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Comparative and parallel genome-wide association
studies for metabolic and agronomic traits
in cereals
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The plant metabolome is characterized by extensive diversity and is often regarded as

a bridge between genome and phenome. Here we report metabolic and phenotypic

genome-wide studies (mGWAS and pGWAS) in rice grain that, in addition to previous

metabolic GWAS in rice leaf and maize kernel, show both distinct and overlapping aspects

of genetic control of metabolism within and between species. We identify new candidate

genes potentially influencing important metabolic and/or morphological traits. We show

that the differential genetic architecture of rice metabolism between different tissues is in

part determined by tissue specific expression. Using parallel mGWAS and pGWAS we

identify new candidate genes potentially responsible for variation in traits such as grain colour

and size, and provide evidence of metabotype-phenotype linkage. Our study demonstrates a

powerful strategy for interactive functional genomics and metabolomics in plants, especially

the cloning of minor QTLs for complex phenotypic traits.
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S
essile in nature, plants produce a large array of metabolites
for their growth, development and adaptation to the
ever-changing environment1–3. There has been increasing

interest over the past decade in integrating metabolic and genetic
approaches to unravel metabolic diversity and its underlying
genetic variation in plants, including major crops4–7. Qualitative
and quantitative variation both between and within plant species
had been uncovered by advances in plant metabolomics and
large scale profiling8. Mapping approaches have linked this
variation to genetic factors9–11. These approaches have typically
been performed by using linkage mapping with bi-parental
populations5,6 and more recently by integrating high-resolution
maps generated by using next-generation sequencing with
widely targeted metabolomics12–14. Additionally, comprehensive
metabolic profiling followed by association mapping using a wide
collection of diverse natural or artificial mapping panels in
plants has facilitated large-scale gene identification and
revealed the genetic and biochemical foundations underlying
plant metabolism9,10,15–19. In addition to species-level diversity,
many studies have revealed that plant metabolites also
accumulate in a spatio-temporal manner17,20 (especially
secondary metabolites and to a lesser extent metabolites13,21).
However, the mechanisms underlying the genetic control of the
alterations among species and in different tissues within a species
remain largely unknown14,22.

Rice and maize are the two most important crops supporting
the majority of the population worldwide. These crops have
been intensively studied to identify numerous metabolic and
phenotypic traits7,9,11,13,23,24. In these selfing and outcrossing
species, respectively, genetic analyses such as genome-wide
association studies (GWAS) have shown trade-offs in power
and resolution25. However, their closely conserved genomes
suggest some shared genetic control25,26. Therefore, the combined
use of the similarities and differences between these two species
may provide insights into complex biological systems in both27,28.

Dissecting morphological traits has been a goal of plant
scientists for a long time. Numerous loci have been detected by
using both linkage and association mapping25,29–32. A number of
genes have been cloned primarily by using linkage mapping,
although the underlying mechanism has remained elusive in most
cases33–35. Metabolites are regarded as a bridge between the
genome and the phenome and can, in some cases, be either
causes or markers of morphological traits36,37. Combined
analysis of quantitative genetics (largely by quantitative trait
locus (QTL) analysis) and metabolomics has helped researchers
to infer genetic links between metabolic and phenotypic variation
in plants. These combined studies have provided important
information on the metabolic markers associated with agronomic
traits6,9,33,34. Additionally, GWAS has been used to link
metabolic traits with disease phenotypes and to provide insight
into the regulation of chronic disorders37. These studies have
provided the foundation for evaluating the genetic control of
these two sets of traits at a higher resolution via GWAS or QTL
mapping in major crops9,12,24,33,38,39.

We have previously reported a metabolic GWAS in maize
kernels15 and rice leaves16. Here we report genetic analyses
assisted by comparative and parallel GWAS in rice grains. Our
findings resulted in the identification or annotation of both
metabolites and candidate genes responsible for such metabolic
and phenotypic traits as grain width, which is an important
complex phenotypic and quality traits in rice.

Results
Metabolic profiling of rice grains. To assess the extent of the
natural variation in metabolism in rice grains, we collected grain

samples from a diverse global collection of 502 rice (Oryza sativa)
accessions (Supplementary Data 1) and performed high-
throughput quantification of their metabolites using scheduled
multiple reaction monitoring in positive mode as a widely
targeted metabolomics analysis to obtain the relative metabolite
content (Supplementary Note 1). Of the 837 metabolic features
detected in rice grains, 80 were identified by using authentic
standards, and 230 were putatively annotated (Supplementary
Note 1 and Supplementary Figs 1 and 2); these metabolites
included flavonoids, amino acids and their derivatives, fatty acids,
nucleic acids and their derivatives (Supplementary Data 2).
To statistically assess the broad-sense heritability (H2) of the
various metabolic traits, we conducted an analysis of variance by
first considering the variations between the 2012 and 2013
harvests to be phenotypic variance derived from environmental
factors (see Methods). Among the 837 metabolic features
determined in the diverse global collection of O. sativa
accessions (Supplementary Data 3), 587 metabolites were
significant (Po0.05, two-way analysis of variance, n¼ 4) on the
basis of their genetic contribution. Subsequently, we performed
studies on these 587 metabolites (Supplementary Data 4).

