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Abstract

 

Natural killer (NK) T cells are activated by synthetic or self-glycolipids and implicated in innate
host resistance to a range of viral, bacterial, and protozoan pathogens. Despite the immunoge-
nicity of microbial lipoglycans and their promiscuous binding to CD1d, no pathogen-derived
glycolipid antigen presented by this pathway has been identified to date. In the current work,
we show increased susceptibility of NK T cell–deficient CD1d

 

���

 

 mice to 

 

Leishmania donovani

 

infection and 

 

Leishmania

 

-induced CD1d-dependent activation of NK T cells in wild-type animals.
The elicited response was Th1 polarized, occurred as early as 2 h after infection, and was inde-
pendent from IL-12. The 

 

Leishmania

 

 surface glycoconjugate lipophosphoglycan, as well as related
glycoinositol phospholipids, bound with high affinity to CD1d and induced a CD1d-dependent
IFN

 

�

 

 response in naive intrahepatic lymphocytes. Together, these data identify 

 

Leishmania

 

 surface
glycoconjugates as potential glycolipid antigens and suggest an important role for the CD1d–NK
T cell immune axis in the early response to visceral 

 

Leishmania

 

 infection.
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Introduction

 

Protozoan parasites of the genus 

 

Leishmania

 

 are responsible
for a spectrum of diseases collectively termed leishmaniasis,
that afflict millions of people worldwide (1). Depending on
parasite species and host immune response, 

 

Leishmania

 

 in-
fection ranges from self-healing cutaneous lesions, destructive
skin, and mucosal disease to the fatal visceral infection
caused, for example, by 

 

Leishmania donovani

 

. No clinically
effective vaccine exists.

 

Leishmania

 

 is transmitted by the bite of infected 

 

Phlebotomine

 

sand flies that inoculate highly infective metacyclic promas-
tigotes into the mammalian host, where they differentiate
inside macrophage phagolysosomes into the replicative
amastigote form. The remarkable resistance of 

 

Leishmania

 

to hydrolytic environments, encountered in both the insect
and mammalian hosts, is conferred by a dense surface gly-
cocalyx, formed by related glycoinositol phospholipids

(GIPLs) and lipophosphoglycan (LPG), and proteins such
as the parasite surface protease gp63, proteophosphoglycans
and gp46. LPG is the major component of the surface gly-
cocalyx and is composed of a [Gal

 

�

 

1-4Man

 

�

 

1-PO

 

4

 

] repeat
unit that is attached to the parasite membrane through a
heptasaccharide core and a 1-O-alkyl-2-lyso-phosphatidyl-
inositol lipid anchor (2). LPG is an important virulence
determinant implicated in many aspects of parasite patho-
genicity (3). It confers resistance to lytic complement (4),
scavenges toxic host cell oxygen radicals (4, 5), and inhibits
phagolysosomal fusion (4, 6), thereby inactivating several
important innate host defense mechanisms.

Mammalian hosts have evolved pathways of natural immu-
nity that recognize pathogen-derived glycolipids such as
LPG of 

 

Leishmania

 

, and can initiate appropriate antimicrobial
immune responses. One potential pathway for host re-
sponses to pathogen-derived glycolipids involves the CD1
system of MHC class I–like proteins (7). CD1d, the only
CD1 isoform expressed in the mouse, is the ligand for the
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TCRs of a subset of innatelike lymphocytes, which are re-
ferred to as NK T cells and are classified according to their
reactivity and TCR usage. Many of these cells express a ca-
nonical V

 

�

 

14J

 

�

 

18 TCR

 

�

 

-chain and are referred to as in-
variant NK T cells (

 

i

 

NK T cells). The 

 

i

 

NK T cell popula-
tion is also characterized by its uniform reactivity with a
specific form of 

 

�

 

-galactosylceramide (

 

�

 

GC) known as
KRN7000, a synthetic analogue of a marine sponge gly-
colipid considered to be a prototype NK T cell ligand (8).
However, considerable variability occurs within the TCR

 

�

 

-
chain repertoire of 

 

i

 

NK T cells, which may extend their
range of glycolipid recognition beyond 

 

�

 

GC (9). In con-
trast, a smaller subset of NK T cells with more diverse
TCRs (

 

d

 

NK T cells) do not respond to 

 

�

 

GC but to other,
unknown ligands in the context of CD1d (10).

