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Abstract

Smoking is a common risk factor for both chronic obstructive pulmonary disease (COPD)

and osteoporosis. In patients with COPD, severe emphysema is a risk factor for vertebral

fracture; however, the effects of smoking or emphysema on bone health remain largely

unknown. We report bone deterioration in a mouse model of emphysema induced by nose-

only cigarette smoke (CS) exposure. Unexpectedly, short-term exposure for 4-weeks

decreased bone turnover and increased bone volume in mice. However, prolonged expo-

sure for 20- and 40-weeks reversed the effects from suppression to promotion of bone

resorption. This long-term CS exposure increased osteoclast number and impaired bone

growth, while it increased bone volume. Strikingly, long-term CS exposure deteriorated

bone quality of the lumbar vertebrae as illustrated by disorientation of collagen fibers and

the biological apatite c-axis. This animal model may provide a better understanding of the

mechanisms underlying the deterioration of bone quality in pulmonary emphysema caused

by smoking.

Introduction

There is ample evidence in the literature that smoking is a risk factor for low bone mineral density

(BMD) and osteoporotic fracture [1]. Smoking is also a risk factor for chronic obstructive pulmo-

nary disease (COPD), which is a highly prevalent condition that causes significant morbidity and

mortality and is commonly associated with many extra-pulmonary abnormalities such as cardio-

vascular disease, skeletal muscle wasting, and osteoporosis [2–4]. However, the pathophysiologic

mechanisms underlying osteoporosis in cigarette smokers have not been fully explored.

Bone is a dynamic organ in which osteoclasts resorb old bone and osteoblasts form new

bone. These two types of cells are regulated by systemic and local factors including estrogen,

vitamin D metabolites, parathyroid hormone, receptor activator of nuclear factor-κB ligand

(RANKL), and numerous other molecules produced by the cells themselves [5]. Alterations in

bone metabolism may occur as indirect or direct effects of nicotine or other constituents of
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cigarette smoke (CS) on osteoblastic bone formation and osteoclastic bone resorption [6]. In

culture, low levels of nicotine increase osteoblast differentiation and enhance the mRNA

expression of osteocalcin, type I collagen and alkaline phosphatase [7]. Nicotine was also

shown to suppress cathepsin K (Ctsk) and matrix metalloproteinase 9 (Mmp9) expression in

osteoclasts, and bone resorption by RANKL-stimulated mouse RAW 264.7 cells [8].

Chronic whole-body CS exposure for 12 weeks in mice induced long bone osteoporotic

changes such as decreases in stiffness and bone weight [9], while no significant loss in vertebral

trabecular bone volume was observed [10]. In addition, CS exposure decreased bone forma-

tion and increased bone resorption in 4-month smoke-exposed female rats [11]; however, spe-

cial caution should be taken in interpreting these data because whole-body passive smoke may

not be an appropriate model of active smokers or COPD in humans [12]. The effects of CS on

bones are thought to be associated with the routes and duration of CS exposure [13]. Recently,

Cielen et al. (2016) reported that smoking (24 weeks) via a nose-only exposure system caused

pulmonary emphysema and reduced food intake with a subsequent loss of body weight as well

as fat and lean muscle mass, but increased the trabecular bone volume of the tibia [14]. In ani-

mal models, the effects of CS exposure on bone are controversial.

In addition, many studies have demonstrated the limited capacity of using BMD alone to

determine the mechanical properties of bone [15, 16]. The direction of the c-axis of the biolog-

ical apatite crystallite is parallel to the collagen fibers. Therefore, the degree of c-axis orienta-

tion is expected to be a bone quality parameter that determines bone strength, and shows a

more significant contribution to mechanical properties than BMD in regenerated defected

long bone [17, 18].

In this study, a nose-only smoking mouse model was applied, as previously established by

our group [19], in which mice developed emphysema, a pulmonary phenotype of human

COPD, after 3 months of CS exposure. Using this mouse model, we evaluated the short-term

(4 weeks) and long-term (20 and 40 weeks) effects of CS exposure on the metabolism, struc-

ture, and quality of the vertebral column.

Materials and methods

Mice

C57BL/6J (B6) mice (9–10 weeks old) were purchased from Oriental Yeast (Tokyo, Japan).

