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Abstract. 

 

NIMA promotes entry into mitosis in late G2 
by some mechanism that is after activation of the 

 

Aspergillus nidulans 

 

G2 cyclin-dependent kinase, 
NIMX

 

CDC2

 

/NIME

 

Cyclin

 

 

 

B

 

. Here we present two indepen-
dent lines of evidence which indicate that this mecha-
nism involves control of NIMX

 

CDC2

 

/NIME

 

Cyclin

 

 

 

B

 

 local-
ization. First, we found that NIME

 

Cyclin

 

 

 

B

 

 localized to 
the nucleus and the nucleus-associated organelle, the 
spindle pole body, in a NIMA-dependent manner. 
Analysis of cells from asynchronous cultures, synchro-
nous cultures, and cultures arrested in S or G2 showed 
that NIME

 

Cyclin

 

 

 

B

 

 was predominantly nuclear during in-
terphase, with maximal nuclear accumulation in late 
G2. NIMX

 

CDC2

 

 colocalized with NIME

 

Cyclin

 

 

 

B

 

 in G2 
cells. Although inactivation of NIMA using either the 

 

nimA1

 

 

 

or 

 

nimA5

 

 

 

temperature-sensitive mutations 

blocked cells in G2, NIMX

 

CDC2

 

/NIME

 

Cyclin

 

 

 

B

 

 localiza-
tion was predominantly cytoplasmic rather than nu-
clear. Second, we found that 

 

nimA

 

 

 

interacts genetically 
with 

 

sonA

 

, which is a homologue of the yeast nucleocy-
toplasmic transporter GLE2/RAE1. Mutations in 

 

sonA

 

 

 

were identified as allele-specific suppressors of 

 

nimA1

 

. 
The 

 

sonA1

 

 suppressor alleviated the nuclear division 
and NIME

 

Cyclin

 

 

 

B

 

 localization defects of 

 

nimA1

 

 

 

cells 
without markedly increasing NIMX

 

CDC2

 

 or NIMA ki-
nase activity. These results indicate that NIMA pro-
motes the nuclear localization of the NIMX

 

CDC2

 

/
NIME

 

Cyclin

 

 

 

B

 

 complex, by a process involving SONA. 
This mechanism may be involved in coordinating the 
functions of NIMX

 

CDC2

 

 and NIMA in the regulation of 
mitosis.

 

E

 

ntry 

 

into mitosis in 

 

Aspergillus nidulans

 

 is regu-
lated by the coordinate function of two serine/thre-
onine protein kinases, NIMX

 

CDC2

 

 and NIMA.
NIMX

 

CDC2

 

 is an essential histone H1 kinase that is struc-
turally and functionally homologous to fission yeast p34

 

cdc2

 

(Osmani et al., 1994). NIMA is a 

 

b

 

-casein kinase and is
structurally distinct from p34

 

cdc2

 

, containing an amino-ter-
minal catalytic domain and a carboxyl-terminal regulatory
domain (Osmani et al., 1988

 

b

 

; Lu et al., 1993; Pu and Os-
mani, 1995; Pu et al., 1995). Failure to properly activate ei-
ther of these kinases in G2 prevents the initiation of mito-
sis, and the combined action of both kinases is critical for
coordinating changes in chromosome, microtubule, and
nuclear membrane structure during mitosis. For example,
mutations preventing the activation of NIMX

 

CDC2

 

 in G2
normally arrests cells in late G2 (Osmani et al., 1991

 

a

 

;
1994). Although overexpression of NIMA can overcome
this interphase arrest, the ensuing mitosis is disorganized

 

such that chromosome condensation occurs but normal
spindle assembly does not (O’Connell et al., 1994; Pu and
Osmani, 1995). Likewise, 

 

nimA 

 

mutations normally arrest
cells in late G2 (Osmani et al., 1987; 1991

 

a

 

). Although a

 

bimE

 

APC1

 

 checkpoint mutation can overcome this G2 ar-
rest, the ensuing mitosis is disorganized and includes aber-
rant spindle, chromatin, and nuclear membrane structure
(Osmani et al., 1988

 

a

 

; 1991

 

b

 

).
To ensure the coordinated function of NIMX

 

CDC2

 

 and
NIMA, each kinase must somehow be sensitive to the
function of the other. Phosphorylation of NIMA by
NIMX

 

CDC2

 

 is likely to be involved in making NIMA func-
tion sensitive to NIMX

 

CDC2

 

 at the G2 to M transition (Ye
et al., 1995). Before activation of NIMX

 

CDC2

 

 in late G2,
NIMA is hypophosphorylated and active as a 

 

b

 

-casein ki-
nase. Upon activation of NIMX

 

CDC2

 

, NIMA is converted
to a hyperphosphorylated, slightly more active form that
reacts well with the antiphosphoprotein antibody, MPM2.
The finding that NIMX

 

CDC2

 

 is necessary for NIMA hyper-
phosphorylation and MPM2 reactivity in vivo, and is suffi-
cient for NIMA hyperphosphorylation and MPM2 reactiv-
ity in vitro, is consistent with a direct role for NIMX

 

CDC2

 

 in
NIMA hyperphosphorylation (Ye et al., 1995).
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The role of NIMA hyperphosphorylation in NIMA’s
function as a mitotic regulator remains to be determined.
Hyperphosphorylated NIMA is detectable coincident with
the initiation of mitosis in synchronous cultures, consistent
with hyperphosphorylation playing a positive role in
NIMA’s function as a mitotic inducer (Ye et al., 1995). This
stimulatory effect could be at the level of NIMA activity,
since hyperphosphorylation causes a twofold increase in
NIMA’s 

 

b

 

-casein kinase activity. Hyperphosphorylation
could also regulate NIMA function at other levels, for ex-
ample, by regulating NIMA localization or NIMA proteol-
ysis. The identification of several consensus CDC2 phos-
phorylation sites in NIMA’s carboxyl terminus (Osmani et
al., 1988

 

b

 

; Fry and Nigg, 1995) and the requirement of the
carboxyl terminus for NIMA proteolysis (O’Connell et al.,
1994; Pu and Osmani, 1995) is suggestive of hyperphosphor-
ylation playing a role in regulating NIMA turnover.

If there is a mechanism making NIMX

 

CDC2

 

 function sen-
sitive to NIMA activity, it does not involve regulation of
NIMX

 

CDC2

 

 activation (Osmani et al., 1991

 

a

 

). Like most eu-
karyotic cells (Nurse, 1990), activation of CDC2 during G2
in 

 

Aspergillus

 

 is mediated by its binding to the Cyclin B
homologue, NIME

 

Cyclin

 

 

 

B

 

, which is the principle B-type cy-
clin associated with activated NIMX

 

CDC2

 

 during G2 (Ber-
gen et al., 1984; Osmani et al., 1994; James et al., 1995).
NIMX

 

CDC2

 

/NIME

 

Cyclin

 

 

 

B

 

 is activated by dephosphorylation
of tyrosine residue 15 on NIMX

 

CDC2

 

 (O’Connell et al.,
1992; Osmani et al., 1994). Tyrosine phosphorylation of
NIMX

 

CDC2

 

 requires the function of the p107

 

wee1

 

 homo-
logue, ANKA

 

WEE1

 

, (Ye et al., 1996), and tyrosine dephos-
phorylation requires the function of the p80

 

cdc25

 

 homologue,
NIMT

 

CDC25

 

 (O’Connell et al., 1992). 