As a surrogate antigen, 

 

�

 

GC has been very useful in de-
termining the contribution of 

 

i

 

NK T cells to antitumor ac-
tivity and autoimmune disease (11). A potential role for 

 

i

 

NK
T cells in antimicrobial resistance has been postulated based
on the increased resistance of 

 

�

 

GC-treated mice during ex-
perimental infection with hepatitis B virus (12), cytomega-
lovirus (13), 

 

Mycobacteria

 

 (14), murine malaria (15), and 

 

Try-
panosoma cruzi

 

 (16). Likewise, CD1d-deficient mice, which
lack both 

 

i

 

NK T cells and 

 

d

 

NK T cells, show increased sus-
ceptibility to various bacterial, fungal, and parasitic infections
(17), suggesting that CD1d-restricted lymphocytes are an
important component in the response to pathogens. How-
ever, the use of 

 

�

 

GC provides serious limitations for the
study of CD1d-restricted T cells during infection, as neither
the stimulus nor the robust induction of IFN

 

�

 

 and IL-4 may
accurately replicate what occurs in natural infection. Also, to
the best of our knowledge, no microbial glycolipid antigen
presented by CD1d or capable of activating NK T cells has
been defined to this date, even though microbial lipoglycans
can be bound by CD1d (18, 19–21).

Here, we demonstrate that CD1d is required for full host
resistance to 

 

L. donovani

 

 in liver and spleen during mouse
infection, and for normal development of the granuloma-
tous response characteristic of visceral leishmaniasis. We
identified the major 

 

Leishmania

 

 surface glycoconjugate LPG
as a potential glycolipid antigen, which binds to CD1d and
stimulates robust IFN

 

�

 

 production in naive hepatic lym-
phocytes. Although NK T cells play only a minor role at
most in the peripheral immune response during experi-
mental cutaneous leishmaniasis (22–24), our results indicate
that intrahepatic CD1d-restricted lymphocytes contribute
significantly to resistance to visceral leishmaniasis.

 

Materials and Methods

 

Leishmania Culture. 

 

Promastigotes of 

 

L. donovani

 

 LD1S
clone 2D (designation MHOM/SD/62/1S-CL2

 

D

 

 by the WHO;
reference 25) were grown at 26

 

�

 

C in medium M199 containing
10% FBS as described previously (26).

 

Mouse Strains and Infection. 

 

Female CD1d-deficient
C.129S2-Cd1

 

tm1Gru

 

 (backcrossed for 11 generations on a BALB/c
background), IL-12p40–deficient B6.129S1-IL12b

 

tm1Jm

 

/J, and
their respective congenic controls were purchased from The

Jackson Laboratory. For mouse infections, 10

 

7

 

 promastigote para-
sites from day 4 of stationary culture or splenic amastigotes (1
Sudan strain) obtained from infected hamsters were inoculated in
a volume of 200 

 

�

 

l into mice via tail vein injection (27). Parasite
burden in liver and spleen was assessed microscopically at regular
intervals between 1 and 8 wk after inoculation by tissue imprints
and Giemsa staining, and parasite burden was estimated by count-
ing the number of amastigotes per 1,000 cell nuclei times the or-
gan weight in milligrams (Leishman Donovan Units). For anti-
CD1d antibody-treatment, 0.5 mg of affinity-purified anti-CD1d
mAb isolated from hybridoma 1B1 culture supernatant was in-
jected i.p. 1 d before 

 

L. donovani

 

 infection (hybridoma was pro-
vided by M. Kronenberg, La Jolla Institute for Allergy and Im-
munology, San Diego, CA; reference 28). Granuloma formation
was assessed by haematoxylin staining of formalin-fixed and par-
affin-embedded tissue sections. Granulomas were scored as im-
mature (developing, no, or only few lymphocytes associated) or
mature (more than five lymphocytes associated), or if devoid of
visible intracellular amastigotes, as “cured” (29).

