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Abstract

The ccbmlib Python package is a collection of modules for modeling
similarity value distributions based on Tanimoto coefficients for fingerprints
available in RDKit. It can be used to assess the statistical significance of
Tanimoto coefficients and evaluate how molecular similarity is reflected
when different fingerprint representations are used. Significance measures
derived from p-values allow a quantitative comparison of similarity scores
obtained from different fingerprint representations that might have very
different value ranges. Furthermore, the package models conditional
distributions of similarity coefficients for a given reference compound. The
conditional significance score estimates where a test compound would be
ranked in a similarity search. The models are based on the statistical
analysis of feature distributions and feature correlations of fingerprints of a
reference database. The resulting models have been evaluated for 11
RDK:it fingerprints, taking a collection of ChEMBL compounds as a
reference data set. For most fingerprints, highly accurate models were
obtained, with differences of 1% or less for Tanimoto coefficients indicating
high similarity.
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(:F757:3 Amendments from Version 1

We thank the reviewers for their positive comments. In this revision,
we have followed the suggestion made by one of the reviewers
and extended the manuscript. Our software has been updated
accordingly and a new version has been made available via
GitHub and Zenodo. Furthermore, an inconsistency in Equation 25
has been corrected, and a new figure (Figure 3) added.

Any further responses from the reviewers can be found at the
end of the article

Introduction

The quantitative assessment of molecular similarity is a central
concept in chemoinformatics'~. It forms the basis of similarity
searching and ligand-based virtual screening to identify novel
molecules in large databases with biological properties similar
to given reference compounds’™. Assessment of molecular simi-
larity plays a central role in chemical space analysis and the
study of activity landscapes where chemical space projections
onto low-dimensional representations are based on quantified
similarities®”’.

The use of fingerprints and the Tanimoto coefficient'” (Tc), also
known as the Jaccard index'', represents one of the most popu-
lar methods for quantifying molecular similarity'~. Fingerprints
encode structural features of a molecule in a binary vector format
and the Tc quantifies the overlap of features of two molecules as
the ratio of the number of common features to the total number
of features in each fingerprint. The Tc has the value range O to
1 and can be interpreted as the percentage of features shared by
two molecules. However, whether a given percentage of overlap
should be considered a significant similarity of two molecules
depends on the fingerprint design and the global frequency of
encoded features. Fingerprint designs might be categorized
as dense or sparse. Dense fingerprints have a relatively small
dimensionality of at most a few thousand features, but a signifi-
cant fraction of these might be present in any given molecule.
On the other hand, sparse fingerprints can have a theoretically
infinite set of features (typical integer encodings allow up to
4 billion features). However, only tens or hundreds of these fea-
tures might be found in a single molecule. Consequently, sparse
fingerprint representations generally lead to smaller Tc values
than dense fingerprints.

While it is not meaningful to compare Tc values of different fin-
gerprint designs directly, statistical approaches can be applied to
assess the significance of Tc values with respect to a reference
data set. By using the distribution of Tc values obtained from
comparing random compounds as a reference, Tc value signifi-
cance can be determined by calculating the probability of obtain-
ing a given Tc or higher value by chance. In statistical terms, the
reference distribution corresponds to a null hypothesis and the
significance measure is known as p-value or p-score. This score
has the range 0 to 1 and indicates the probability that a given Tc
would be obtained by chance. Thus, smaller p-values indicate
higher significance. Here, we will use the measure 1 — (p-value)
to assess significance. Although it is in principle possible to
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obtain Tc distributions by random sampling, this process is time
consuming. Instead, the ccbmlib package presented here pro-
vides methods for the generation of Tc distribution models that
are based on the statistical analysis of feature frequencies and
feature correlations between fingerprints for a reference data
set. Some mathematical models of Tc-value distributions'"*
have been introduced in the past. The ccbmlib implementa-
tion makes use of the conditional correlated Bernoulli model
(CCBM) that has been shown to accurately model Tc distribu-
tions for a variety of fingerprint designs'*"*. An unconditional
distribution model accounts for Tc distributions of fingerprints of
randomly selected compounds. However, it is of particular inter-
est to model distributions where one compound fingerprint is
used as a reference, which forms the basis of similarity searching.
P-values obtained from such conditional distribution models effi-
ciently estimate how high a test compound would be ranked in a
similarity search with respect to a given reference compound.
Hence, conditional models can be used to predict similarity
search performance'*'".