 

nimA 

 

mutations
cause a specific cell cycle arrest in G2 very close to the

 

nimT

 

cdc25

 

 

 

mutant arrest point, yet they do not prevent for-
mation of a NIMX

 

CDC2

 

/NIME

 

Cyclin

 

 

 

B

 

 complex, dephosphor-
ylation of NIMX

 

CDC2

 

 on tyrosine 15, or activation of the
NIMX

 

CDC2

 

/NIME

 

Cyclin

 

 

 

B

 

 complex as a histone H1 kinase
(Osmani et al., 1991

 

a

 

; Pu et al., 1995). Furthermore, the

 

nimA5 

 

mutation prevents mitosis even in strains express-
ing a mutant form of NIMX

 

CDC2

 

 which cannot be phos-
phorylated on threonine 14 or tyrosine 15 (Ye et al., 1996).
Thus, loss of NIMA function prevents mitosis by some
mechanism other than regulation of the activity of
NIMX

 

CDC2

 

/NIME

 

Cyclin

 

 

 

B

 

.
One way in which NIMX

 

CDC2

 

 function could be affected
by NIMA would be if NIMA function was required for
proper localization of activated NIMX

 

CDC2

 

. It is known
that CDC2/cyclin localization is regulated for certain cy-
clin-dependent kinase complexes (for example see Pines
and Hunter, 1991; Gallant and Nigg, 1992; Ookata et al.,
1992; Maridor et al., 1993; Ookata et al., 1995). Here we
present evidence from two independent lines of investiga-
tion supporting a role for NIMA in the subcellular local-
ization of NIMX

 

CDC2

 

/NIME

 

Cyclin

 

 

 

B

 

. First, using indirect im-
munofluorescence analysis of fixed cells, we found that
NIMX

 

CDC2

 

 and NIME

 

Cyclin

 

 

 

B

 

 localized to the nucleus and
the nuclear-associated organelle, the spindle pole body
(SPB)

 

1

 

, in a NIMA-dependent manner. Second, using sup-

pressor analysis, we found that mutations in a homologue
of the nucleocytoplasmic transporter GLE2/RAE1 (Brown
et al., 1995; Murphy et al., 1996) act as allele-specific sup-
pressors of the 

 

nimA1 

 

mutation. Together, these results
suggest a role for NIMA in the nuclear localization of the
NIMX

 

CDC2

 

/NIME

 

Cyclin

 

 

 

B

 

 and they provide evidence for a
mechanism by which NIMX

 

CDC2

 

/NIME

 

Cyclin

 

 

 

B

 

 function is
made sensitive to NIMA to coordinate the action of these
two mitotic promoting kinases.

 

Materials and Methods

 

Strains, Microbiological Techniques, and 
Genetic Analyses

 

Aspergillus 

 

strains used in this study are listed in Table I. Standard condi-
tions were used for 

 

Aspergillus 

 

propagation (Morris, 1976; Kafer, 1977),
genetics (Pontecorvo et al., 1953), and transformation (Osmani et al.,
1987; Gems et al., 1991, 1994). The conditions and procedures used to
grow 

 

A. nidulans

 

 cultures and isolate protein extracts were as described
previously (Ye et al., 1995) except where noted in the text. For cytological
analyses, 

 

A. nidulans

 

 cells were grown in liquid YG (Morris, 1976) on cov-
erslips as previously described (Mirabito and Morris, 1993).

 

Fluorescence Microscopy

 

Cells were fixed and stained with 4

 

9

 

,6-diamidino-2-phenylindole (DAPI)
to visualize nuclei as previously described (Osmani et al., 1987). Cells
were fixed and prepared for indirect immunofluorescence microscopy as
previously described (Mirabito and Morris, 1993) with the following
exceptions. Cell walls were removed using 40 mg/ml novozyme 234
(NOVO 234) (InterSpex Products, San Mateo, CA), 80 mg/ml Driselase
(Interspex Products, Foster City, CA), 1 mM diisopropyl fluorophosphate
(DIFP) (Sigma Chemical Co., St. Louis, MO), 2 

 

m

 

g/ml leupeptin, and 40
mg/ml Aprotinin (Sigma Chemical Co.). Lipids were extracted using

 

2

 

20

 

8

 

C methanol for 8 min followed by 

 

2

 

20

 

8

 

C acetone for 30 s. Lipid ex-
traction using room temperature methanol or 1% NP-40 yielded similar
results. Coverslips were mounted on mounting medium (90% glycerol in
TBS containing 1 mg/ml 

 

p

 

-phenylenediamine).
Primary Abs used were 12CA5 (Berkeley Antibody Co., Richmond,

CA) at 10 mg/ml; rabbit anti-NIME

 

Cyclin

 

 

 

B

 

 serum E8 (Osmani et al., 1994)
at 1:1,000; preimmune rabbit serum E8 at 1:1,000; rabbit anti-NIMX

 

CDC2

 

serum E77 (Osmani et al., 1994) at 1:1,000; preimmune rabbit serum E77
at 1:1,000; MPM2 (gift of J. Kuang, M.D. Anderson Cancer Center, Hous-
ton, TX) at 1:1,000; affinity-purified rabbit anti-

 

g-tubulin (gift of B. Oak-
ley, Ohio State University, Columbus, OH) at 1:100; anti-histone H1
mouse mAb (gift of A. Epstein, University of Southern California, School
of Medicine, Los Angeles, CA) at 1:1,000; and DM1A (Sigma Chemical
Co.) at 1:100. Secondary Abs (Jackson ImmunoResearch Laboratories,
Inc., West Grove, PA) were CY3-labeled, goat anti–mouse IgG at 1:500,
dichlorotriazinylamino fluorescein (DTAF)-labeled, goat anti–mouse IgG
at 1:250, CY3-labeled, goat anti–rabbit IgG at 1:500, and DTAF-labeled,
goat anti–rabbit IgG at 1:250. Photomicrographs of cells stained with
12CA5 within each figure were produced using identical conditions of fix-
ation, staining, exposure, and enlargement.

For colocalization of NIMECyclin B and SPB or nuclear antigens, some
experiments involved double staining using two mouse mAbs (12CA5 and
anti-histone H1 or 12CA5 and MPM2). For these experiments, fixed cells
were incubated first in 12CA5 and then in a conjugated, anti-mouse sec-
ondary antibody, and then in 20 mg/ml of unconjugated, anti-mouse Fab
fragments (Jackson ImmunoResearch Laboratories, Inc.) before incuba-
tion in the second mouse mAb. This treatment effectively blocked all the
anti-mouse IgG sites on the 12CA5 mAb: no further binding to 12CA5
was detectable in control experiments. Colocalization of NIMECyclin B and
SPBs was confirmed using 12CA5 and the affinity-purified, rabbit anti–
g-tubulin Ab.