More than 90% of these metabolites had observed coefficients
of variation 450% (Supplementary Fig. 3a). Upon examining
individual groups of metabolites, we found that the
12 proteinogenic amino acids showed an average coefficient of
variation of 77% with a range from 58% for valine to 106% for
tryptamine. The flavonoids showed much higher and more varied
coefficients of variation, with an average coefficient of variation of
253% and a range from 71 to 1,165% (Supplementary Data 5).
The relationships among the metabolic trait contents were
evaluated using Spearman’s rank correlation. The levels of
chemically related metabolites are often correlated. We identified
high-positive correlations among metabolites including amino
acids and their derivatives, nucleotides and their derivatives,
flavonoids (Supplementary Data 6). Apigenin and chrysoeriol,
which share common substrates and enzymes in their
biosynthetic pathways, displayed a high positive association
(r¼ 0.84, P¼ 8.52E-53, Pearson’s correlation coefficient); a
similar result was also obtained between the valine and
phenylalanine levels (r¼ 0.67, P¼ 1.26E-36, Pearson’s correlation
coefficient). Some of the strongest negative correlations
were detected between O-methylapigenin C-hexoside and
1-methylnicotinamide (r¼ -0.44, P¼ 2.49E-25, Pearson’s correla-
tion coefficient) and between sinapoylcholine and 1-decanoyl-2-
hydroxy-sn-glycero-3-phosphocholine (r¼ � 0.54, P¼ 2.21E-39,
Pearson’s correlation coefficient), possibly because of competition
for the available methyl and choline groups, respectively
(Supplementary Data 6). These findings indicated that common
genetic factors controlled the contents of these metabolites.
We also observed a strong correlation between metabolites
from different categories, thus revealing previously unknown
relationships between metabolites. Metabolites with high
correlations were observed among amino acids and nucleotides
in both the indica and japonica subgroups. When the relative
metabolite levels were compared between the two rice subgroups,
we found that on average, the indica subgroup accumulated
higher levels of most of the flavonoids, especially C-glycosylated
and malonylated flavonoids, in the grain, thus confirming the
results obtained in leaves16. However, the relative levels of most
amino acids tended to be higher in the japonica than in the indica
subgroup, and this result also held true for most nucleic acids and
their derivatives (Supplementary Data 7).

Genetic basis of metabolism in rice grains. The distributions of
broad-sense heritability (H2) across all metabolites revealed the
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extent of genetic contributions in determining the content of
these metabolites. In our results, 200 metabolites displayed high
H2 values, 40.4 (ref. 12; Supplementary Fig. 3b). In addition to
the overall high H2 detected for secondary metabolites such as
flavonoids, we also observed relatively high H2 values for some
primary metabolites (Supplementary Data 5).

To dissect the genetic basis underlying the natural variation of
metabolism in rice grains, GWAS was performed using a diverse
global collection of 502 O. sativa accessions that were previously
genotyped using the Illumina HiSeq 2000 system40.
Metabolic-GWAS (mGWAS) was performed for both the full
population (the 502 lines from the sequencing panel) and each of
the two subgroups of rice, the indica subgroup (274 lines) and the
japonica subgroup (151 lines), by using a linear mixed model
(LMM), as previously reported16 (see Methods). We detected 1,489
lead single-nucleotide polymorphisms (SNPs; Supplementary
Data 8) corresponding to 476 loci in at least one of the
populations (Supplementary Data 9), within which 364 lead
SNPs (corresponding to 408 loci) were repeatedly detected
(for example, in at least two populations). A total of 56.4% of
the detected metabolites (331 out of 587) had at least one
significant association, with an average of 4.5 associations per
metabolite. These loci showed effects of up to 53.0%, with a
median of 9.0% (Supplementary Data 10). The full lists of
significant and suggestive associations are presented in
Supplementary Data 8 and 11, respectively, and may be used for
further validation and follow-up study.

The natural variation in the spatio-temporal accumulation of
various metabolites has been investigated in plants13,17,21,41.
When comparing the natural variation in the overall relative
accumulation of metabolites in different rice tissues, we observed
that the metabolism as a whole showed substantial variation
between the two tissues tested. Among the 1,420 metabolic
features detected in the two tissues, 439 and 231 metabolites
showed specific or preferential accumulation, respectively, in only
one of the tissues (Fig. 1a and Supplementary Data 12). Generally,
polyphenols showed higher accumulation in the leaves than in the
grains, with exception of polyphenols such as eriodictyol
O-malonylhexoside, catechin, di-catechin, caffeic acid and
peonidin O-hexoside (Supplementary Data 12). In contrast,
some fatty acids, vitamins and their derivatives accumulated at
much higher levels in the grains than in the leaves. Amino acids
displayed varying accumulation patterns: the majority
(including methionine, tryptamine, phenylalanine and tyrosine)
accumulated preferentially in the leaves, but higher asparagine
and arginine levels were detected in the grains (Supplementary
Data 12).

In addition to the preferential accumulation of metabolites, we
also observed the tissue-specific genetic control of metabolism. Of
the 2,947 and 1,489 significant associations detected in the leaves
and grains, respectively, only 105 were repeatedly detected in
both tissues (Supplementary Data 13). Genome-wide analysis of
the significant loci revealed 48 potential mGWAS ‘hot spots’ in
the grains, primarily located on chromosomes 6, 7, 9 and 11,
which differed from the ‘hot spots’ detected in the leaves in both
number and location (52 ‘hot spots’ primarily located on
chromosomes 2, 6, 7 and 12) (Supplementary Fig. 4). Comparison
of the loci underlying individual metabolite groups revealed that
the majority of the metabolites were under different genetic
control in different tissues, as reflected by both the associated loci
and their effect sizes (Fig. 1b). Despite the overall distinct
regulation, metabolites with moderately similar or the same
genetic architecture were also detected in both tissues (Fig. 1b and
Supplementary Fig. 5).

Novel variants underlying metabolic traits in rice grains. Next,
we searched for candidate genes responsible for the variation in
metabolic traits in rice grains, using the combined biological and
bioinformatics approaches (Supplementary Note 2). More than
30 candidate genes were newly identified, in addition to 28
previously identified genes (Supplementary Data 14). The
associated SNPs were assigned by examining the mGWAS data
from rice grains (Table 1).