 

RNA Extraction and Real-Time PCR. 

 

Total RNA was ex-
tracted from infected unperfused liver tissue with the TRIzol re-
agent (GIBCO BRL) according to the manufacturer’s recom-
mendations, resuspended in RNase-free water, and stored at

 

�

 

80

 

�

 

C. Reverse transcription and PCR was performed with the
Taqman one-step RT-PCR kit (Applied Biosystems) using 20

 

�

 

g total RNA. Specific probes for 

 

Leishmania

 

 18S rRNA
(forward primer 5

 

�

 

-CGTAGGCGCAGCTCATCAA-3

 

�

 

, reverse
primer 5

 

�

 

-AACGACGGGCGGTGTGTA-3

 

�

 

, and probe 5

 

�

 

-
TGTGCCGATTACGTCCCTGCCA-3

 

�

 

) and eukaryotic 18S
rRNA (Applied Biosystems) labeled with both a reporter and a
quencher dye was added into the RT-PCR mix at the beginning
of the reaction. Relative parasite burden was determined accord-
ing to the formula 2

 

�		

 

Ct

 

, where Ct is the threshold cycle num-
ber, 

 

	

 

Ct 

 




 

 Ct

 

leishmania 18S rRNA

 

 

 

�

 

 Ct

 

eukaryotic 18S rRNA

 

, and 

 

		

 

Ct 

 



	

 

Ct

 

uninfected

 

 

 

�

 

 

 

	

 

Ct

 

infected

 

. Analysis was performed using the ABI
Prism 7900HT apparatus (PerkinElmer).

 

Glycolipids and Glycolipid Purification. 

 

Purified sulfatide (ga-
lacto-cerebroside sulfate) from bovine brain was obtained from
Sigma-Aldrich. The preparation of 

 

�

 

GC used in this work was
synthesized using a method developed by the authors that will be
described elsewhere (unpublished data). The structure of the

 

�

 

GC used in the current work was identical to that previously
published for KRN7000 (30), except that the fatty acid chain
length was two carbons shorter (C24:0 instead of C26:0). Syn-
thetic 

 

�

 

GC was purified to homogeneity, and the structure was
validated by mass spectrometry and NMR spectroscopy. LPG
from log phase promastigote cultures was extracted in solvent E
(H

 

2

 

O/ethanol/diethyl ether/pyridine/NH

 

4

 

OH; 15:15:5:1:0.017)
as described previously (31). The solvent E extract was dried by
N

 

2

 

 evaporation, resuspended in 0.1 N acetic acid/0.1 M NaCl,
and applied to a column of 2 ml phenyl-sepharose, equilibrated in
the same buffer, and eluted with solvent E. Promastigote GIPLs
were extracted and purified as described previously (32). In brief,
cell pellets were extracted twice in five volumes of chloroform/
methanol/water (1:2:0.8, by volume), and the insoluble material
was removed by centrifugation (5,000 

 

g

 

, 15 min). Water was
added to the combined supernatants to give a final chloroform/
methanol/water ratio of 4:8:5.6 (by volume), and the two phases
were separated by centrifugation (14,000 

 

g

 

, 1 min). The upper
aqueous phase was dried under nitrogen, and nonlipidic material
was removed by chromatography on a small column of 2 ml oc-
tyl-sepharose, eluted first with 0.1 M NH

 

4

 

OAc, 5% (vol/vol)
1-propanol (10 ml) followed by 40% 1-propanol (5 ml). The LPG
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was depolymerized with mild acid (0.02 N HCl, 100

 

�

 

C, 5 min),
and the water-soluble fragments were removed by water-satu-
rated butanol partitioning (33). The phosphorylated glycan core-
PI was dephosphorylated with alkaline phosphatase in 15 mM
Tris HCl, pH 9.0 (1 U, 16 h, 37

 

�

 

C), and treated with green cof-
fee bean 

 

�

 

-galactosidase in 0.1 M citric acid, 0.2 N sodium phos-
phate, pH 6.9 (1 U, 16 h, 25

 

�

 

C) as described previously (34).