Photomicrographs were captured using either a Photometrics charge-
coupled device (CCD) camera (model Sensys; Tucson, AZ) and manipu-
lated using Phase 3 Imaging Systems software (Sterling Heights, MI) (see
Fig. 8) or a Diagnostics Instruments Inc., (Media Cybernetics, Silver
Spring, MD) CCD camera and then manipulated using Adobe Photoshop
4.0 (Adobe Systems, Inc., San Jose, CA).

1. Abbreviations used in this paper: CCD, charge-coupled device; cs, cold
sensitive; DAPI, 49,6-diamidino-2-phenylindole; HA, hemagglutinin; ORF,
open reading frame; SPB, spindle pole body; ts, temperature sensitive. 
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Culture Conditions for NIME Localization Studies
For analysis of NIMECyclin B and NIMXCDC2 localization in exponentially
growing asynchronous cultures, cells were incubated in YG on coverslips
at 328C for 8–12 h. For analysis of NIME localization in cells arrested in S
phase, cells were incubated in YG at 328C for 6 h and then hydroxyurea
was added at 50 mM and incubation was continued for an additional 3 h at
328C. For analysis of NIMECyclin B and NIMXCDC2, localization in cultures
shifted to restrictive temperature, cells were incubated in YG liquid at
permissive temperature until they contained an average of 2–4 nuclei, and
then the cultures were placed in a 448C incubator for up to 6 h. To gener-
ate synchronous cultures, nimTcdc25 or nimA mutants were germinated for
2 h at 328C, shifted to 448C for 5 h to arrest cells in G2 of their first cell cy-
cle. The cells were shifted back to either 328C or room temperature by re-
placing the medium. Samples were taken before the shift and at the times
after the shift as indicated in the legends to Figs. 3 and 5.

Isolation and Characterization of Strains Carrying the 
sonA1 Suppressor Mutation
Spores of the temperature-sensitive (ts) nimA1 strain, LPW2, were mu-
tagenized with 4-nitroquinoline-1-oxide as described (Harris et al., 1994)
to achieve a kill rate of 80–95%. The survivors were plated on MAG me-
dium (2% malt extract, 0.2% peptone, 1% dextrose, 2% agar) and incu-
bated at 428C for 3 d. Revertants were isolated at a frequency of 1,487 re-
vertants out of 4 3 108 survivors plated. Revertants were patched to MAG
plates and incubated at 208C for 8 d to screen for cold sensitivity. Out of
1,487 revertants, 35 were cold sensitive. To screen for extragenic suppres-
sors, each cold-sensitive (cs) revertant was crossed to A612 and random
meiotic progeny were selected and scored for the ts and cs phenotypes.
Three out of the 35 cs revertants yielded both ts and cs meiotic progeny
and demonstrated linkage of the cs and nimA1 suppression phenotypes.
This indicated that these revertants contained the nimA1 mutation and a
cs, extragenic suppressor of nimA1. Complementation analysis in diploids
and genetic crosses indicated that three alleles of a single suppressor gene
had been isolated. We named this gene sonA for suppressor of nimA1.
Dominance/recessiveness was determined by generating diploids between
each revertant and strain A154. The suppressor mutation was assigned to
chromosome VIII using standard parasexual analysis (Pontecorvo et al.,
1953).

Cloning and Characterization of sonA
Standard procedures were used for DNA preparation and manipulation
(Sambrook et al., 1989). Wild-type sonA was cloned by complementation
of the cs phenotype of LPW16 using a chromosome VIII–specific cosmid
library (Brody et al., 1991) and the autonomously replicating plasmid
pAR1-pyr4 (Verdoes et al., 1994) using standard procedures (Gems et al.,
1991, 1994). Individual cosmids capable of complementing sonA1 were
identified by sib selection. A common 2.6-kb HindIII fragment was the
smallest restriction fragment from these cosmids capable of complement-
ing sonA1 in trans. This fragment was sequenced using an Applied Biosys-
tems DNA sequencer (model 373A; Foster City, CA) using procedures
recommended by the manufacturer. Open reading frame (ORF) identifi-
cation and sequence alignments were preformed using the Applied Bio-
systems Sequence Analysis Program. Database searches were preformed
using BLAST (Altschul et al., 1990).

The sonA cDNA was isolated by PCR of A. nidulans total cDNA using
Vent polymerase (New England BioLabs, Inc., Beverly, MA). The iso-
lated cDNA covers the entire ORF of SONA, starting at 90 bp upstream
from the start codon and ending 32 bp downstream from the stop codon.
The sequence for the forward primer was 59-GCTCTTGATAC-
CCGTCTCTC-39and for the reverse primer was 59-CGAATGATGAC-
TAGCCTGGAG-39.

To determine whether the cloned gene was sonA or a suppressor of
sonA1, we integrated the cloned gene at its homologous locus in the
sonA1 strain, LPW16, using a two-step gene replacement procedure
(O’Connell et al., 1992). In the first step, plasmid pRSW2, containing the
sonA1 complementing gene and the A. nidulans pyrG gene, was used to
transform LPW16, converting LPW16 from cs to wild-type growth at
208C. Plasmid pRSW2 was constructed by inserting an EcoRI/BamHI ge-
nomic sonA fragment (containing the wild-type sonA gene from 284 bp
upstream of the ATG to 140 bp downstream from the stop codon) into
pRG3 (Waring et al., 1989). In the second step, a transformant was plated
on medium containing uracil and 5-fluoroorotic acid to select for plasmid

loss. Both cs and wild-type isolates were obtained as 5-fluoroorotic acid–
resistant sectors and plasmid loss was confirmed by Southern blot analy-
sis. Wild-type isolates were confirmed to have lost the sonA1 mutation by
standard genetic analysis.

A strain expressing endogenous SONA1 and a recombinant SONA
fused to two tandem copies of the hemagglutinin (HA) epitope at its car-
boxyl terminus (SONA-HA) was created by transforming pMTW2 into
LPW16. Plasmid pMTW2, containing sonA fused to two tandem HA
epitopes was constructed as follows: a sonA PCR fragment containing 284
bps upstream from the start codon and 140 bps downstream from the stop
codon was inserted into pRG3 as a BamHI/EcoRI fragment. A sequence en-
coding two tandem HA epitopes (59-TACCCATACGATGTTCCTGAC-
TATGCGGGCTATCCCTATGACGTCCCGGACTATGCGGA-39) was
inserted into the sonA gene immediately before the stop codon by site-
directed mutagenesis using the Quick Change™ mutagenesis kit (Strate-
gene, La Jolla, CA). Expression of SONA-HA complemented the cs
phenotype of sonA1 and was verified by Western blot analysis using
12CA5.