We obtained eight candidate genes involved in the biosynthesis
and transportation of amino acids and their derivatives
(Supplementary Data 14). Three candidates were assigned to
the levels of choline and its lysophosphatidyl derivatives.
Clear signals for trigonelline, a bioactive compound that has
been implicated in cell cycle control42, resulted in the assignment
of seven candidate genes for this metabolite (Supplementary
Data 14). Furthermore, our mGWAS in rice grains revealed
40 candidates (both regulatory and structural genes) involved
in the biosynthesis, modification and transportation of
phenylpropanoids, including the C-glycosyl flavones, the major
class of flavonoids in cereals (Supplementary Data 14). Despite
the widely reported physiological and eco-chemical functions of
the C-glycosyl flavones, their structures and the genes responsible
for their biosynthesis have been poorly investigated in rice11,43.
The significant association between SNP sf0406521998 near
Os04g11970 (encoding a putative O-methyltransferase) and
O-methylapigenin C-hexoside (P¼ 6.7E-47, LMM, n¼ 502)
suggested that Os04g11970 encodes an O-methyltransferase
for this metabolite. The biochemical function of this gene was
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Figure 1 | Comparison of the genetic bases of metabolism between rice grains and leaves. (a) Comparison of metabolic features in rice grains and

leaves. (b) Manhattan plots of mGWAS results with genetic association in different tissues for the same metabolic features in rice. The strength of

association for the grain (top) and leaf (bottom) metabolic features is indicated as the negative logarithm of the P value for the LMM model. All metabolite-

SNP associations with P values below 6.6E-08 (horizontal dashed lines in all Manhattan plots) are plotted against the genome location in intervals of 1 Mb.

Triangles: metabolite-SNP associations with P values below 1.0E-20. AA and NA ders: amino acid and nucleic acid derivatives, respectively.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12767 ARTICLE

NATURE COMMUNICATIONS | 7:12767 | DOI: 10.1038/ncomms12767 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


subsequently confirmed by an in vitro enzyme assay using the
recombinant Os04g11970 protein from Escherichia coli
(Supplementary Fig. 6). Examination of the expression patterns
of the cloned and newly assigned candidate genes detected only in
rice grains revealed that the majority showed exclusive or
preferential expression in grains (Supplementary Data 14).
This result suggested that the distinct genetic control of
natural variation in metabolism in different tissues was partially
determined by allelic variations in genes specifically or
preferentially expressed in a tissue.

To explore the interactive metabolite and gene identifications
in rice grains, we performed principal component analysis
and used the Gaussian graphical model (GGM) to construct
networks of directly related metabolites (Supplementary Fig. 7
and Supplementary Note 1). We observed a sub-network
comprised of tryptamine, N-benzoyltryptamine and the unknown
features mr876, mr903, mr904 and mr908; this result suggested
that these metabolites were tryptamine derivatives (Fig. 2a).
This possibility was supported by the fact that mr876 and
mr904 showed a major m/z 144 fragment, which is the main ion
for tryptamine (Supplementary Fig. 8a), whereas mr903
and mr908 showed the m/z 160 fragment, which is the typical
ion for serotonin (5-hydroxyl tryptamine), in their structures
(Supplementary Fig. 8b). Interestingly, the levels of three of

the unknown metabolites (mr903, mr904 and mr908) and
N-benzoyltryptamine (mr896) were strongly associated with
SNP sf1125034484 in proximity to Os11g42370, which encodes
a putative transferase (Supplementary Fig. 9 and Supplementary
Data 8), thus suggesting that these features were acylated
derivatives of tryptamine or serotonin. The metabolites
mr876, mr904, mr903 and mr908 were tentatively assigned
as N-acetyltryptamine, N-cinnamoyltryptamine, N-benzoylsero-
tonin and N-salicyloylserotonin, respectively, on the basis of
examination of their fragmentation spectra and exact masses
(Supplementary Fig. 8 and Supplementary Data 15). These
assignments were confirmed by comparing their retention times
and fragmentation patterns with the products of recombinant
Os11g42370 (Fig. 2b,c). The putative annotation of these
phenolamides strongly suggested that Os11g42370 encodes a
novel BAHD (Benzoyl alcohol O-acetyltransferase, Anthocyanin
O-hydroxycinnamoyl transferase, Anthranilate N-hydroxycinna-
moyl/benzoyl transferase, Deacetyl vindoline 4-O-acetyltransfer-
ase) acyltransferase that catalyses the biosynthesis of
the tryptamine/serotonin-derived phenolamides reportedly
catalysed by the GCN5-related N-acetyltransferases (GNAT)
enzymes44. These findings provide new insights into the
biosynthesis of these stress-responsive phenylpropanoids in rice
grains.

Table 1 | Summary of 32 candidate genes were newly disclosed by examining the mGWAS data from rice grain.

Metabolite Associated SNP M-P value* P-trait P-P valuew Corz Candidate gene Description