Mice were housed in plastic cages under a 12:12 h light-dark cycle, fed standard chow (CE-2,

Nihon CLEA, Tokyo, Japan), and given free access to food and water. Animal experiments

were performed in accordance with the Institutional Guidelines on Animal Experimentation

at Keio University. The protocols were approved by the Keio University Institutional Animal

Care and Use Committee (Approval No: 12019).

CS exposure

Mice were exposed to mainstream CS generated from commercially available filtered cigarettes

(Marlboro, 12 mg tar/1.0 mg nicotine) and inhaled CS through their noses as previously

reported by our group [19]. Briefly, an apparatus for the CS inhalation (SIS-CS system, Shibata

Scientific Technology Ltd., Tokyo, Japan), consisting of both a CS generator (SG-300) and an

inhalation chamber to which 20 body holders were set at a time, was used. Fresh cigarettes pur-

chased within 1 month of the study were used throughout the experiments. The CS was gener-

ated at a stroke volume of 15 mL and 10 puffs/min, and was diluted with compressed air in

which the mass concentration of total particulate matter was 1,202 ± 196 mg/m3.

Ovariectomized B6 female mice (B6-OVX) were 9–10 weeks old at the time of surgery and

exsanguinated under carbon dioxide narcosis 4 weeks after surgery [20]. We confirmed that
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uterine weights/body weights (%) were significantly decreased 4 weeks after ovariectomy (0.64

±0.17, B6 sham-operated females, n = 10 vs 0.09±0.03, B6-OVX, n = 9, p<0.05, t-test).

Mice were exposed to CS for 60 min/day and 5 days/week for up to 4, 20, and 40 weeks.

Age- and sex matched air-exposed control mice were exposed over the same time period.

Micro-CT

The X-ray micro computed tomography (micro-CT) system (R_mCT2, Rigaku, Tokyo, Japan)

was operated with the following parameters: 90 kV, 160 μA, abdominal CT; standard mode, 26

sec, 30 x 30 mm field of view (FOV) (60 x 60 μm pixel size), bone CT; fine mode, 3 min, 5 x 5

mm FOV (10 x 10 μm pixel size). Mice were scanned in the prone position with inhalation

anesthesia of mixed isoflurane (Pfizer Japan Inc., Tokyo, Japan) and oxygen through a nose

cone. Fat volume analysis was evaluated at the third lumbar, level, discriminating between sub-

cutaneous and visceral fat using body composition analysis software (Metabolic analysis,

Rigaku, Tokyo, Japan). Bone structure was evaluated in fourth lumbar vertebrae using bone

analysis software (3D-Bon, RATOC, Tokyo, Japan). For each bone, vertebral body height, cor-

tical cross sectional area, trabecular bone volume to tissue volume ratio (BV/TV), trabecular

number (Tb.N), trabecular thickness (Tb.Th), and trabecular spacing (Tb.Sp) were measured.

Bone histomorphometry

The mice were exsanguinated by severing the abdominal aorta under carbon dioxide narcosis.

The fourth lumbar vertebra was fixed in 4% paraformaldehyde, decalcified in 10% ethylenedi-

aminetetraacetic acid (pH 7.2), and embedded in paraffin. Sections of 5 μm thickness were cut

and stained with hematoxylin and eosin (H&E). The region of interest was defined as a 100

mm2 area in the center of the vertebral body, excluding cortical regions and growth plates.

Osteomeasure software (Osteomeasure, OsteoMetrics, Decatur, GA, USA) was used to quantify

the bone surface (BS), osteoclast surface (Oc.S), and osteoblast surface (Ob.S). Then osteoclast

surface/bone surface (Oc.S/BS) and osteoblast surface/bone surface (Ob.S/BS) were calculated.

Mechanical testing

Fifth or sixth lumbar vertebrae was placed in the materials testing machine (TK-252C, Muro-

machi Kikai Co., Tokyo, Japan) between two parallel plates and was compressed at a constant

velocity of 2.5 mm/min until failure. The stiffness (N/mm), ultimate compressive load (N),

and energy-to-failure (mJ) were calculated as the mechanical properties from the load-dis-

placement curve [21] using re-analysis software (RAS-252C, Muromachi Kikai Co.).