Analysis of Protein Kinase Levels
To prepare cultures for protein kinase studies, 106 spores/ml were inocu-
lated into flasks containing YG liquid medium and then were shaken at
250 rpm at 328C for 10 h. For analysis of asynchronous cultures, samples
were collected and processed after 10 h at 328C. For analysis of cultures
shifted to restrictive temperature, cultures were brought to 428C and sam-
pled at the times indicated in Fig. 10. For analysis of cultures shifted back
to permissive temperature, 3h, 428C cultures were brought back to 328C
and sampled at the times indicated in Fig. 10. Procedures for sampling,
protein isolation, and protein kinase assays were as previously described
(Osmani et al., 1991a; Ye et al., 1995).

Results

NIMECyclin B Localized Predominantly to the Nucleus

To determine the subcellular localization of NIMECyclin B,
we have created a number of A. nidulans strains (Table I)
in which the wild-type NIMECyclin B gene (nimECyclin B) has
been replaced with an HA-tagged version of nimECyclin B

(HA-nimECyclin B) (Osmani et al., 1994). These strains are
phenotypically identical to coisogenic strains containing
the untagged version (data not shown), and we can detect
HA-NIMECyclin B using the mAb, 12CA5. HA-NIMECyclin B

localized predominantly to the nucleus in rapidly growing
wild-type cells (Fig. 1, top row). Approximately half of the
cells in exponentially growing asynchronous cultures
showed detectable nuclear HA-NIMECyclin B staining,
whereas essentially every cell showed nuclear staining
with anti-histone H1 mAb. The percentage of cells in asyn-
chronous cultures which exhibited nuclear HA-NIMECyclin B

staining was consistent in multiple experiments. The nu-
clear NIMECyclin B staining was punctate and included
chromatin, the nucleolus, and the SPB, as judged by stain-
ing with 12CA5, DAPI, and either anti–g-tubulin Ab or
MPM2 (Figs. 1 and 2; data not shown). Faint staining of
the cytoplasm in cells with bright nuclear staining was also
detected. Double staining with 12CA5 and the anti-tubulin
Ab, DM1A, showed that all of the cells with nuclear HA-
NIMECyclin B contained cytoplasmic microtubules and that
cells with mitotic spindles lacked nuclear-specific HA-
NIMECyclin B staining (Fig. 1, bottom two rows).

The lack of nuclear NIMECyclin B staining in all cells of
an asynchronous culture suggested that nuclear NIMECyclin B

localization might be cell cycle stage-specific. To preliminar-
ily investigate this possibility, we localized HA-NIMECyclin B

in cells blocked in S phase with hydroxyurea or in late G2
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with a ts mutation in nimTcdc25. Both treatments gave es-
sentially the same result: the frequency of nuclear HA-
NIMECyclin B staining increased to essentially 100% when
cells were blocked in S or G2. Fig. 2 shows examples of the
results for cells blocked in G2 by the nimTcdc25 mutation.
As cells accumulated at the nimTcdc25 G2 arrest point, nu-
clear staining became increasingly brighter. The 12CA5
staining result was confirmed by double staining with
12CA5 and polyclonal rabbit anti-NIMECyclin B serum (Os-
mani et al., 1994). Both Abs stained nuclei, including chro-
matin, the nucleolus, and SPB-like dots (Fig. 2, top row).
To determine if NIMXCDC2 colocalized with NIMECyclin B,
we performed double labeling experiments using 12CA5
and polyclonal rabbit anti-NIMXCDC2 specific antisera
(Osmani et al., 1994). NIMECyclin B and NIMXCDC2 colocal-
ized on nuclei (Fig. 2, middle row). Preimmune serum con-
trols for the anti-NIME and anti-NIMX antisera showed
no nuclear specific staining (data not shown). Nuclear
staining was also obtained using rabbit anti-NIMECyclin B

and anti-NIMXCDC2 sera on a nimTcdc25 mutant strain
which expressed only untagged NIMECyclin B (data not
shown).

To determine if the nuclear-associated dots were indeed
SPBs, we performed double labeling experiments using
polyclonal rabbit anti-NIMECyclin B serum and the mouse
mAb, MPM2, which stains the SPB of G2 cells (Martin et al.,
1997). Anti-NIMECyclin B and MPM2 staining colocalized
on SPBs and the nucleolus in nimTcdc25-arrested cells (Fig.
2, bottom row). Double labeling with 12CA5 and anti–
g-tubulin, or with anti-NIMXCDC2 sera and MPM2 gave
similar results (data not shown).

To further characterize the cell cycle dependency of
NIMECyclin B localization, we determined the localization
of HA-NIMECyclin B in cycling cells from synchronous cul-

tures. We generated synchronous cultures by blocking
cells in late G2 using a nimTcdc25 mutation and then releas-
ing the cell cycle arrest. Immediately before release from
the G2 arrest, 100% of the cells showed nuclear HA-
NIMECyclin B staining (Fig. 3). Within 10 min after release
from the G2 arrest, 90% of the cells entered mitosis and
showed no nuclear HA-NIMECyclin B staining, whereas the
cells in the same sample that had not yet entered mitosis
continued to show nuclear HA-NIMECyclin B staining (Fig.
3 B). By 20 min after release, all the cells had finished mi-
tosis (Fig. 3 A) and no cells (out of more than 300 exam-
ined) exhibited nuclear HA-NIMECyclin B staining. Cells
with nuclear HA-NIMECyclin B began to accumulate 80 min
after the release and almost all of the cells exhibited nu-
clear HA-NIMECyclin B staining (Fig. 3, A and B) just be-
fore initiation of the second mitosis. As with the first mito-
sis, nuclear HA-NIMECyclin B staining was lost coincident
with the initiation of mitosis. Out of more than a thousand
mitotic cells examined, only two showed very faint nuclear
NIMEHA staining. Essentially all cells showed SPB stain-
ing at the initial G2 arrest point and in G2 just before the
second division (data not shown). SPB staining was not
distinguishable from chromatin or nucleolar staining in
cells at other time points.

NIMECyclin B Localizes Predominantly to the Cytoplasm 
in nimA Mutants

To investigate the possibility that NIMA is involved
in NIMXCDC2/NIMECyclin B localization, we constructed
strains expressing HA-NIMECyclin B and carrying the ts
nimA5 or nimA1 mutations. We determined the localiza-
tion of HA-NIMECyclin B in these strains at restrictive
and permissive temperature. At permissive temperature,

Figure 1. In situ localization
of NIMECyclin B in wild-type
cells. Cells of PMC654-4,
the strain expressing HA-
NIMECyclin B (first, third, and
fourth rows) and R153, the
no-HA control strain (second
row), were cultured, fixed,
and then prepared for immu-
nocytology as described in
Materials and Methods. Each
row shows three images of
the same cell. The images
corresponding to Ab or
DAPI staining are labeled
above the panels. Note on
cell morphology: A. nidulans
is a filamentous fungus that
undergoes polar growth and
nuclear division without cy-
tokinesis during much of its
life cycle. Each elongated,
multinucleate cell, or hypha,
shown here is the result of
the polarized growth and
multiple, synchronous nu-
clear divisions of a uninucle-

ate spore. Hyphal compartments are formed by growth and septation, with all nuclei within one compartment being synchronous. The
large bulge at one end of each cell is the spore from which the cell originated. Bar, 10 mm.
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about half the cells from asynchronous cultures of nimA5
or nimA1 mutants showed nuclear HA-NIMECyclin B local-
ization (data not shown). In contrast, after the shift to re-
strictive temperature, the nimA5 and nimA1 cells showed
little nuclear-specific HA-NIMECyclin B staining (Fig. 4).
Instead of being concentrated at nuclei, HA-NIMECyclin B

staining was diffuse throughout the cell. Although nimA
and nimTcdc25 mutants arrest at essentially the same point
in late G2, their NIMECyclin B staining patterns are dramat-
ically different (Fig. 4, compare top row with second and
third rows). Antibody access to the nuclei of these cells
was confirmed by staining with MPM2 (Fig. 4, middle col-
umn) and anti-histone H1 antibodies (data not shown).