Cystathionine sf0218685490 1.20E-07 Os02g31200 Esterase
Asparagine sf0310123005 5.70E-07 Os03g18130 Asparagine synthetase
LPC (1-acyl16:1) vf0131875915 4.44E-07 Os01g55360 Cytidylyltransferase
Sinapoylcholine sf0629727750 1.89E-09 Os06g49050 hAT
Trigonelline sf0235364705y 2.78E-32 GW 1.2E-08 0.40 Os02g57760 O-methyltransferase
Trigonelline sf0314995948 5.63E-08 GW 7.5E-08 0.40 Os03g26200 O-methyltransferase
Trigonelline sf0630519510 1.63E-16 GW 1.3E-08 0.40 Os06g50400 Expansin precursor
Trigonelline sf0707312584 8.93E-11 GW 6.6E-06 0.40 Os07g12780 Cyclin
Trigonelline sf0523433859 2.59E-16 GT 9.8E-11 0.38 Os05g39990 Expansin precursor
Trigonelline sf0721002801 5.94E-08 GT 6.3E-06 0.38 Os07g35060 OsFBX238
Trigonelline sf1108644317 9.84E-18 Os11g15300 O-methyltransferase
C-hex-chr O-hex sf0224981507y 2.39E-08 HC 2.2E-06 0.33 Os02g41650 PAL
Cya O-rut sf0424349335 8.17E-12 HC 6.2E-07 0.50 Os04g41350 Amino acid transporter
Del O-hex der sf0424523684 1.69E-10 HC 4.0E-09 0.61 Os04g41680 Endochitinase A
Peo O-hex sf1005351606 1.65E-10 HC 1.7E-07 0.40 Os10g09860 Chalcone synthase
Catechin sf0405211891 6.25E-10 SC 8.8E-09 0.91 Os04g09720 OsSCP22
Peo O-rut sf0423865941 9.05E-10 SC 9.4E-07 0.60 Os04g40470 Cytochrome P450
Peo O-hex sf0428130219 1.97E-12 SC 3.5E-08 0.31 Os04g47720 UGT
Di-catechin sf0519583338 1.43E-18 SC 6.8E-15 0.86 Os05g33430 Xyloglucanase inhibitor
C-pen-api O-rut sf0520731687 1.73E-07 SC 2.3E-09 �0.37 Os05g35010 Cytochrome P450
Catechin sf0706686370 2.26E-13 SC 1.9E-13 0.91 Os07g11440 Chalcone synthase
Catechin sf1223103558 1.15E-10 SC 2.1E-07 0.91 Os12g37690 MYB
Eri O-mhex sf0129468555 3.39E-08 Os01g51260 MYB
Pel O-hex sf0132150258 2.10E-12 Os01g55830 GST
Peo O-hex vf0235263818 1.21E-12 Os02g57580 Anthocyanin permease
Del O-rut sf0304428849 2.63E-07 Os03g08600 UGT
O-methylapi-C-hex vf0406561691|| 6.74E-47 Os04g11970 O-methyltransferase
C-pen-api O-rut sf0524320092 3.25E-52 Os05g41645 Chalcone synthase
Tri O-hex-hex sf0526155386 9.84E-19 Os05g45150 UGT
C-hex-lut O-couhex sf1008424002 6.59E-08 Os10g16974 Cytochrome P450
Chr O-hex-rut sf1111581156 3.90E-13 Os11g20080 O-methyltransferase
Tri O-gluc-O-hex sf1222982501 3.87E-18 Os12g37510 UGT

Metabolites abbreviations: Cya O-rut, cyanidin O-rutinoside; C-hex-chr O-hex, C-hexosyl-chrysoeriol O-hexoside; Chr O-ferhex-O-hex, chrysoeriol O-feruloylhexosyl-O-hexoside; Chr O-hex-rut,
chrysoeriol O-hexosyl-O-rutinoside; Del O-rut, delphinidin O-rutinoside; Del O-hex der, delphinidin O-hexoside derivative; Eri O-mhex, eriodictyol O-malonylhexoside; C-hex-api O-couhex, C-hexosyl-
apigenin O-p-coumaroylhexoside; O-methylapi-C-hex, O-methylapigenin-C-hexoside; Peo O-rut, peonidin O-rutinoside; C-pen-api O-rut, C-pentosyl-apigenin O-rutinoside; Peo O-hex, peonidin
O-hexoside; C-pen-api O-rut, C-pentosyl-apigenin O-rutinoside; Pel O-hex, pelargonidin O-hexoside; Tri O-hex-hex, tricin O-hexosyl-O-hexoside; Tri O-gluc-O-hex, tricin O-glucuronide-O-hexoside.
Phenotype abbreviations: GW, grain width; GT, grain thickness; GST, glutathione S-transferase; HC, hull colour; LPC, lysophosphatidylcholine; hAT, hAT transposon superfamily protein; PAL, phenylalanine
ammonia lyase; SC, seed colour.
*P value of the corresponding metabolic trait calculated by LMM.
wP value of the corresponding phenotypic trait calculated by LMM.
zThe correlation between metabotype and phenotype.
ySNP introducing initiation codon.
||2-bp deletion.
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Comparative linkage mapping among crop plants, such as
wheat, maize and rice27, has revealed correspondence among
QTLs in crop plants for traits such as seed size, shattering habit
and flowering time and has been proposed to be a useful tool for
predicting the loci of homologous major genes28,45. This concept
was modified and extended to our mGWAS for candidate gene
mining based on the co-regulation of targeted metabolic trait(s)
between species (Supplementary Note 3). We performed
comparative mGWAS between rice and maize by examining the
genetic basis of the metabolic features detected in both species. A
total of 420 (Supplementary Data 16) and 292 (Supplementary
Data 17) loci were obtained for the 123 co-detected metabolic
features in rice and maize (Supplementary Data 4), respectively.
A search for homologous loci mapped by the same metabolites
(or metabolites with similar structures) identified 42 loci
underlying the 23 co-detected metabolic features between the
two species (Fig. 3a and Supplementary Data 18). To test the
significance of our GWAS overlaps, we used the randomization
test described by Churchill et al.46 (Supplementary Note 3). The
results indicated that on average, only 3.0 out of the 42 observed
overlaps are likely due to chance alone (Supplementary Fig. 10).
In addition to the three reported genes (Supplementary Note 3,
Supplementary Fig. 11a,c and Supplementary Data 19),
our comparative mGWAS revealed new candidates for the
co-detected metabolites. For example, variation in the caffeic
acid content mapped to the SNP sf0603183527 region on chr6 in
rice and its homologous region at SNP SYNGENTA0813 in maize
(Supplementary Fig. 11d and Supplementary Data 19), suggesting
that these SNPs were indeed the loci responsible for the detected
variations in both species. These two SNPs were located within
GRMZM2G127948 and 128 kb from Os06g06980 in maize and
rice (with a local linkage disequilibrium decay of 3 kb for maize
and 150 kb for rice), respectively. Both loci encode putative
O-methyltransferases, thus making them candidates for