The implementation presented here is based on RDKit"” and
provides methods for statistically analyzing fingerprint feature
distributions and building models for fingerprints implemented in
RDKit. Methods are provided for calculating significance from
Tc values, which enable a meaningful comparison of Tc values
calculated using fingerprints of different design. The CCBM
requires knowledge of the frequencies of individual features as
well as their pairwise covariances. This statistical analysis needs
to be carried out once for each reference data set and fingerprint
design. This step can be time consuming for large data sets. The
ccbmlib implementation stores resulting statistics permanently to
avoid redundant calculations. For our reference implementation
and evaluation, compounds from ChEMBL (release 25)'® were
selected as a representative sample of bioactive chemical space.

Methods

Fingerprint representations

RDKit provides implementations for a variety of fingerprints.
Available fingerprints are reported in Table 1. The atom pair fin-
gerprint encodes typed pairs of atoms and their bond distance and
is based on the description given by Carhart and Smith'’, repre-
senting a sparse fingerprint. The Avalon fingerprint'® is a hashed
fingerprint enumerating paths and feature classes. MACCS
(Molecular ACCess System) keys record the presence or absence
of a dictionary of 166 substructural features'”. Morgan finger-
prints are an RDKit implementation of extended connectivity
fingerprints (ECFPs)* and enumerate atom environments up to
a selected radius. We calculated Morgan fingerprints for radius 1
and 2 corresponding to ECFP with diameter 2 and 4, respectively.
The topological torsion fingerprints encode sequences of four
bonded atoms in a sparse fingerprint’’. The RDKit fingerprint is
a hashed substructure/path fingerprint similar to the Daylight
fingerprints®. Atom pairs, Morgan fingerprints, and the topo-
logical torsion fingerprint result in sparse vector representations
whose dimensions are only limited by the underlying numerical
representation. Hashing is often used to yield a dense
fingerprint representation of constant length. We evaluated our
models using the sparse and hashed versions with a default size
of 2048 bits.
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Table 1. Fingerprints available in RDKit.

Fingerprint Dimension Description M(FC) o(FC)
Atom pairs sparse typed atom pairs 199.8 1559
Atom pairs — hashed 2048 186.3 126.4
Avalon 512 path-based 206.3 78.9
MACCS keys 166 substructures 52.1 185
Morgan radius 1 sparse atom environments 30.5 8.4
Morgan radius 1 — hashed 2048 30.1 8.2
Morgan radius 2 sparse 51.0 153
Morgan radius 2 — hashed 2048 50.3 149
Topological torsions sparse 4-atom-paths 34.7 13.8
Topological torsions — hashed 2048 34.2 13.4
RDKit 2048 path-based 877.5 324.0

U(FC) and o(FC) are the average number and standard deviation of the number of features per

fingerprint for ChEMBL compounds, respectively.

For the following mathematical description of the models, we
will use lowercase bold letters to indicate bit vector representa-
tions and uppercase italic symbols to denote the corresponding
feature set representations:

a=(a,a,....,a,)whereaq,e {0,1},1<i<d
A=dila,=11<i<d}

Here, d € N is the dimension of the fingerprint.

M

Fingerprint similarity

Similarity of fingerprints is most often assessed on the basis of
the set of features common to two fingerprints. The Tanimoto
coefficient'™'" is defined as the ratio of the number of features
common to two fingerprints A and B to the total number of
features present in either A or B:

|AnB|  1(A,B)

Tc(A,B)= =
«(4.5) [AUB|  U(A.B)

(@)

where I(A, B) = |A N B| and U(A, B) = |A V] B| are the cardinalities
of the intersection and union of A and B, respectively.

Modeling similarity value distributions

The distribution of Tc values depends on the fingerprints of a
reference compound data set. The resulting p-values must be
interpreted with respect to the reference data set.