It was possible that the above results were caused by
masking of the single HA epitope of HA-NIMECyclin B in
nimA mutants. To address this possibility, we stained
nimA5 cells cultured at restrictive temperature with poly-
clonal rabbit anti-NIMECyclin B and anti-NIMXCDC2 sera.
As with 12CA5 staining, anti-NIMECyclin B staining was
diffuse throughout the cells of nimA mutants (Fig. 4, sec-
ond row). Similar results were obtained with anti-
NIMXCDC2 serum (Fig. 4, bottom row).

Like the nimTcdc25 mutation, the nimA5 mutation is
readily reversible. A few minutes after return to permis-
sive temperature, nimA5 mutants leave G2 and enter mi-
tosis synchronously (Oakley and Morris, 1983; Osmani et al.,
1991a). If nuclear NIMECyclin B localization is important for
mitotic initiation, then one would predict that NIMECyclin B

would reaccumulate on nuclei of nimA mutants as cells ap-
proach mitosis after return to permissive temperature. To
test this, we compared the nuclear HA-NIMECyclin B stain-
ing profiles of a nimA5 and a nimTcdc25 mutant at their ar-
rest point in G2 and after release from the G2 arrest into
room temperature medium. Release from the G2 arrest
under these conditions is relatively slow, allowing for ex-

Figure 2. Localization of
NIMECyclin B and NIMXCDC2

on nuclei and SPBs in cells
arrested in late G2 by a
nimTcdc25 mutation. SFC4-21
cells were cultured, fixed,
and then prepared for immu-
nocytology as described in
Materials and Methods. The
cells contained 4–8 elon-
gated, well separated nuclei
characteristic of cells ar-
rested in late G2 by a
nimTcdc25 mutation (James et
al., 1995). The images corre-
sponding to Ab or DAPI
staining are labeled above
each image. Arrows point to
coincident staining of SPBs
by anti-NIMECyclin B and
MPM2. Bar, 10 mm.

Table I. A. nidulans Strains Used in This Study

Strain Genotype Reference

A154 adE20; biA1; wA2, cnxE16; sC12: methG11;
nicA2; lacA1; choA1; chaA1

FGSC*

A612 acrA1; riboB2; chaA1 FGSC
GR5 wA2; pryG89; pyroA4 FGSC
LPW2 riboA1; wA2; nimA1; nicA2 This study
LPW16 pyrG89; wA2; sonA1 This study
LPW29 pyrG89, riboB2; wA2; nimA1; sonA1 This study
LPW42 LPW16 transformed with pMTW2 This study
PMC645-4 HA-nimE, wA2, cnxE16; nicA2 This study
PMC654-19 HA-nimE; cnxE16; nimA5; nicA2; chaA1 This study
R153 wA3; pyroA4 FGSC
SFC4-21 pabaA1, yA2; HA-nimE, nimT23; nicA2; 

choA1
This study

SFC403-19 riboA1, pabaA1; HA-nimE; nimA1; 
methG11; choA1; chaA1

This study

SFC444-1 pabaA1; HA-nimE; nimA1; nicA2; choA1; 
sonA1

This study

SFC612-5 riboA1; HA-nimE; nimA5; sonA1 This study

*FGSC, Fungal Genetics Stock Center, Department of Microbiology, University of
Kansas Medical Center, Kansas City, Kansas 66160-7420.
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amination of cells as they progress from very late G2 into
early mitosis. As above, the percentage of nimTcdc25 cells
with nuclear HA-NIMECyclin B decreased after release
from the G2 block (Fig. 5 A). In contrast, the percentage
of nimA5 cells showing nuclear HA-NIMECyclin B staining
increased after release from the block, with 40% of the
cells having nuclear HA-NIMECyclin B staining 2 min after
the release (Fig 5 B). Under these conditions, reduced but
detectable nuclear HA-NIMECyclin B staining remained in
some early mitotic cells with very short spindles, although
the majority of mitotic cells and all mitotic cells at
metaphase or beyond were negative for nuclear HA-
NIMECyclin B. All of the nimA5 cells eventually progressed
through mitosis and showed no nuclear nimECyclin B stain-
ing (data not shown). Based on our observations, it is
likely that most if not all nimA5 cells accumulated nuclear
HA-NIMECyclin B after return to permissive temperature.
The slow, somewhat asynchronous release under these
conditions coupled with the loss of nuclear HA-NIMECyclin B

staining early in mitosis probably accounts for the shallow
slope of nuclear HA-NIMECyclin B curve in Fig. 5 B. We did
not observe obvious SPB-like HA-NIMECyclin B staining in
nimA5 cells after return to permissive temperature.

nimA Interacts Genetically with sonA, a Gene
Related to the Nucleocytoplasmic Transporters GLE2 
and RAE1

As part of a search for nimA-interacting genes, we have at-
tempted to identify extragenic suppressors of nimA muta-
tions by isolating induced revertants of the nimA1 heat-
sensitive (ts) mutation (refer to Materials and Methods).
nimA1 is a tight ts mutation, with colony formation se-

verely inhibited at 428C, a temperature at which wild-type
strains grow well (Fig. 6). We isolated a number of rever-
tants which were simultaneously converted from heat sen-
sitive (ts) to cs, being able to form colonies normally at 428
but not at 208C (see LPW29 in Fig. 6). For three of these
revertants, suppression of nimA1 was unlinked to nimA
and tightly linked to the cs phenotype, demonstrating that
the original revertants contained a cs, extragenic suppres-
sor of nimA1 (data not shown). These suppressor mutations
also conferred a cs phenotype in a nimA1 background (see
LPW16 in Fig. 6). All three cs mutations were recessive
and in the same complementation group (data not shown),
which we designated sonA for suppressor of nimA1. One
of these mutations, sonA1, was chosen for further study.

We cloned the wild-type sonA gene by complementa-
tion of the cs defect of a sonA1 mutant (refer to Materials
and Methods). A cosmid clone capable of complementing
sonA1 was recovered and the complementing sequence
was localized to a 2.6-kb genomic fragment. A cDNA
clone, generated by PCR, was also sufficient for comple-
mentation of sonA1. Sequence of the genomic and cDNA
clones indicated that the complementing fragment en-
coded a 1.2-kb ORF interrupted by a single, 65-bp intron
(Fig. 7 B). The cloned gene was sonA and not a suppressor
of sonA1 because it was tightly linked to sonA (refer to
Materials and Methods) and because the sequence of this
gene in the sonA1 strain contained a single C to G muta-
tion resulting in a P to R change at amino acid residue 205
in the ORF (Fig. 7 A).