underlying caffeic acid in both species (Supplementary Fig. 11d
and Supplementary Data 19). Additionally, we experimentally
verified Os11g25454 as the gene encoding apigenin
glycosyltransferase, which underlies the variation of apigenin
7-O-glucoside in rice (Supplementary Fig. 11e,f and
Supplementary Fig. 10), by using an in vitro enzyme assay.
Similarly, the co-regulation of di-C, C-pentosyl-apigenin in both
species facilitated the assignment of Os06g18670 and Os06g18790
(E¼ 0 and 1E-155, respectively) as candidates underlying
C-glycosyl-apigenin or its derivatives in rice (with a local
linkage disequilibrium decay of 3 kb for maize and 50 kb for
rice; Fig. 3b, Supplementary Fig. 12 and Supplementary Data 19).
The expression of Os06g18670 driven by the ubiquitin promoter
resulted in the over-accumulation of di-C, C-pentosyl-apigenin
in rice grains, whereas the overexpression of Os06g18790 led to
increased levels of a number of mono-C-hexosyl-apigenin
derivatives. These findings support their annotation as
apigenin C-glycosyltransferases (Fig. 3c,d, Supplementary
Fig. 13). Twenty candidate genes were assigned using this
approach (Supplementary Data 19).

Dissecting complex traits by mGWAS and pGWAS. Traits
related to the rice grain are particularly relevant for efforts to
improve yield and end product35. To determine whether genetic
analysis of the metabolome could facilitate the dissection of these
complex traits, we measured six grain-related traits (hull colour,
grain colour, grain width, grain thickness, grain length and 1000-
grain weight) and performed a combined pGWAS (phenotypic
genome-wide studies) and mGWAS analysis in rice grains
(Supplementary Fig. 9). We assigned new candidate genes for
these phenotypic traits (Supplementary Data 20) in addition to
previously characterized genes and most of the candidate genes
previously reported by other GWAS experiments (Supplementary
Data 14). To further improve the dissection of these traits, links
between phenotypic and metabolic traits were genetically inferred
by evaluating common regions of genetic regulation or loci
co-localization, taking advantage of the high resolution of the
GWAS. To decrease possible false positives, we focused only on
co-detected loci underlying metabolic traits that were highly
correlated with the phenotypic traits (r40.3 (ref. 24), Po1.5E-12,
Pearson’s correlation coefficient, Supplementary Data 21).
By examining these highly resolved and co-localized loci in a
functionally and biologically relevant manner, new loci with their
candidate genes were assigned (Supplementary Data 14). In total,
our parallel mGWAS and pGWAS identified 24 associated loci,
including 17 new loci, for 6 grain-related traits (Table 1).
For example, the correlation between C-hexosyl-chrysoeriol
O-hexoside and hull colour (r¼ 0.33, Pearson’s correlation
coefficient) and the co-localization between the two traits
suggests that this metabolite might be involved in hull
colouration. We assigned Os02g41650 (encoding a putative
phenylalanine ammonia lyase) as the candidate underlying this
C-glycosyl flavone, owing to its high sequence identity (76% at
the amino acid level) with AtPAL1 and its co-expression with
flavonoid biosynthetic genes such as 4CL, DFR and F3H in rice.
We also assigned Os07g35060 (encoding F-box domain
containing protein) as the candidate for grain thickness and
Os06g50400 (an expansin precursor) as the candidate underlying
grain width. Detailed information about the associated loci and
their candidate genes is provided in Supplementary Data 14.

To experimentally validate the direct metabolite-phenotype
association, we focused on the linkage between trigonelline levels
and grain width due to the high correlation between these two
traits (Fig. 4a). One of the major loci for the trigonelline
levels mapped to a 35.3 Mb region (SNP sf0235265920) on
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chromosome 2 (P¼ 2.8E-32, LMM, n¼ 502). pGWAS showed
that this locus was also responsible for the variation in grain
width. Transgenic positive progeny (T2 generation) with
overexpression of Os02g57760 exhibited the over-accumulation
of trigonelline and wider grains, whereas the T2 RNA interference
plants showed the opposite phenotype (Fig. 4b and
Supplementary Fig. 14). Therefore, we reasoned that
Os02g57760 and trigonelline were the quantitative trait gene
and metabolite, respectively, underlying rice grain width.

In accordance with the data obtained from whole grains,
similar results were observed for the length and width of the
longitudinal epidermal cells of the outer glumes and inner glumes
in the T1 Os02g57760 transgenic lines, whereas the cell number
exhibited the opposite trend (Fig. 4c). These data suggested that
trigonelline regulates the grain width by promoting cell expan-
sion. Similar phenotypes have been reported in tobacco BY-2 cells
overexpressing SpCDC25 (ref. 47) and in tomato plants with
down-regulated WEE1 (ref. 48), which results in a reduction in
the mitotic cell length. Because trigonelline has been reported to
induce G2 cell cycle arrest42, we analysed the expression of five
genes putatively involved in the G2/M phase and two genes
having important roles in mitosis, namely CDKB2.1, CYCA2.1,
CYCA2.2, CYCA2.3, CYCB2.1, CDKB1.1 and CYCB1.1 (ref. 49;
Fig. 4d,e). The transcript levels of these seven putative
G2/M-phase genes were significantly downregulated and
elevated in the over-expression (OX) and RNA interference

plants, respectively, compared with wild type plants (Fig. 4e).
These results suggest that trigonelline positively affects the grain
width by elongating the G2 phase and the duration of the whole
cell cycle. Further research is needed to obtain a detailed
mechanistic understanding of the role of trigonelline in
regulating grain width.

