 (19)
C20	0.0854 (17)	0.151 (3)	0.099 (2)	0.042 (2)	-0.0056 (15)	0.000 (2)
C21	0.0668 (13)	0.0997 (18)	0.0919 (16)	0.0098 (12)	0.0120 (12)	-0.0023 (14)
C22	0.0885 (15)	0.0745 (15)	0.0986 (16)	0.0267 (12)	-0.0167 (13)	0.0054 (12)
N1	0.0523 (7)	0.0649 (10)	0.0581 (9)	0.0116 (7)	0.0170 (6)	0.0135 (7)
N2	0.0770 (11)	0.0546 (10)	0.1004 (14)	0.0011 (8)	0.0181 (10)	0.0176 (10)
01	0.1073 (12)	0.1217 (14)	0.1512 (17)	0.0298 (11)	0.0902 (12)	0.0615 (13)
O2	0.1292 (15)	0.192 (2)	0.0477 (8)	0.0691 (15)	0.0026 (9)	-0.0158 (11)
O3	0.1342 (15)	0.0769 (11)	0.1182 (14)	-0.0176 (10)	0.0390 (11)	0.0365 (10)
O4	0.1345 (16)	0.1048 (15)	0.1263 (16)	-0.0521 (13)	-0.0165 (13)	0.0139 (13)
S1	0.0799 (3)	0.1018 (5)	0.0615 (3)	0.0312 (3)	0.0356 (3)	0.0208 (3)

Geometric parameters (Å, °)

C1—C2	1.386 (3)	C13—C14	1.371 (3)
C1—C6	1.398 (2)	C13—C22	1.505 (3)
C1—N1	1.425 (2)	C14—C15	1.373 (3)
C2—C3	1.369 (4)	C14—H14	0.9300
С2—Н2	0.9300	С15—Н15	0.9300
C3—C4	1.373 (4)	C16—C17	1.373 (3)
С3—Н3	0.9300	C16—C21	1.373 (3)
C4—C5	1.368 (4)	C16—S1	1.747 (2)
C4—H4	0.9300	C17—C18	1.394 (4)

C5—C6	1.389 (3)	С17—Н17	0.9300
С5—Н5	0.9300	C18—C19	1.330 (5)
C6—C7	1.443 (3)	C18—H18	0.9300
С7—С8	1.312 (3)	C19—C20	1.355 (5)
С7—Н7	0.9300	С19—Н19	0.9300
C8—N2	1.450 (3)	C20—C21	1.384 (4)
C8—C9	1.506 (2)	С20—Н20	0.9300
C9—N1	1.471 (2)	C21—H21	0.9300
C9—C10	1.520 (2)	C22—H22A	0.9600
С9—Н9	0.9800	C22—H22B	0.9600
C10—C11	1.372 (2)	C22—H22C	0.9600
C10-C15	1.382 (2)	N1—S1	1.6620 (14)
C11—C12	1.382 (2)	N2—O4	1.208 (2)
C11—H11	0.9300	N2—O3	1.214 (2)
C12—C13	1.378 (3)	O1—S1	1.4159 (19)
C12—H12	0.9300	O2—S1	1.428 (2)
C2—C1—C6	119.8 (2)	C13—C14—C15	122.10 (18)
C2—C1—N1	121.69 (19)	C13—C14—H14	119.0
C6—C1—N1	118.49 (16)	C15—C14—H14	119.0
C3—C2—C1	119.5 (2)	C14—C15—C10	120.53 (17)
C3—C2—H2	120.2	C14—C15—H15	119.7
C1—C2—H2	120.2	C10-C15-H15	119.7
C2—C3—C4	121.1 (2)	C17—C16—C21	120.3 (2)
С2—С3—Н3	119.4	C17—C16—S1	120.10 (18)
С4—С3—Н3	119.4	C21—C16—S1	119.64 (18)
C5—C4—C3	120.0 (3)	C16—C17—C18	119.0 (3)
С5—С4—Н4	120.0	C16—C17—H17	120.5
С3—С4—Н4	120.0	C18—C17—H17	120.5
C4—C5—C6	120.3 (3)	C19—C18—C17	119.8 (3)
С4—С5—Н5	119.8	C19—C18—H18	120.1
С6—С5—Н5	119.8	C17—C18—H18	120.1
C5—C6—C1	119.2 (2)	C18—C19—C20	122.3 (3)
C5—C6—C7	121.89 (19)	С18—С19—Н19	118.8
C1—C6—C7	118.89 (18)	С20—С19—Н19	118.8
C8—C7—C6	119.48 (16)	C19—C20—C21	119.1 (3)
С8—С7—Н7	120.3	С19—С20—Н20	120.5
С6—С7—Н7	120.3	C21—C20—H20	120.5
C7—C8—N2	120.58 (17)	C16—C21—C20	119.5 (3)
С7—С8—С9	121.95 (16)	C16—C21—H21	120.2
N2—C8—C9	117.43 (18)	C20—C21—H21	120.2
N1—C9—C8	108.54 (14)	C13—C22—H22A	109.5
N1—C9—C10	109.71 (13)	C13—C22—H22B	109.5
C8—C9—C10	113.48 (13)	H22A—C22—H22B	109.5
N1—C9—H9	108.3	C13—C22—H22C	109.5
С8—С9—Н9	108.3	H22A—C22—H22C	109.5
С10—С9—Н9	108.3	H22B—C22—H22C	109.5
C11—C10—C15	117.95 (16)	C1—N1—C9	115.55 (13)
C11—C10—C9	122.75 (15)	C1—N1—S1	119.18 (11)
C15—C10—C9	119.24 (15)	C9—N1—S1	117.61 (13)