As indicated in Equation 1, fingerprints can be represented
as sets of features and similarity metrics like the Tc depend
on the cardinalities of the intersection and union of sets.
Each of the d features X, of a fingerprint can be modeled as a
Bernoulli variable that occurs with a certain probability p.
Given a reference data set of N compounds and their fingerprints
A= {ak|1 < k < N} where a = (ak], Ay - akd) the probabilities
can be estimated from the relative frequencies:

P, :E(Xi):%z:/:laki d<i<d 3)

The cardinality of a fingerprint itself, of the intersection, and of
the union can then be modeled as a sum of non-identically dis-
tributed Bernoulli variables. In the case of independent variables,
the sum follows a Poisson binomial distribution with mean

d
u=y"p )
and variance

=" p(-p) 5)

and can be approximated by a normal distribution. Because
the cardinalities of the intersection and union of two sets are
not independent, the Tc is then modeled as the ratio of two
correlated normal distributions for which approximations
exist*,

Fingerprint features are often correlated. Ignoring these cor-
relations leads to a significant underestimation of the variance
(Equation 5)'*'*. While the equation for the mean u remains valid
for correlated random variables, the formula for the variance
o° requires taking the pairwise covariances ¢, = cov(X,X)
between the different features into account. These can also be
estimated from the reference set:

1
Cy :E((X[ - p[)(Xj - p/)): E(X,X/)_ pipjzﬁzivzlakfakj —pP; (6)
Accordingly, the value ¢, = p, (1 - p)) denotes the variance of X..

Based on these estimates, the average cardinality of a fin-
gerprint itself, of the intersection, and of the union of two
unknown fingerprints can be determined:

E(X)=3" (M)

w=EQXY)=Y" p ®)
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sy =EQEY))=E(X|+|Y[-1(XY)=23 " pi= X0 (9
For the respective variances, one obtains:

var(x) =X Y ¢, (10)
0',2=Var(I(X,Y))=zj:lzjzl(c§+2cﬁpipj) (1)
O-’zf:Var(U(X’Y))Z2:1:12;200(1_21’;‘)"'0'12 (12)

The covariance between the cardinality of union and intersection
is given by:

d d
cov,, =Cov(I(X,Y),U(X,Y))= 2i=12j=12c,j p,—o; (13)

Normal distributions are defined by their mean and standard
deviation and can thus be calculated from the estimates of the
averages and variances. However, given the fact that the under-
lying features are not independent, the suitability of using nor-
mal distributions as approximations cannot be guaranteed from
a theoretical point of view. Nevertheless, as has been previously
shown'*!'“, and as can be seen from our current evaluation (vide
infra), practical applications of the model yield good perform-
ance for a variety of different fingerprint designs. Under the
assumption of normality, the following models are obtained:

I(X.Y)=N(u,.0;) (14)
U(X.Y)= N(u,.0;) (15)

where N(u,07) is the normal distribution with mean u and
standard deviation o. The Tc distribution is then modeled as
a ratio of these two correlated distributions. An analytical
form of the probability distribution function exists*; however,
for determining p-values and the significance, the following
approximation of the cumulative distribution function (CDF) is
used”":

Ft)y=®

ui-u ]
———— |where a(t) =
oo a(t)

Here, p = cov, /(0,0,) is the correlation between intersection
and union and ® is the CDF of the standard normal distribution:

1 u )Cz
Ou)=——| exp|——|dx 17
w=—r-J. p( > ) (17)
The p-value can then be determined as:
p=1—F@)=Pr (Tc>1) (18)

For model evaluation, we use F(f) = Pr (Tc < 1) directly as
a measure of significance.

Modeling conditional value distributions

For similarity searching, reference compounds are used and
Tc values of database compounds are calculated relative to the
references. As has been shown', distributions of Tc values
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can vary greatly depending on the reference fingerprint. In this
case, the significance of Tc values should to be considered for
a given reference compound. Mathematically, this corresponds
to determining the conditional distributions when one finger-
print is given. As in the unconditional case, the distributions
are based on sums of correlated Bernoulli variables that are
modeled as normal distributions based on the conditional
means and variances:

wt=E((AX)|A)=3; ¢ 4p, (19)
w=EU@a)=(+ 3, x)=l4+3, @0
(@) =var(1(a.x)[4)=3 _ ¢, @1

(@0) =Var(U(a.x)[4)=3 _ ¢, 22)

COV?U =cov (I(A,X),U(A,X) |A)= zieAz,‘eAc"f (23)

The conditional model is obtained by applying these parameters
in Equation 16.