Histologic analysis of collagen fibers in bone

Analysis of spatially aligned collagen fibers was performed in the paraffin sections with a

microscope (BX53, Olympus, Tokyo, Japan) using a polarizing lens (U-TAD & U-POT, Olym-

pus). Bright shining of polarized light qualitatively revealed the parallelism of collagen fibers in

tissue sections [22].

C-axis measurement

The degree of directionality of the c-axis in the biological apatite crystals was determined by

X-ray diffraction analysis using a microbeam X-ray diffraction (μXRD) system as the relative

intensity ratio of the (002) diffraction peak to the (310) peak in the X-ray profile. The intensity

ratio of (002)/(310) increases with an increase in the degree of preferential orientation of the c-

axis of the biological apatite [18].

Long-term cigarette smoke exposure and bone
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Biochemical analysis

Spot urine was collected in the morning, and blood was collected by abdominal aorta puncture

after mice were sacrificed under carbon dioxide narcosis. The urine and serum samples were

stored at -80˚C until use. Urinary deoxypyridinoline (DPD), a marker of bone resorption, and

creatinine (Cr) concentrations were measured using the EIA Kit (Osteolinks-DPD, Sumitomo,

Osaka, Japan) and the enzyme test (Mitsubishi Kagaku, Tokyo, Japan), respectively. Urinary

DPD was corrected for urinary Cr concentration. Serum levels of osteocalcin, a marker of

bone formation, were measured using the EIA Kit (Mouse Osteocalcin ELISA kit, Biomedical

Technologies, Redwood City, CA, USA).

Statistical analysis

Data are expressed as mean ± standard deviation (SD) and were analyzed by Student’s t-test.

When we compared between air- and CS exposure in both B6-female and B6-OVX mice, data

were analyzed with Student’s t-test. P values less than 0.05 were considered statistically signifi-

cant. All of the data were analyzed using the JMP data analysis software for Windows, version

11.0.0 (SAS Institute Inc., Cary, NC, USA).

Results

Short-term CS exposure suppresses bone turnover and increases bone

volume in female mice

We examined the effects of short-term CS exposure using both B6 female mice (B6-female)

and ovariectomized (B6-OVX) mice, which is a widely used model for estrogen deficiency. To

examine the systemic effects of CS exposure to mice, body weight was monitored weekly. In

B6-female mice, the body weight gradually increased, while CS-exposed B6-female mice began

to lose weight soon after CS exposure. Similarly, in B6-OVX mice, the body weight increased

prominently, while CS exposure attenuated the weight gain (Fig 1A). In contrast to our initial

hypothesis that CS exposure would facilitate further bone resorption in those mice, the bone

resorption marker urinary DPD and the bone formation marker osteocalcin were significantly

decreased after 4 weeks of CS exposure compared with the respective air-exposed control mice

in both B6-female and B6-OVX mice (Fig 1B and 1C).

We next examined vertebrae, because, in COPD patients, the risk of vertebral fractures was

related to the severity of the disease [23]. In addition, B6-female and B6-OVX mice exhibited

more trabecular bone volume in vertebral bodies following CS exposure for 4 weeks than their

respective air-exposed control mice (Fig 1D), as demonstrated by the increase in BV/TV, Tb.N

and Tb.Th, and the decrease in Tb.Sp on micro-CT compared with their respective air-

exposed control mice regardless of ovariectomy status (Fig 1E–1H). To determine whether the

observed bone phenotypes following CS exposure in female mice are reproducible in male

mice, we performed short-term CS exposure in B6-male mice. We observed the same tendency

in B6-male mice, suggesting that the increase in trabecular bone after short-term CS exposure

was sex independent (S1 Fig).

Effects of transition to long-term CS exposure on body weight and visceral

fat volume

B6-female mice underwent repeated long-term exposure to CS up to 40 weeks, according to an

established protocol [19]. There was no difference in daily energy intake between CS- and air-

exposed groups at each time point. Body weight changes in CS-exposed mice were significantly

different from air-exposed control mice during the 40 weeks (Fig 2A). CS-exposed mice lost

Long-term cigarette smoke exposure and bone
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up to about 6% of their weight until 4 weeks, after which they began gaining weight. This time-

course trend was consistent with changes in visceral fat volume in the CS-exposed mice (Fig

2B). These findings suggest that at approximately 4 weeks, the systemic effects of CS exposure

cause an initial decrease but subsequent increase in body weight and body fat.