Discussion
The importance of rice as the major diet supporting half of the
world’s population makes it an invaluable research target.
Understanding the natural variation and genetic control of a
wide spectrum of metabolites, including ones with nutritional and
health-promoting importance such as amino acids and
flavonoids, in rice grains has been furthered in this work and in
previous studies7,50.

A large number of genetic studies have been performed to
identify QTLs for a broad range of primary and/or secondary
metabolites in both crops6,11,12,51–53 and non-crop plants5,54–57.
Our current broader-scale profiling, based on these studies, but
performed with a larger sample size and using more markers
contributed to the identification of more mapped loci with an
overall higher resolution. We demonstrated that the distinct
genetically controlled natural variation of metabolism in different
tissues is likely partially determined by allelic variation in
genes that are expressed specifically or preferentially in
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Figure 3 | Comparative mGWAS between rice and maize. (a) The global view and relationships of comparative mGWAS results between rice and maize.

I: oriented homologous loci between rice and maize. Links in colour represent homologous loci of different types of metabolites between rice and maize.

Red: flavonoid; blue: nucleic acid; green: alkaloid, amino acid and fatty acid; yellow: polyamine and polyphenol; cyan: others and unknown. II: schematic

diagram of chromosomes of rice and maize. The scale of chromosomes in maize is half of that in rice. III: bar plot of loci with candidate genes in rice and

maize according to their � Log10(P) value. (b) Co-linear genomic regions and homologous loci (or genes) of di-C, C-pentosyl-apigenin between rice grains

and maize kernels. Os06g18670 and Os06g18790 are homologous (or orthologous) to GRMZM2G383404. Os06g18820 is homologous to GRMZM2G114801.

Bar plots for the messenger RNA level of Os06g18670 (c) and the content of di-C, C-pentosyl-apigenin (d) in transgenic individuals. WT: the transgenic

background variety ZH11. The P value is calculated using the Student’s t tests. Data are shown as the means±s.e.m., n¼ 3.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12767

6 NATURE COMMUNICATIONS | 7:12767 | DOI: 10.1038/ncomms12767 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


individual tissues and encode enzymes responsible for metablolite
biosynthesis (Fig. 1). Additionally, the joint analysis of individual
metabolites across the two tissues via multivariate GWAS analysis
using the MTMM approach58 makes it possible to distinguish
association signals shared across the tissues from signals specific
to one tissue (Supplementary Figs. 4 and 5 and Supplementary
Data 12).

Despite the distinct genetic architecture for complex traits
observed between rice and maize, representing selfing and
outcrossing species25, respectively, our comparative mGWAS
analysis indicated that the two plants likely share common
genetic control strategies for certain metabolites (Supplementary
Data 19). Taking advantage of the high resolution and the
saturated SNPs in the maize and rice mGWASs7,9,13, respectively,
we examined the ‘common’ genetic loci that determine the levels
of the same or similar metabolites not only to cross-validate
the GWAS results in both species but also to facilitate the
identification of new loci and the assignment of corresponding
putative causative genes for these metabolic traits (Fig. 3 and

Supplementary Data 19). However, this strategy is restricted to
the ‘common’ loci shared between plant species28,45.

Understanding the links between genotype and phenotype
in Asian rice may aid efforts to improve world food supplies in
terms of sustainability and reliability as well as quality and
safety25,35. Investigations of the genetically inferred links
between phenotypic and metabolic traits by QTL (or GWAS)
co-localization based on linkage mapping have provided evidence
for the genetic co-regulation of these traits6,9,34 and in some cases
for the assignment of candidates underlying the interactions in
model plants33. Benefitting from the relatively high resolution of
GWAS compared with QTL analysis, the evaluation of common
regions that affect both metabolic and phenotypic traits by
parallel mGWAS and pGWAS has identified candidate
biomarkers for traits such as grain colour and grain size
(Supplementary Data 21). Moreover, we were able to generate
testable hypotheses and experimentally further validate a role for
Os02g57760 (the nicotinic acid N-methyltransferase), in
determining grain width (Fig. 4). This strategy may be applied
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Figure 4 | Evidence of metabotype-phenotype linkage. (a) Correlation between grain width (GW) and trigonelline content in 489 rice varieties.

(b) Comparison of spikelet hull. Left: spikelet (scale bar, 3 mm). Middle: cross-section of spikelet hull (scale bar, 500mm). Right: comparison of grain width.

(c) Magnified view of spikelet hull cross-section from the box in b. Scale bar, 50mm. Comparison of cell number, mean cell length and width in the outer

parenchymal cell layers of spikelet hulls of WT, over-expression (OX) and RNA interference lines, respectively. (d) Transcript levels of genes associated

with cell cycle regulation. (e) Transcript levels of genes involved in mitosis. The r value is based on the Pearson correlation coefficient. The P value is

calculated using the Student’s t tests. WT: the transgenic background variety ZH11. Data are shown as the means±s.e.m., n¼ 3.
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to the dissection of the causative factors of phenotypic traits,
particularly minor QTLs and metabolic composition.

In summary, the integrative approach described here is a
powerful strategy for interactive rice functional genomics and
metabolomics, which should help elucidate the overall genetic
and biochemical regulation of metabolic and agronomic traits
and lead to more rational and rapid genetic improvements in
crops.