A derivation of the formulas presented here for the CCBM
can be found in the original publications'*'.

Sparse fingerprints

Sparse fingerprints like ECFPs or the Morgan fingerprint might
result in hundreds of thousands of different features present in
large data sets. Most of these will occur with very small prob-
abilities p, and only have a small influence on the estimated
means and variances. It is computationally unproblematic to han-
dle these individual probability estimates; however, determining
pairwise covariances of all possible features becomes infeasible
for more than a few thousand features. To address this issue, the
complete covariance matrix is only determined for the most fre-
quent features of a sparse fingerprint (by default, the 2048 most
frequent features are selected). Covariances involving rare fin-
gerprints are not estimated. Given that feature probabilities of
combinatorial fingerprints usually show pseudo-exponential
drop-offs for rare features, contributions towards covariance esti-
mates have negligible influence on the final estimates and are
ignored in the current implementation.

Data sets

As reference data set, ChEMBL compounds were selected.
SMILES representations of 1,870,461 compounds were down-
loaded and standardized using a previously published protocol
included in the ccbmlib package™. Additionally, stereochemical
information was removed since most fingerprints imple-
mented in RDKit do not account for stereochemistry, result-
ing in 1,691,786 unique compounds. Fingerprint statistics are
reported in Table 1.

Implementation and operation
The software has been implemented as a module for Python
3.7. It requires the installation of RDKit and has been tested
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with version 2019.03.4 of RDKit. Any system (Linux,
Windows, MacOS) capable of running Python 3.7 and RDKit
is sufficient for running our software. A 64-bit operating sys-
tem with at least 8GB RAM is recommended. After obtain-
ing the code it can be installed using Python’s setup utility. The
ccbmlib package contains three modules: preprocessing,
statistics, and models.

Module preprocessing consists of routines for standard-
izing molecules and preparing compound data sets. Standardi-
zation of molecules is a generally recommended preprocessing
step, especially when compound data sets are assembled from
different sources.

Module statistics contains classes for feature statistics and
distribution models. Its main classes are PairwiseStats and
CorrelatedNormalDistributions for the fingerprint
statistics and distribution models, respectively. Distribution
models are obtained from PairwiseStats objects using
the get tc distribution method, which are used to
generate unconditional and conditional models.

The module models provides the main interface for the pack-
age. It offers wrapper functions for calculating RDKit fingerprints
and contains the central method get feature statistics
for generating or retrieving fingerprint statistics for a refer-
ence data set. Once calculated, statistics are saved and can be
retrieved for later use. Exemplary applications of the module are
provided in the readme file of the ccbmlib distribution.

Results and discussion

Fingerprint statistics were calculated on the basis of the 1,691,786
unique ChEMBL compounds and distribution models were
derived. To evaluate the quality of the general model, 1,000,000
Tc values were calculated from pairs of random compounds
drawn from the ChEMBL data set and empirical CDFs were
determined. Figure 1 compares the empirical CDFs to the modeled
unconditional CDFs for the fingerprints in Table 1. Overall, the
modeled CDFs match the different value ranges and shapes of
the empirical CDFs very well. However, to assess the usefulness
of the model as a quantitative and comparative tool, the quality of
the model should be assessed with a focus on Tc values indicat-
ing high significance. The insets of the figures show an enlarged
section with Tc values having a significance of 0.9 or higher.
The models for the atom pair fingerprints are not able to accu-
rately model the distribution in this region. However, most other
Tc distributions can be modeled very well. For the MACCS,
Morgan, and topological torsion fingerprint distributions, high-
quality models are obtained with small differences between
the theoretical and empirical model. The hashed variants of the
Morgan and topological torsion fingerprints have distribu-
tions highly similar to their sparse counterparts. This can be
expected because the average feature counts reported in Table |
are also very similar, indicating that most of the sparse fea-
tures are hashed to unique values and only few collisions occur
between hashed values. The path-based Avalon and RDKit fin-
gerprints still have usable, although less accurate models. These
observations are consistent with previous observations'’. CCBM
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models pharmacophore-based fingerprints only to a limited
extent. This might be due to the specific nature of correlations
between pharmacophore features.