Prolonged CS exposure causes a change in suppression to promotion of

bone resorption

As shown above, 4 weeks of CS exposure decreased both urinary DPD and serum levels of

osteocalcin in B6 mice. However, after CS exposure up to 20 weeks, there were significantly

higher urinary DPD and serum osteocalcin levels in CS-exposed B6-female mice compared

Fig 1. Changes in body weight, bone turnover, and bone structure after short-term CS exposure in mice with and without ovariectomy.

(A) Longitudinal changes in body weight of C57BL/6J female (B6-female) mice over 4 weeks of air-exposure (open triangle, n = 10) or CS-

exposure (closed, n = 9), and ovariectomized (B6-OVX) mice, of air-exposure (open square, n = 9) or CS-exposure (closed, n = 9). The body

weight data are shown as means ± SDs. (B, C) Bone metabolism markers (urinary DPD and serum osteocalcin) after 4 weeks of air- (open

bar) and CS exposure (closed bar). (D) Representative micro-CT 3D images of fourth vertebral body sections created by longitudinal cutting

(left-oblique view). Scale bars = 1 mm. (E–H) micro CT bone structure analyses (BV/TV, Tb.N, Tb.Th and Tb.Sp) after 4 weeks of air- (open

bar) and CS exposure (closed bar). The data are shown as means ± SDs. �P<0.05 between air- and CS-exposed mice. Statistical analyses were

performed with Student’s t-test.

https://doi.org/10.1371/journal.pone.0191611.g001
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with air-exposed control mice; this difference remained in urinary DPD at 40 weeks (Fig 2C

and 2D). These data suggest that CS exposure suppresses both bone resorption and formation

in the short term, but promotes bone resorption after 20 weeks.

Long-term CS exposure increases the number of differentiated osteoclasts

in lumbar vertebrae

Bone histomorphometric changes were investigated in the fourth lumbar vertebral bodies

of B6-female mice (Fig 3A). The Oc.S/BS was comparable at 4 weeks, and significantly

increased in CS-exposed mice compared with air-exposed control mice at 20 and 40 weeks

(Fig 3B). Those changes were consistent with the urinary DPD data (Fig 2C). On the other

hand, no difference was observed in the Ob.S/BS between those two groups at any time point

(Fig 3C).

Fig 2. Changes of body weight, abdominal fat volume, and bone metabolism markers upon long-term CS exposure. (A) Longitudinal

changes in body weight of air- exposed (open triangle: n = 5) and CS-exposed mice (closed triangle: n = 10 at the start, n = 9 at the end). The

body weight data are shown as means ± SDs. �P<0.05 between air-exposed controls and CS-exposed B6-female mice. Statistical analysis was

performed with Student’s t-test at each time point. (B) Representative micro-CT images (transverse view) of abdominal fat after 4 weeks of CS

exposure distinguishing between visceral fat (yellow) and subcutaneous fat (orange). Abdominal visceral fat volume at 0, 4, 20, and 40 weeks of

CS exposure. (C, D) Bone metabolism markers (urinary DPD and serum osteocalcin) at 4, 20, and 40 weeks of CS exposure. The data are

shown as means ± SDs. �P<0.05 between air-exposed controls (open bars: n = 10 at 4 weeks, n = 10 at 20 weeks, n = 5 at 40 weeks) and CS-

exposed B6-female mice (closed bars: n = 9 at 4 week, n = 5 at 20 weeks, n = 9 at 40 weeks). Statistical analysis was performed with Student’s t-
test.

https://doi.org/10.1371/journal.pone.0191611.g002
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Long-term CS exposure impairs growth and increases the trabecular bone

volume of lumbar vertebrae

After 20 and 40 weeks of long-term CS exposure, changes in the bone size and structure of the

trabecular bone were evaluated in the fourth lumbar vertebra using micro-CT (Fig 4A). Com-

pared with air-exposed control mice, vertebral body height and cortical cross sectional area

were significantly decreased in CS-exposed B6-female mice at 20 and 40 weeks (Fig 4B and