Conceptual translation of the sonA ORF predicts that
the sonA polypeptide (SONA) contains 362 amino acid
residues corresponding to a mol wt of z39.5 kD. Sequence
database searches revealed that SONA is highly similar to
Schizosaccharomyces pombe RAE1 (Brown et al., 1995)
and Saccharomyces cerevisiae GLE2 (Murphy et al., 1996).
SONA is 84.3% similar (58.8% identical) to RAE1 and is
84.3% similar (48.9% identical) to GLE2. Although the
four putative b-transducin/WD repeats in RAE1 and
GLE2 are well conserved in SONA, the similarity between
SONA and RAE1 and GLE2 extends well outside of these
repeats along the entire peptide sequences (Fig. 7 B).

To determine the localization of SONA, we constructed
strains expressing an HA epitope-tagged version of SONA
(SONA-HA). SONA-HA was functional as its expression
complemented the cs phenotype of sonA1 (data not
shown). Exponentially growing cells expressing SONA-
HA showed punctate staining appearing as a ring at the
periphery of each nucleus (Fig. 8). A no-HA control strain
showed no nuclear ring staining (data not shown; also re-
fer to Fig. 1). SONA-HA staining was not completely co-
incident with DAPI staining in that it was limited to the
nuclear periphery and was evident at the nuclear periph-
ery in regions next to nucleoli, where DAPI staining was
excluded. The SONA-HA staining pattern was strikingly
similar to the nuclear pore-like staining pattern seen for
GLE2 (Murphy et al., 1996).

sonA1 Suppresses the Nuclear Division and 
NIMECyclin B Localization Defects of nimA1 without 
Markedly Increasing NIMA or NIMX Kinase Activity

Colonies of sonA1, nimA1 double mutants exhibited

Figure 3. Kinetic analysis of NIMECyclin B localization in cells
from a synchronized culture. Cells of the nimTcdc25 mutant, SFC4-21,
were cultured, fixed, and then prepared for immunocytology as
described in Materials and Methods. The cells were stained for
HA-NIMECyclin B, a-tubulin, and DAPI. A and B present data
from the same samples plotted to show the fraction of cells with
nuclear NIMEHA (j) relative to nuclear division (m) in A or rela-
tive to spindle formation (m) in B. Each value was determined by
counting more than 300 cells.
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slower growth at 428C than either wild-type or sonA1 sin-
gle mutant strains (refer to Fig. 6). To examine the sup-
pression of nimA1 by sonA1 in more detail, we followed
nuclear division and nuclear morphology during spore ger-
mination in strains that were either wild-type, nimA1,
sonA1, or nimA1 plus sonA1. Fig. 9 shows examples of
cells stained with DAPI to visualize nuclei. At 328C (per-
missive growth temperature for nimA1 and sonA1), essen-
tially all of the spores from all the strains examined germi-
nated and underwent nuclear division at approximately
wild-type rates. At 428C, the majority of nimA1 mutant
spores failed to undergo a single nuclear division even af-
ter 10 h, whereas the majority of spores from wild type had
undergone 2–4 divisions. Essentially all the spores of the

nimA1, sonA1 double mutant germinated and underwent
apparently normal nuclear divisions at 428C. The rate of
nuclear division in this strain was somewhat slower than
that in wild type (data not shown). This is consistent with
the reduced colony growth rate of sonA1, nimA1 strains,
indicating that sonA1 does not suppress nimA1 function to
wild-type, nimA1 levels.

It was previously shown that nimA1 mutants arrest in
G2 even though they accumulate partially active NIMA
and fully activated NIMXCDC2 (Pu et al., 1995). It was pos-
sible that sonA1 suppresses nimA1 by somehow increasing
the level of NIMA or NIMXCDC2 activity. To investigate
these possibilities, we measured the levels of NIMA and
NIMXCDC2 kinase activities in a wild-type strain, a nimA1

Figure 4. Nuclear-specific NIMECyclin B and NIMXCDC2 localization was prevented by nimA mutations. Cells of the nimTcdc25 mutant,
SFC4-21, the nimA5 mutant, PMC654-19, and the nimA1 mutant, SFC403-19, were cultured, fixed, and then prepared for immunocytol-
ogy as described in Materials and Methods. Left, strain identity.The images corresponding to Ab or DAPI staining are labeled at the top
of the panels. Arrows, position of nuclei in the images showing NIMECyclin B and NIMXCDC2 localization. Bar, 10 mm.
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mutant, a sonA1 mutant, and a nimA1, sonA1 double mu-
tant. Samples were analyzed from asynchronous cultures,
from cultures shifted to restrictive temperature, and from
cultures shifted to restrictive temperature and then re-
turned to permissive temperature. Fig. 10 shows that 3 h
after shift to restrictive temperature (428C), the nimA1
mutant, LPW2, accumulated NIMA and NIMXCDC2 ki-
nase to levels above that in asynchronous cultures. Return
to permissive temperature induced these cells to synchro-
nously enter mitosis, and resulted in a severalfold increase
in NIMA activity but no significant increase in NIMXCDC2

activity (Fig. 10 C). These results are in agreement with Pu
et al. (1995), and they demonstrate that nimA1 blocks pro-

gression into mitosis but does not prevent full activation of
NIMXCDC2. The nimA1, sonA1 double mutant, LPW29,
did not accumulate NIMA or NIMXCDC2 activity above
that of LPW2 either before or after a shift to 428C (Fig. 10,
A and B, compare first and second panels). Based on the
peak of mitotic cells after the return to permissive temper-
ature, z25% of the LPW29 cells had accumulated in late
G2 during incubation at 428C, consistent with previous
data showing that suppression of nimA1 by sonA1 is not
complete. The wild-type (GR5) and sonA1 single mutant
(LPW16) were essentially identical under these conditions
(Fig. 10, A and B, third and fourth panels).

Given that sonA1 did not cause an increase in the levels
of NIMA or NIMXCDC2 activity, and that SONA is related
to the GLE2/RAE1 nucelocytoplamsic transporter, we
considered the possibility that sonA1 may suppress the
NIMECyclin B localization defect of nimA1 mutants. We
constructed nimA1, sonA1 double mutants and nimA5,
sonA1 double mutants which expressed HA-NIMECyclin B

as their only NIMECyclin B. Whereas nimA1 cells cultured
at restrictive temperature for nimA1 arrested in G2 with
HA-NIMECyclin B staining throughout the cell, nimA1,
sonA1 double mutants continued to divide and showed
nuclear-specific HA-NIMECyclin B staining (Fig. 11). The
percentage of nimA1, sonA1 double mutants showing nu-
clear HA-NIMECyclin B staining was 33% (n 5 100) com-
pared with 51% (n 5 102) for wild-type cells. These results
are consistent with the fact that sonA1 only partially sup-
presses the growth and nuclear division phenotype of
nimA1 mutants (see Figs. 6 and 9). The nimA5, sonA1
double mutant incubated at restrictive temperature ar-
rested in G2 and did not accumulate nuclear-specific HA-
NIMECyclin B (data not shown), demonstrating that the
ability of sonA1 to suppress the NIMECyclin B localization
defect of nimA mutants was allele specific.