A quantitative summary of the observations is given in Table 2.
It reports the Kolmogorov-Smirnov statistic (KS)*, which is
defined as the maximum difference between empirical (Femp)
and modeled (F_, ) distributions:

KS(F,

Fopy (1) = Fpy ()| (24)

emp

mp * F;nodcl ) = maxx
In addition, the maximum difference for the significance
range beyond 90% is reported (KS,):

KS, (Fonps Frnodel) = max, r (=09 | Flop (X) = Floge (X) | (25)

The maximum difference for most models is observed for
common Tc values, i.e., where the slope of the CDF is steepest.
However, as can be seen from the KS, values, the high signifi-
cance range can be accurately assessed within 1% for MACCS,
most Morgan, the torsion, and the Avalon fingerprints. The
RDKit fingerprint still performs reasonably well with a KS
of 1.70, whereas values of 4.22 and 8.80 for the atom pair fin-
gerprint and its hashed variant indicate poor performance of the
model in this region.

In addition to the unconditional model, conditional distributions
were investigated when a reference fingerprint was given. As
each reference fingerprint will yield a different model, 100 com-
pounds were randomly chosen as a reference and conditional
models were derived and compared to empirical Tc distributions
by comparing the reference compound to 100,000 randomly
chosen compounds. The ranges of correspondences between
empirical and modeled significance values are shown in Figure 2.
The MACCS and Morgan fingerprints again showed the best
conditional models, all of which were close to the ideal diago-
nal. For most reference compounds, the topological torsion fin-
gerprint also yielded very good models; however, few outliers
with large deviations were observed. This might be expected
when reference fingerprints only contain very few features and
approximations by normal distributions fail to yield accurate
models.

The modeled unconditional CDFs can be used to relate Tc val-
ues of different fingerprints to each other by determining the
significance score for one type of fingerprint and using the
inverse CDF to identify the corresponding Tc value of another
fingerprint design. A caveat here is that for very high signifi-
cance scores the CDF essentially becomes a flat line and thus
the inverse would not be well defined. Figure 3 shows the cor-
respondence between MACCS Tc values and Tc values of other
fingerprint designs. The graphs emphasize how differently Tc
values of different fingerprint designs have to be interpreted. For
instance, a MACCS Tc 0. 60 corresponds to a Morgan, radius
2 Tc of 0.17 and an RDKit Tc of 0.45, each indicating a signifi-
cance score of around 0.96. The vertical dashed line corresponds
to a significance of 0.99 beyond which he curves are expected
to be less reliable and have been grayed out accordingly.
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Figure 1. Empirical and modeled cumulative distribution functions. The empirical and modeled cumulative distribution functions for the
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Table 2. Kolmogorov-Smirnov statistics.

Fingerprint KS KS,,

Atom pairs 547%  4.22%
Atom pairs — hashed 8.80% 8.80%
Avalon 6.91% 1.04%
MACCS 2.09% 0.43%
Morgan radius 1 3.64% 0.54%
Morgan radius 1 — hashed 3.37% 0.30%
Morgan radius 2 4.16% 1.26%
Morgan radius 2 — hashed 3.80% 0.83%
Topological torsions 9.31% 0.47%
Topological torsions — hashed 6.78%  0.75%
RDKit 8.03% 1.70%

KS reports the Kolmogorov-Smirnov statistic comparing

the experimental to the modeled distributions. KS, reports

the Kolmogorov-Smirnov statistic limited to Tc values with
an empirical significance of at least 90%.
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Figure 2. Empirical versus modeled significance values. For the fingerprints in Table 1, each of the graphs (a) — (k) shows the variation
of correspondences between empirical and modeled significance values of 100 conditional distributions obtained by selecting random
reference compounds. Empirical distributions for each reference compound were determined from comparisons of 100,000 randomly chosen
compounds. The black line indicates the median correspondence between empirical and modeled distribution. The dark gray area shows
the interquartile range and the light gray area the range from the 5" to the 95" percentile. The green line is the diagonal corresponding to a
perfectly matching model. The inserts highlight correspondences for significance values larger than 0.9.
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Figure 3. Corresponding Tc values for fingerprints of different
design. The graphs show the relation of MACCS Tc values to Tc
values of other fingerprint designs with corresponding significance
scores. The dashed line corresponds to a significance of 0.99.