4C). These data indicate that long-term CS exposure impaired the growth of lumbar vertebral

bodies. Conversely, BV/TV was elevated in CS-exposed mice compared with air-exposed con-

trol mice at each time point (Fig 4D). The cortical bone volume was no significant difference

between CS and air-exposed mice. We performed mechanical strength tests (stiffness, ultimate

load and energy-to-failure) of fifth and sixth lumbar vertebral bodies (L5 and L6) at 40 weeks

of CS exposure. Stiffness of the vertebral body in CS-exposed mice was significantly increased

at L6, although the difference did not reach statistical significance at L5 (Fig 4E). By contrast,

ultimate load and energy-to-failure were not significantly changed in CS-exposed mice at 40

weeks compared with air-exposed control mice (Fig 4F and 4G), which could be attributed to

the combined effects of decreased cortical cross sectional area and elevated trabecular bone

volume. These data suggest that CS-induced increases in bone volume and stiffness in verte-

bral bodies did not increase bone mechanical strength measured, as determined by measuring

Fig 3. Effects of CS exposure on osteoclasts and osteoblasts of vertebra. (A) Representative H&E staining of the

fourth vertebral body (longitudinal section) at 40 weeks in CS- and air-exposed mice. Representative osteoblasts

(arrows) and osteoclasts (arrowheads) in the boxed areas are shown on the right at a higher magnification. Scale bars at

low-power and high-power magnification are 500 and 50 μm, respectively. (B, C) Osteoclast surface/bone surface (Oc.

S/BS) and osteoblast surface/bone surface (Ob.S/BS) after 4, 20, and 40 weeks of CS exposure. The data are shown as

means ± SDs. �P<0.05 between air-exposed controls (open bars: n = 10 at 4 weeks, n = 10 at 20 weeks, n = 5 at 40

weeks) and CS-exposed B6-female mice (closed bars: n = 9 at 4 week, n = 5 at 20 weeks, n = 9 at 40 weeks). Statistical

analysis was performed with Student’s t-test.

https://doi.org/10.1371/journal.pone.0191611.g003
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Fig 4. Effects of CS exposure on bone structure on micro-CT and mechanical strength tests of vertebral bodies.

(A) At 4, 20, and 40 weeks of CS exposure, representative micro-CT 3D images of fourth vertebral body sections

created by longitudinal cutting (left-oblique view). Scale bars = 1 mm. (B–D) Vertebral body height, cortical cross

sectional area, and bone volume to tissue volume ratio (BV/TV). �P<0.05 between air-exposed controls (open bars:

n = 10 at 4 weeks, n = 10 at 20 weeks, n = 5 at 40 weeks) and CS-exposed mice (closed bars: n = 9 at 4 week, n = 5 at 20

weeks, n = 9 at 40 weeks). (E–G) Stiffness, ultimate load and energy-to-failure of fifth and sixth lumbar vertebral

bodies. The data are shown as means ± SDs. �P<0.05, ☨P = 0.07 between air-exposed controls (open bars, L5: n = 5,

L6: n = 5) and CS-exposed mice (closed bars, L5: n = 9, L6: n = 9). The data are shown as means ± SDs. Statistical

analysis was performed with Student’s t-test.

https://doi.org/10.1371/journal.pone.0191611.g004
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ultimate load and energy-to-failure. In addition, the normal growth of vertebral bodies was

retarded by long-term CS exposure.