supplementary materials

C10-C11-C12	120 91 (17)	04—N2—03	122.9(2)
C10—C11—H11	119.5	04—N2—C8	118.15 (19)
C12—C11—H11	119.5	03—N2—C8	118.9 (2)
C13 - C12 - C11	121 32 (17)	01 - 81 - 02	120.72(13)
C13 - C12 - H12	119 3	01 - 81 - N1	10653(10)
C11 - C12 - H12	119.3	02 - 81 - N1	105 78 (9)
C14—C13—C12	117.16 (17)	01—S1—C16	107.62 (11)
C14—C13—C22	121.08 (19)	O2—S1—C16	108.37 (12)
C12—C13—C22	121.75 (19)	N1—S1—C16	107.11 (8)
C6—C1—C2—C3	-0.1 (3)	C21—C16—C17—C18	0.4 (3)
N1—C1—C2—C3	-179.51 (17)	S1-C16-C17-C18	-179.70 (17)
C1—C2—C3—C4	0.5 (3)	C16—C17—C18—C19	0.6 (4)
C2—C3—C4—C5	-0.9 (4)	C17-C18-C19-C20	-0.4 (4)
C3—C4—C5—C6	0.9 (3)	C18—C19—C20—C21	-0.8 (5)
C4—C5—C6—C1	-0.6 (3)	C17—C16—C21—C20	-1.6 (3)
C4—C5—C6—C7	179.81 (19)	S1—C16—C21—C20	178.51 (18)
C2—C1—C6—C5	0.2 (3)	C19—C20—C21—C16	1.8 (4)
N1—C1—C6—C5	179.58 (15)	C2—C1—N1—C9	147.01 (16)
C2—C1—C6—C7	179.81 (15)	C6-C1-N1-C9	-32.4 (2)
N1—C1—C6—C7	-0.8 (2)	C2-C1-N1-S1	-64.2 (2)
C5—C6—C7—C8	-164.16 (17)	C6—C1—N1—S1	116.43 (15)
C1—C6—C7—C8	16.2 (2)	C8—C9—N1—C1	46.92 (18)
C6—C7—C8—N2	-179.99 (15)	C10—C9—N1—C1	-77.58 (17)
C6—C7—C8—C9	2.5 (2)	C8—C9—N1—S1	-102.38 (15)
C7—C8—C9—N1	-33.2 (2)	C10—C9—N1—S1	133.12 (12)
N2-C8-C9-N1	149.26 (15)	C7—C8—N2—O4	173.7 (2)
C7—C8—C9—C10	89.0 (2)	C9—C8—N2—O4	-8.7 (3)
N2-C8-C9-C10	-88.50 (19)	C7—C8—N2—O3	-7.0 (3)
N1-C9-C10-C11	133.39 (17)	C9—C8—N2—O3	170.59 (17)
C8—C9—C10—C11	11.8 (2)	C1—N1—S1—O1	48.87 (16)
N1-C9-C10-C15	-49.3 (2)	C9—N1—S1—O1	-162.97 (14)
C8—C9—C10—C15	-170.91 (17)	C1—N1—S1—O2	178.48 (15)
C15-C10-C11-C12	0.1 (3)	C9—N1—S1—O2	-33.35 (16)
C9—C10—C11—C12	177.40 (17)	C1—N1—S1—C16	-66.07 (15)
C10-C11-C12-C13	1.2 (3)	C9—N1—S1—C16	82.10 (14)
C11-C12-C13-C14	-1.3 (3)	C17—C16—S1—O1	159.82 (17)
C11—C12—C13—C22	177.92 (18)	C21-C16-S1-O1	-20.30 (19)
C12-C13-C14-C15	0.2 (3)	C17—C16—S1—O2	27.73 (18)
C22-C13-C14-C15	-179.0 (2)	C21—C16—S1—O2	-152.39 (16)
C13-C14-C15-C10	1.0 (3)	C17—C16—S1—N1	-85.98 (17)
C11-C10-C15-C14	-1.1 (3)	C21-C16-S1-N1	93.90 (16)
C9—C10—C15—C14	-178.56 (18)		

Hydrogen-bond geometry (Å, °)				
D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H··· A
C4—H4···O4 ⁱ	0.93	2.60	3.418 (4)	148
Symmetry codes: (i) $x-1/2$, $-y+1/2$, $z-1/2$.				

Fig. 1