Discussion
Inactivation of the NIMA kinase causes a specific cell cy-
cle arrest in G2 without preventing activation of the H1 ki-
nase activity of NIMXCDC2/NIMECyclin B. NIMA is, there-

Figure 5. Cells released from the nimA5 G2 arrest accumulate
nuclear NIMECyclin B before entering mitosis. Cells of the nimTcdc25

mutant, SFC4-21 (A), and the nimA5 mutant, PMC654-19 (B),
were arrested in late G2 by incubation at restrictive temperature
and then released from the G2 arrest by shift to permissive tem-
perature (refer to Materials and Methods). The cells were stained
for HA-NIMECyclin B to determine the percent cells with nuclear
cyclin B (j) and with anti–a-tubulin to determine the percent
cells with mitotic spindles (r). Each value was determined by
counting at least 100 cells.

Figure 6. Colony growth phenotype of the following strains: wild-
type (GR5), nimA1 (LPW2), sonA1 (LPW16), and nimA1,
sonA1 (LPW29). Strains are identified by their relevant genotype
indicated at the top. Each strain was center-point inoculated on
MAG medium and then incubated at 428C for 3 d or at 208C for
10 d, as indicated.
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fore, required for mitotic initiation by a mechanism other
than activation of NIMXCDC2 as an H1 kinase. Although
NIMA itself is probably required for normal mitosis inde-
pendently of NIMXCDC2 (O’Connell et al., 1994; Lu and
Hunter, 1995; Pu and Osmani, 1995), some mechanism
must be in place to prevent activated NIMXCDC2 from in-
appropriately inducing mitosis in the absence of NIMA
function. One possibility is that NIMA affects the mitosis-
promoting activity of NIMXCDC2 at some level other than
activation of enzyme activity. Two lines of evidence pre-
sented here, one genetic, the other cytological, lend sup-
port to such a hypothesis and indicate a role for NIMA in
the nuclear localization of NIMXCDC2/NIMECyclin B.

The NIMXCDC2/NIMECyclin B Complex Localizes to the 
Nucleus in a NIMA-dependent Manner

We have shown that the major A. nidulans B-type cyclin,
NIMECyclin B, localized to the chromatin, nucleolar, and
SPB regions of the nucleus in a NIMA-dependent manner.
NIMECyclin B localization to the nucleus in S and G2 paral-
lels its accumulation (Ye et al., 1995, 1996), similar in
many respects to localization of the S. pombe G2 cyclin,
p63cdc13 (Booher et al., 1989; Alfa et al., 1990, 1991; Gal-Figure 7. Sequence of sonA and alignment of SONA to GLE2

and RAE1. (A) The nucleotide sequence and predicted ORF in
the 2.6-kb genomic sonA clone is shown. Right, amino acid resi-
dues of the SONA ORF; underline, predicted WD repeats; bold-
face at the amino terminus, a single GLFG sequence, found in
multiple copies of many nuclear pore proteins; boldface at the
carboxyl terminus, a potential nuclear localization sequence. The
position of the intron was confirmed by sequencing a cDNA
clone. (B) An alignment of SONA to GLE2 and RAE1 is shown.

Right, amino acid residue numbers; solid lines, identical residues.
Highly conserved and conserved residues, as determined by the
Applied Biosystems Sequence Analysis Software, are indicated
by the double dots, and single dots, respectively. The sonA cDNA
sequence is available from EMBL/GenBank/DDBJ under acces-
sion number AF069492.

Figure 8. SONA-HA localizes to the nuclear periphery. Cells of
the SONA-HA–expressing strain, LPW42, were cultured, fixed,
and then prepared for immunocytology as described in Materials
and Methods. The image is identified to the left (SONA-HA
shows 12CA5 staining). Arrows, example nuclei within the multi-
nucleate cell shown. Digital images were captured using a Sensys
Photometrics CCD camera and were merged using Phase 3 Imag-
ing Systems software. Bar, 10 mm.
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lagher et al., 1993; however, also see Audit et al., 1996 for
evidence of cytoplasmic p63cdc13 localization during inter-
phase). The localization of NIMXCDC2 to the nucleus cor-
related with that of NIMECyclin B and was also dependent
on NIMA function, suggesting that localization of
NIMXCDC2/NIMECyclin B complex itself is perturbed in
nimA mutants.

We noted no obvious nuclear NIMECyclin B staining in
metaphase cells, even though we have looked at well over
a thousand cells from cultures synchronously entering mi-
tosis. We did observe nuclear staining very early in mito-
sis, before significant SPB separation. These results differ
somewhat from cyclin B localization to the mitotic appara-
tus at metaphase in S. pombe and mammalian cells (for ex-
amples see Alfa et al., 1990; Pines and Hunter, 1991; Gal-
lant and Nigg, 1992; Jackman et al., 1995), however, the
significance of this difference is not clear. Either we can-
not detect whatever NIMECyclin B is present in metaphase
nuclei or NIMECyclin B is lost from the nucleus before

metaphase. We are currently investigating NIMECyclin B lo-
calization in cells overexpressing NIMECyclin B and in cells
blocked in mitosis by drugs or by cell cycle mutations to
clarify this issue.

NIMA and SONA in the Nucleocytoplasmic Transport 
of NIMECyclin B

The mechanism by which NIMA functions to promote nu-
clear NIMECyclin B localization may be indicated by the
identification of sonA as an allele-specific suppressor of
nimA1. SONA shows high sequence similarity to RAE1 of
S. pombe (Brown et al., 1995), GLE2 of S. cerevisiae (Mur-
phy et al., 1996), and the mammalian protein, MRNP41
(Kraemer and Blobel, 1997), all of which have been impli-
cated in nucleocytoplasmic transport. The nuclear mRNA
export defect in rae12and gle22mutants, and the associa-
tion of MRNP41 with mRNA indicate an important role
for these proteins in mRNA export. However, none of

Figure 9. Nuclear division in wild-type–,
nimA1-, and sonA1-containing strains.
Cells of the wild-type strain, GR5 (a–c), the
sonA1 mutant, LPW16 (d–f), the nimA1
mutant, LPW2 (g–i), and the nimA1,
sonA1 double mutant, LPW19 (j–l) were
stained with DAPI as described in Materi-
als and Methods. Cells shown in panels a,
d, g, and j were incubated at 328C for 8 h.
Other panels show cells incubated at 428C
for 8 h (b, e, h, and k) or 10 h (c, f, i, and l).
Bar, 10 mm.
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these proteins contain RNA binding motifs, suggesting
that their interaction with mRNA is indirect. Further-
more, GLE2 and MRNP41 localize predominantly to nu-
clear pore complexes, gle22 mutations derange nuclear
pore complex structure, and GLE2 interacts with SRP1
(importin a) in a two-hybrid assay, suggesting that these
proteins play a more general role in nucleocytoplasmic
transport (Murphy et al., 1996; Kraemer and Blobel,
1997). The localization of SONA to the nuclear periphery
(refer to Fig. 8) is consistent with a role for SONA in nu-
cleocytoplasmic transport.