Long-term CS exposure deteriorates vertebral bone quality

To investigate the reason that bone mechanical strength did not increase despite the increase

in bone volume and stiffness following long-term CS exposure, we evaluated collagen orienta-

tion and biological apatite c-axis alignment in vertebral bodies to determine bone quality (Fig

5A). Polarized light microscopy showed that the orientation of collagen fibers in CS-exposed

B6-female mice was disturbed compared with that in air-exposed control mice at 20 and 40

weeks (Fig 5B). In addition, CS-exposed mice showed a significantly lower degree of preferen-

tial biological apatite c-axis alignment in the vertebral bodies at 20 and 40 weeks based on the

relative intensity ratio of the (002) diffraction peak to the (310) peak in the X-ray profile (Fig

Fig 5. Effects of long-term CS exposure on collagen orientation and biological apatite c-axis alignment of

vertebral bodies. (A) Schematic presentation of bone histological indices (H&E staining, polarization, collagen

orientation and biological apatite c-axis alignment). (B) Representative polarizing microscope images in the fourth

vertebral bodies (longitudinal section) of B6-female mice after 20 and 40 weeks of air- or CS exposure. Scale bars =

100 μm. (C) Intensity ratio of (002/310) as biological apatite c-axis alignment. The data are shown as means ± SDs.
�P<0.05 between air-exposed controls (open bars: n = 10 at 20 weeks, n = 5 at 40 weeks) and CS-exposed B6-female

mice (closed bars: n = 5 at 20 weeks, n = 12 at 40 weeks). Statistical analysis was performed with Student’s t-test.

https://doi.org/10.1371/journal.pone.0191611.g005
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5C). These data further support the notion that long-term CS exposure deteriorates vertebral

bone quality.

Discussion

This is the first in vivo study to demonstrate that long-term CS exposure impairs the normal

growth of lumbar vertebral bodies and deteriorates vertebral bone quality, as revealed by dis-

orientation of collagen fibers and the biological apatite c-axis. Interestingly, however, short-

term CS exposure decreased bone resorption and increased bone volume in mice.

Collagen alignment affects bone strength independent of bone volume, and collagen align-

ment parameters correlated with bone stiffness in pre-diabetic and diabetic rats [24]. Our

study suggests that CS-induced osteoporosis may change collagen orientation and biological

apatite c-axis alignment without bone loss. Long-term CS exposure can lead to abnormalities

in vertebral bodies with regard to bone metabolism, structure, and quality. Smoking is a com-

mon lifestyle risk factor for both COPD and bone loss, and osteoporosis is more prevalent in

COPD patients than in healthy smokers [25]. A confounding factor influencing BMD is fat

mass; this relationship was reported by examining the effects of body mass and adiposity on

adult BMD. Larger adipose stores and increased body fat percentage lead to increased BMD

[26]. Smokers generally have a lower body mass index (BMI) and decreased adipose tissue

than nonsmokers, which may affect the BMD differences that have been reported in smokers

and nonsmokers [27]. Recent evidence has suggested that female COPD patients with a low

BMI and radiographic emphysema are at risk for low BMD and vertebral bone fracture [28,

29]. However, there have been few in vivo studies of the extra-pulmonary system in CS-

induced COPD animal models [30]. In our study, CS-exposed B6-female mice showed drastic

weight loss accompanied by visceral fat mass loss within 4 weeks of CS exposure. A study by

Sasaki et al. (2015) showed that long-term CS exposure induced emphysematous change in the

lungs of B6-female mice [19]. In our mouse model, the association of deteriorating bone qual-

ity with low BMI and presence of emphysema indicate that the underlying mechanisms link

the lung to the skeletal system; however, whether this is a direct effect of CS exposure or a sec-

ondary effect of pulmonary and extra-pulmonary changes remains unclear (Fig 6).

In human studies, it has generally been reported that smoking decreases bone volume and

BMD by enhancing bone resorption. In this study, however, we observed that CS exposure

increased bone volume and BMD in mice. The direct suppression of osteoclastogenesis by CS

could partly explain decreases in both resorption of the urinary bone resorption marker DPD

and the bone formation marker serum osteocalcin in female mice after short-term CS expo-

sure. The effects of nicotine on osteoclastogenesis may be related to the direct suppression of

osteoclastogenesis by CS, which is in accordance with data from the study by Tanaka et al. [8].

In human studies, sex hormones, especially estrogen, are important bone anabolic factors;

smoking can both decrease and increase estrogen levels [6]. However, estrogen is unlikely to

be involved in the CS exposure-induced increase in bone volume and BMD, because not only

B6-female mice, but also B6-OVX and B6-male mice showed decreased urinary DPD and

osteocalcin levels after short-term CS exposure.