Methods
Plant material and growth conditions. A diverse worldwide collection of 502
O. sativa accessions including both landraces and elite varieties was obtained16.
Information about the accessions, including variety name, country of origin,
longitude and latitude origin and subpopulation identity is listed in Supplementary
Data 1. The metabolite data set presented was based on 502 field-grown accessions
from two years, 2012 and 2013. Plants were grown in a randomized complete-block
design (including two rows of each accession and ten plants in each row) with two
replicates for each year59. Two leaves were harvested from each of three randomly
chosen plants at the five-leaf stage and pooled for leaf samples16. Mature seeds were
randomly collected from 3 of the 17 remaining plants and pooled for metabolic
profiling. In all, four sample sets (two years * two replications for each year) per
accession were used for metabolomics studies.

Rice plants examined under field conditions were grown during the normal
rice-growing seasons in the Experimental Station of Huazhong Agricultural
University (Wuhan, China). All seeds were planted in a seedbed in mid-May and
transplanted to the field in mid-June. The planting density was 16.5 cm between
plants in a row, with the rows 26 cm apart. Field management, including irrigation,
fertilizer application and pest control are essentially followed normal agricultural
practice.

Metabolite profiling. A liquid chromatography-electrospray ionization-tandem
mass spectrometry system was used for the relative quantification of widely tar-
geted metabolites in dried rice grain samples60. The dried rice grain was crushed
using a mixer mill (MM 400, Retsch) with a zirconia bead for 1.5 min at 30 Hz,
100 mg dried powder was weighted and extracted overnight at 4 �C with 1.0 ml
pure methanol (or 70% aqueous methanol) containing 0.1 mg l� 1 lidocaine
(internal standard) for lipid-solubility metabolites (or water-solubility metabolites).
Quantification of metabolites was carried out using a scheduled multiple reaction
monitoring method60. The relative signal intensities of metabolites were
normalized by first dividing them by the intensities of the internal standard
(lidocaine, 0.1 mg l� 1; ref. 7) and then log 2 transforming them for further
normalization to improve the normality. A data matrix containing the 837 relative
intensities of metabolites from 2008 runs (502 accessions * four sample sets)
was produced for the rice population (Supplementary Data 3). The m-trait
data of the association panel are the mean values of the four biological sample
sets for the liquid chromatography–mass spectrometry as shown below: Pm,l¼ 1/
4(Pm,l,1þ Pm,l,2þ Pm,l,4þPm,l,4), where Pm,l represents the m-trait data for
metabolite m (m¼ 1, 2, 3, ..., 837 in grain) in accession l (l¼ 1, 2, 3, ..., 502), and
Pm,l,1, Pm,l,2, Pm,l,3 and Pm,l,4 are the normalized metabolite levels determined in the
four sample sets, respectively.

Genome-wide association analyses. Sequence data were obtained from the
website RiceVarMap (http://ricevarmap.ncpgr.cn)40. Only SNPs with an
MAFZ0.05 and the number of varieties with a minor alleleZ6 in a (sub) panel
were used to perform the mGWAS. There are 2,767,191, 1,857,866 and 3,916,415
SNPs used in GWAS for subpopulations of Indica, Japonica and the whole panel,
respectively. Population structure was modelled as a random effect in LMM using
the kinship (K) matrix. We performed GWAS using LMM provided by FaST-LMM
program61. Two different genome-wide thresholds (significant and suggestive)62

were set to define associations, using a ‘modified’ Bonferroni correction described
by Li et al.63 in which the total SNPs for threshold calculation was replaced by the
effective number of independent SNPs (Me). The calculated genome-wide
significant threshold, based on the original Bonferroni calculation of 0.05/Me, were
6.6E-8, 8.7E-8, and 2.0E-7 (LMM, n¼ 502) for All, Indica and Japonica,
respectively62. The calculated genome-wide suggestive threshold, based on the
original Bonferroni calculation of 1/Me, were 1.3E-6, 1.8E-6 and 4.1E-6 (LMM,
n¼ 502) for All, Indica and Japonica, respectively62.

Statistical analysis. The coefficient of variation19 values were independently
calculated for each metabolite (using the mean of the four sample sets of the
normalized metabolic data) as below: s/m, s and m represent the s.d. and the mean
of each metabolite relative intensity in the population, respectively. The
broad-sense heritability (H2) was estimated using mixed effects model12 with
random effects for genotype (502 accessions), environment (years 2012 and 2013),
and genotype-environment interactions. We used the lmer function from the lme4
package64 in the R environment.

Linkage disequilibrium was estimated using standardized disequilibrium
coefficients (D’) and squared allele-frequency correlations (r2) for pairs of SNP loci
according to the TASSEL software program (http://www.maizegenetics.net/tassel).
Linkage disequilibrium plots were generated in Haploview, indicating the r2 values
between pairs of SNPs (white, r2¼ 0, shades of grey, 0or2o1 and black, r2¼ 1,
Pearson’s correlation coefficient).

Gaussian graphical modelling. GGM, an undirected probabilistic graphical model
estimating the conditional dependence between variables, is based on pairwise
Pearson correlation coefficients conditioned against the correlation with all other
metabolites65. A full data matrix was constructed from 502 samples for the different
subgroups (all, indica and japonica) and 587 metabolites for the GGM calculation.
GeneNet package 1.2.8 (from the CRAN, http://www.cran.r-project.org/) was used to
estimate the P-correlation and assess the significance of the edges between
metabolites. A significant P valueo2.9E-07 (0.05/171,991) with an absolute partial
correlation cutoff of P¼ 0.05 was applied to filter the results. In total, 1,464
metabolite pairs were used to construct a metabolic network with the software
Cytoscape (3.0.2).