The Python code used for data generation, data analysis, and
generation of the figures is available in form of a Jupyter
notebook in the GitHub repository”’.

Conclusions

The tools provided make it possible to evaluate the significance
of Tc values for a variety of fingerprints from RDKit. Users
can generate distribution models for different fingerprints with
respect to reference data sets. Accurate models are obtained
for most RDKIT fingerprints including the popular MACCS
and Morgan fingerprints. Based on these models, it can be
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assessed to what extent molecular similarity is accounted for by
fingerprints of different design and to what extent similar-
ity between compounds sharing the same activity is reflected by
similarity scores calculated on the basis of different fingerprint
representations. Furthermore, the conditional models can be used
to predict the suitability of fingerprints for similarity searching
and ligand-based virtual screening.
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The authors report a method for analysing the occurrence of features in a set of fingerprints that have
been generated from a reference collection of chemical structures. They use this analysis to generate
models for assessing the statistical significance of the tanimoto coefficients for pairs of fingerprints in the
set. Using the model, they can produce a plot of significance vs tanimoto coefficient (a CDF). In the paper,
the accuracy of the model is assessed by comparing the curve so produced with those created by
calculating the tanimoto coefficients for pairs of fingerprints from a large random sample of the set. The
correspondence between the modelled and empirical distribution functions is high.

The paper is clearly laid out and relatively easy to read, if one takes the maths at face value. It is likely that
it would be possible to reproduce their analysis from the information given. However, that is not strictly
necessary from a practical standpoint as the authors have made the software they have developed for the
analysis available as a Python module for anyone to download and use. They are to be commended for
this action, which is still rare in the field of cheminformatics. It is likely to increase the impact of the paper
considerably.

When | read a paper of this nature, a key question | pose myself is “how, if at all, will this help me with my
work?” Here | fear the authors have been less successful. For example, there is an implementation in the
RDK:it toolkit of the Taylor-Buttina clustering method. This is a popular way of clustering fingerprints, and
hence molecules, that is widely used for things like analysis of high-throughput screening results,
organising the results from a virtual screen etc. A key input parameter to the algorithm is a threshold
tanimoto coefficient — all fingerprints within a cluster are guaranteed to be within this similarity of the first
fingerprint placed in the cluster. The success of this method for clustering depends very strongly on the
value chosen for this threshold. Too high, and one obtains an unhelpfully large number of small clusters;
too low, and the clusters will be large and contain molecules without apparent similarity. It would be very
useful if there were a way of taking a successful threshold for one fingerprint type and using it to decide
upon a similarly successful threshold for a different type. | feel as though this paper contains a way of
doing this, but it is unclear to me quite how it would be achieved with the results presented. If the authors
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could add to the paper an example of how one would take a CDF for one fingerprint type and use it to
translate a useful tanimoto coefficient threshold for it into an equally useful threshold for a different
fingerprint type, that would, in my opinion, make the paper much more valuable.
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presented in the article?
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Thank you for your comments and your suggestion. Indeed, a potential application of the
methodology is establishing correspondences between Tc values of different fingerprints
according to their statistical significance. Therefore, a paragraph has been added to the
manuscript explaining how modeled distributions can be used to identify corresponding Tanimoto
coefficients (Tc values) for fingerprints of different design. In addition, a figure has been added
displaying the relationship between MACCS Tc values and Tc values of other fingerprints. The
software and Jupyter notebook have been updated accordingly.
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The article ‘ccbmlib: a Python package for modeling Tanimoto similarity value distributions’, by Vogt and
Bajorath is clearly written and concretely describes a method for determining the significance of tanimoto
similarity scores. The statistical technique detailed in the paper outlines a mathematical method for
converting tanimoto similarity scores from various binary molecular fingerprints into significance (p)
values. Consequently, the method provides a way of normalizing similarity scores so that comparisons
between results of searches utilizing different fingerprinting methods can be conducted easily. The paper
also outlines a ‘conditional method’ that provides a technique for estimating the distributions of similarity
scores for a given reference compound. This allows one to estimate how well a test compound would rank
in a large-scale similarity search.

The explanations and mathematical equations in the paper are easy to follow. The graphs in the results
section clearly support the findings of the study. | would recommend this paper to be indexed in its current
form.
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