There were several limitations in this study. First, the mouse model used in this study does

not reflect the human situation if we consider the age of the animals and duration of CS expo-

sure, as we used relatively young animals that are still growing and gaining body weight. By

contrast, most human studies are conducted in older population. Thus, a COPD animal model

with older animals is worth testing. At present, we cannot exclude the possibility that the

effects of CS exposure on bone metabolism and bone volume in mice might be similar to those

in premenopausal, rather than postmenopausal women. Indeed, we ovariectomized 9–10

Long-term cigarette smoke exposure and bone
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weeks old mice rather than older mice typically used in menopausal mice model [20]. The

young age of the mice used would explain why osteoporotic changes in B6-OVX mice were

marginal in this study, together with the fact that C57BL/6J mice are hard to loose bone mass

upon ovariectomy compared with other strains [20]. Second, it is possible that the duration of

CS exposure in this study was not enough. Indeed, after 20 weeks or longer of CS exposure, the

markers of bone metabolism significantly shifted from a low to high turnover, in concordance

with significant increases in osteoclast number in vertebral bodies. If the duration of CS expo-

sure—generally less than 24 weeks CS [14], and currently 40 weeks—was extended, it is possi-

ble that an osteoporotic phenotype could be found. Patients with COPD have a much longer

smoking history (of many years) and more pronounced systemic manifestations, including

Fig 6. Effects of long-term CS exposure on lung, fat and bone. The association of deteriorating bone quality with low fat

mass and presence of emphysema indicates that the underlying mechanisms link the lung to the skeletal system; however,

whether this is a direct effect of long-term CS exposure or a secondary effect of pulmonary and extra-pulmonary changes

remains unclear. Representative lung sections stained with H&E after 40 weeks of CS exposure (scale bars = 100 μm).

Representative micro-CT images (transverse view) of abdominal fat after 40 weeks of CS exposure distinguishing between

visceral fat (yellow) and subcutaneous fat (orange). Representative micro-CT 3D (scale bars = 1 mm) and polarizing

microscope images (scale bars = 100 μm) of fourth vertebral body after 40 weeks CS exposure.

https://doi.org/10.1371/journal.pone.0191611.g006
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osteoporosis, as they age. Smoking history is a known risk factor for bone loss [27]; however,

current smoking does not necessarily increase the risk of osteoporosis in COPD patients [29].

Third, total bone volume was increased with continuous smoking in our mouse model. This

finding may be due to the fact that the mouse model of CS exposure only induced mild form

of pulmonary emphysema [19]. Thus, the systemic effects of smoking in our mouse model

may represent the early stage of extra-pulmonary manifestations in COPD patients.

To the best of our knowledge, this is the first study to demonstrate in vivo that long-term

CS exposure suppresses normal growth and deteriorates vertebral bone quality, as illustrated

by disorientation of collagen fibers and the biological apatite c-axis, even though 20 to 40

weeks of CS exposure increased bone volume. This animal model will substantially contribute

to our understanding of the mechanisms underlying systemic manifestations with pulmonary

emphysema in smokers, and will also contribute to efforts toward understanding the mecha-

nisms and therapeutics associated with osteoporosis in COPD patients.

Supporting information

S1 Fig. Body weight, bone turnover, and bone structure of B6-male mice after short-term

CS exposure. (A) Longitudinal changes in body weight of C57BL/6J male (B6-male) mice after

4 weeks exposure to air (open square, n = 5) or CS (closed square, n = 5). The body weight

data are shown as means ± SDs. �P<0.05 between air- and CS-exposed mice in B6-male mice.

Statistical analysis was performed with Student’s t-test at each time point. (B, C) Bone metabo-

lism markers (urinary DPD and serum osteocalcin) after 4 weeks of CS exposure. (D) Repre-

sentative micro-CT 3D images of fourth vertebral body sections that created by a longitudinal

cutting (left-oblique view). Scale bars = 1 mm. (E–H) micro-CT bone structure analyses

(BV/TV, Tb.N, Tb.Th and Tb.Sp) after 4 weeks of CS exposure. The data are shown as

means ± SDs. �P<0.05 between air-exposed controls (open bars, n = 5) and CS-exposed mice

(closed bars, n = 5). Statistical analysis was performed with Student’s t-test.
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