Homologous loci detection and gene model identification. The co-detected
metabolic traits in both species were used to filter out loci through mGWAS in rice
and maize grain, respectively. The calculated genome-wide threshold was set at
P¼ 1.8E-06 (MLM, n¼ 339) for maize15 and P¼ 1.3E-06, 1.8E-06 and 4.1E-06
(LMM, n¼ 502) for whole panel, indica and japonica of rice, respectively16. The
sequence alignment analysis was based on a VISTA sequence alignment algorithm
program66 between the rice genome (Nipponbare, MSU version 6.1) and the maize
kernel genome (B73, RefGen_v2). A BLAST search was performed on any maize
peptide sequence against the internationally available rice databases. Expression
profile data were obtained from CREP (http://crep.ncpgr.cn/crep-cgi/home.pl). The
visualization of homologous blocks and significant loci with functional genes was
performed with Circos67. To test the significance of our GWAS overlaps, we
adopted the randomization test of Churchill et al.46 to determine the proportion of
overlaps expected to occur by chance (Supplementary Note 3).

Phenotyping. Fully filled grains were used to measure the grain length, width,
thickness and weight. Twenty randomly chosen grains were lined up length-wise to
measure the grain length using an electronic digital caliper, then arranged by
breadth to measure the grain width. The grain thickness was determined
individually for each grain using an electronic digital caliper. Finally, the values
were averaged and used as the measurements. The grain weight was initially
obtained by weighing a total of 100 grains, then converting the average of three
independent repeats to the 1,000-grain weight, which is a commonly used scale for
yield evaluation. The hull colour and seed colour were scored on a scale of 1–4
(white, yellow, red and black).

Phylogenetic analysis different gene families. The amino acid sequences were
aligned using the CLUSTALW (version 1.83) program. The neighbour-joining tree
was constructed using aligned full-length amino acid sequences (MEGA5). Boot-
strap values from 1,000 replicates are indicated at each node. Bar¼ 0.1 amino acid
substitutions per site.

Rice transformation and expression analyses. The over-expression constructs of
Os02g57600, Os06g18670 and Os06g18790 were generated by directionally inserting
the full complementary DNA (cDNAs) from Zhenshan 97 first into the entry
vector DONR207 and then into the destination vector pJC034 uses the Gateway
recombination reaction (Invitrogen). Primers used in this study are shown in
Supplementary Data 23. For each constructs, at least three independent
over-expression plants were selected for the targeted metabolites analysis.

We isolated total RNA from rice using an RNA extraction kit (TRIzol reagent;
Invitrogen) according to the manufacturer’s instructions. The first-strand cDNA
was synthesized using 3 mg RNA and 200U M-MLV (Invitrogen) reverse
transcriptase according to the manufacturer’s protocol. The expression
measurements were obtained using the relative quantification method.

Expression of candidate genes. Full-length cDNA of candidate genes
(Os11g42370, Os11g25454 and Os04g11970) were amplified with the primers using
cDNA from Nipponbare as a template. The expression constructs of Os11g42370
(Os11g25454 and Os04g11970) were generated by directionally inserting the full
cDNA into the entry vector pDONR207 (Invitrogen) and then Error-free clones was
into the expression vector pDEST17 (or pDEST15) by attL�attR (LR) recombination
(Invitrogen). Recombinant proteins were expressed in BL21 (DE3) cells (Novagene)
following induction by addition of 0.4 mM isopropylthiogalactoside and growing
continually for 12 h at 16 �C. Cells were harvested and pellets were frozen at � 80 �C.
Pellets were re-suspended in 50 mM sodium phosphate buffer (pH 7.8) and lysed by
sonication. The crude extract was collected and clarified by centrifugation at 12,000g
for 15 min at 4 �C and supernatant of the crude enzyme was stored at � 80 �C.
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Candidate genes assay. The enzyme reactions in vitro assay for the biosynthesis
of N-cinnamoyltrypamine, N-benzoyltrypamine and N-benzoylserotionin were
performed in a total volume of 100 ml containing 200mM Cinnmoyl-CoA
(Benzyol-CoA), 1 mM serotonin (trypamine) and 5 ml supernatant protein in
potassium phosphate buffer (100 mM, pH 7.4) was incubated for 1 h at 37 �C. For
Os11g25454, a total volume of 100ml containing 100 mM apigenin substrate, 1 mM
uridine diphosphate glucose (UDP glucose), 5 mM Mg2þ and 5 ml supernatant
protein in potassium phosphate buffer (100 mM, pH 6.8) was incubated for 1 h at
37 �C. For Os04g11970, the standard in vitro assay for the biosynthesis of O-
methylapigenin C-hexoside was performed in a total volume of 100 ml containing
100mM AdoMet SAM (sigma) and 50mM apigenin 6-C-glucoside in 10 mM
sodium phosphate buffer (pH 7.8). After incubating at 37 �C for 1 h, the reaction
was stopped by adding 200ml of ice-cold 0.5% trifluoroacetic acid. The reaction
mixture was then filtered through a 0.2 mm filter (Millipore) before being used for
liquid chromatography–mass spectrometry analysis.

Sectioning and microscopy. Paraffin sections were made according to the method
of Yao et al.68. Samples were whole stained with Ehrlich’s hematoxylin for 2 days
before dehydration and restrained with toluidine blue after section acquisition.
Cellular observation was realized by using Olympus BX61 (Olympus, Japan).

Source data sets. Information regarding the source of published data sets15,16

used in Supplementary Tables 3, 8 and 9 and Supplementary Data 2 and 3 are
shown in Supplementary Data 22.

Data availability. The authors declare that all other data supporting the findings
of this study are available within the manuscript and its supplementary
information files or are available from the corresponding author upon request.
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