Given that proper NIMECyclin B localization is dependent
on NIMA function (refer to Fig, 4), and that the sonA1 mu-
tation suppresses the mitotic and NIMECyclin B localization
defect in nimA1 mutants without causing an increase in

NIMA or NIMXCDC2 activity (refer to Fig. 10), we propose
that NIMA and SONA are involved in the nucleocytoplas-
mic transport of NIMECyclin B. Two models consistent with
our results (Fig. 12) propose that nuclear localization of
NIMECyclin B is a function of its rate of import into the nu-
cleus and its rate of export into the cytoplasm (Fig. 12).
These models predict that localization of NIMECyclin B to
the SPB is dependent on its accumulation in the nucleus,
as if NIMECyclin B accumulates at the nucleoplasmic sur-
face of the SPB. This prediction is consistent with the fact
that the SPB is tightly associated with the nucleus through-
out the cell cycle in A. nidulans (Oakley and Morris, 1983).
SONA is proposed to play a positive role in nuclear ex-
port, based on the mRNA export defects of rae1/gle2 mu-
tants, although we cannot formerly exclude a role for
SONA in nuclear import. NIMA is proposed to oppose
SONA function, either by facilitating nuclear import (Fig.
12 A), or by antagonizing export (Fig. 12 B). In either sce-
nario, loss of NIMA function results in a net decrease in
nuclear NIMECyclin B, which can be offset by loss of SONA
function.

These models are not meant to exclude additional func-
tions for NIMA beyond that in the nucleocytoplasmic
transport of NIMXCDC2/NIMECyclin B. The finding that gain
of function mutations in nimA can induce abnormal mito-
sis in the absence of CDC2 function (O’Connell et al.,
1994; Lu and Hunter, 1995; Pu and Osmani, 1995) clearly
indicates that NIMA has additional roles in promoting mi-
tosis.

We have proposed a specific (although not necessarily
physical) interaction between NIMA and SONA in con-
trolling nuclear NIMECyclin B levels because of the allele-
specific suppression of nimA1 (and not nimA5) by sonA1.
The mechanism underlying this allele-specific interaction
may be explained by quantitative differences in NIMA ki-
nase activity in nimA1 versus nimA5 mutants. For exam-
ple, extracts from cells arrested in G2 by the nimA1 muta-
tion contain residual NIMA kinase activity (refer to Fig
10; Pu et al., 1995), whereas equivalent extracts from
nimA5 cells contain only trace NIMA kinase levels (Ye et al.,
1995). Accordingly, the nimA5 mutation may cause too se-
vere a defect in the nuclear accumulation of NIMECyclin B

for the sonA1 mutation to suppress. Alternatively, the al-
lele-specific nimA1/sonA1 interaction may be due to a di-
rect interaction between NIMA and SONA. In this regard,
we note that SONA contains three consensus NIMA phos-
phorylation sites (Lu et al., 1994) (refer to Fig. 7; FGAT at
5–8, FYKT at 198–201, and FNRT at 31–316). Regardless
of the underlying mechanism, the allele-specific interaction
between nimA and sonA indicates a specific interaction and
demonstrates that inactivation of sonA does not simply by-
pass the need for nimA in the promotion of mitosis.

Nucleocytoplasmic Transport and Regulation of Mitosis

This study establishes a role for NIMA in the nuclear lo-
calization of NIMXCDC2/NIMECyclin B. One implication of
this finding is that nucleocytoplasmic transport and regula-
tion of mitosis are intimately linked. Such transport is par-
ticularly relevant to closed mitosis, in which the nuclear
envelope remains intact, as occurs in many fungi including
A. nidulans, S. pombe, and S. cerevisiae. At the very least,

Figure 10. NIMA and NIMXCDC2 kinase activities in wild-type–,
nimA1-, and sonA1-containing strains. Cells of a wild-type strain
(GR5), a nimA1 containing strain (LPW2), a sonA1-containing
strain (LPW16), and a nimA1, sonA1 double mutant strain
(LPW29) were cultured and then sampled for kinase activity (A
and B) and percentage of mitotic cells (C) as described in Materi-
als and Methods. Samples were taken from exponentially grow-
ing, asynchronous cultures (R) or from cultures shifted to 428C
for 1, 2, or 3 h, or from cultures returned to 328C for 5, 10, 30, or
60 min. A and B show autoradiographs representing NIMA (A)
and NIMXCDC2 (B) kinase activities measured in immune com-
plexes isolated from whole cell extracts from the strains indicated
at the right.



The Journal of Cell Biology, Volume 141, 1998 1586

tubulin from disintegrated cytoplasmic microtubules prob-
ably needs to be rapidly imported into nuclei to form the
intranuclear spindle. Regulators of mitosis may also un-
dergo nuclear or cytoplasmic transport at mitosis, as was
proposed for the p107wee1 regulator, p70nim1 in S. pombe
(Wu and Russell, 1997). A causal relationship between
transport and mitosis is also supported by the G2/M arrest
due to a mutation in the S. cerevisiae SRP1 (importin a)
gene (Loeb et al., 1995) and by the finding that the S.
pombe rae12 mutation causes a G2 arrest (Brown et al.,
1995).

Another significant implication of this work is the iden-
tification of a mechanism by which NIMXCDC2/NIMECyclin B

function is coordinated with that of NIMA. The require-
ment for the function of both kinases for the initiation of
mitosis can now be explained by a model in which each ki-
nase independently promotes some events of mitosis while
also being sensitive to the function of the other. In this
model, NIMA is not fully functional until it is hyperphos-
phorylated by NIMXCDC2/NIMECyclin B and NIMXCDC2/
NIMECyclin B is not properly localized unless NIMA is
functional. Given the finding of NIMA-like functions in

other organisms (O’Connell et al., 1994; Fry and Nigg,
1995; Gallant et al., 1995; Pu et al., 1995; Pu and Osmani,
1995; Lu and Hunter, 1995), and the evolutionary conser-
vation of SONA/GLE2/RAE1/MNRP41 (refer to Fig. 7;
Brown et al., 1995; Murphy et al., 1996; Kraemer and Blo-
bel, 1997), the analysis of NIMA and SONA interactions
in A. nidulans should serve as an important model for the
elucidation of fundamental mechanisms coordinating nu-
cleocytoplasmic transport and mitosis.

Finally, it is very interesting that mutation of rae1 of S.
pombe results in a G2 arrest without preventing full acti-
vation of p34cdc2 (Brown et al., 1995; Whalen et al., 1997).
Perhaps mutation of rae1 prevents correct localization of
p34cdc2/p63cdc13, which would further indicate the con-
served nature of this level of mitotic regulation.
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