 

Liver-Lymphocyte Preparation, Intracellular Cytokine Staining, and
Flow Cytometry.

 

Livers were perfused with ice-cold PBS, pressed
through a 70-mm cell strainer, and cell suspensions were centri-
fuged twice at 200 

 

g

 

 for 2 min to remove cell debris and hepatic
parenchymal cells. Supernatants were resuspended in a 40% iso-
tonic Percoll solution (Amersham Biosciences), underlayed with
60% isotonic Percoll solution, and centrifuged for 20 min at 900 

 

g

 

.
Liver lymphocytes were recovered from the 40/60% interface,
washed once with cold RPMI 1640 medium (Life Technologies),
and resuspended in FACS buffer containing 1% BSA and 0.02%
NaN

 

3

 

. Cell staining was performed in a volume of 50 �l in 96-
well plates. In brief, 105 cells were incubated for 15 min at 4�C
with 2.4G2 anti-Fc�R mAb (BD Biosciences) to block nonspe-
cific antibody binding and incubated for a further 20 min at 4�C
with FITC or PerCP-conjugated 145-2C11 anti-CD3� mAb (BD
Biosciences) and PE-conjugated �GC-loaded mCD1d tetramers
(35) and unloaded controls. Intracellular cytokine staining was
performed on CD1d-tetramer labeled cells using the BD Cytofix/
Cytoperm Kit (BD Biosciences) in combination with FITC-
conjugated XMG1.2 anti-IFN� mAb and allophycocyanin-con-
jugated 11B11 anti–IL-4 mAb (BD Biosciences). Background
fluorescence was controlled using fluorophore-conjugated iso-
type-specific antibodies and unloaded tetramer. Fluorescence was
quantified by flow cytometry with a Becton Dickinson FACSCal-
ibur instrument (excitation, 455 and 635 nm).

Dendritic Cell Isolation, Infection, and T Cell Activation Assay.
Bone marrow–derived dendritic cells (hence referred to as BM-
DCs) from female C57BL/6 mice were cultured in DMEM sup-
plemented with 10% FCS and 30% conditioned supernatant from
myeloma cell line Ag8653-expressing mouse GM-CSF (36). DC
differentiation was verified by measuring CD11c expression by
flow cytometry. After 6 d of culture, cells were detached by
treatment with PBS/200 �M EDTA at 4�C, and 104 BM-DCs/
well were seeded in 96-well plates (BD Biosciences). Infection of
BM-DCs was performed using cultured LD1S promastigotes
from day 2 of stationary growth at a ratio of 10 parasites per host
cell. Uningested parasites were removed 2 h after incubation at
37�C by washing. For T cell activation, BM-DCs were pulsed for
2 h with 100 ng/ml �GC or 5 �M of purified LPG for 12 h at
37�C. 5 � 104 cells of mouse iNK T cell hybridoma DN34A-1.2
(37) or 104 liver lymphocytes from naive C57BL/6 mice were
added per well and incubated for 48 h at 37�C in RPMI 1640
10% FCS. Thereafter, murine IL-2 and IFN� production were
assessed by standard capture ELISA (BD Biosciences). All culture
media were endotoxin free by the Pyrotell Limulus Amebocyte
Lysate test (Associates of Cape Cod Inc.).

LPG-binding and Competition Assay. Mouse recombinant
CD1d proteins were prepared using a baculovirus expression sys-
tem as described previously (37). Purified L. donovani GIPLs or
LPG, and sulfatide (Sigma-Aldrich) at various molar excesses
were preincubated with 0.5 �M (25 �g/ml) soluble CD1d pro-
teins in 15 �l for 1 h at 37�C. The lipid–CD1d complexes were
diluted with PBS to a final concentration of 0.05 �M (2.5 �g/
ml), and triplicate wells of a microtiter plate were coated with 50
�l aliquots. Unbound glycolipids and CD1d proteins were re-
moved by washing with PBS, and complexes were further incu-

bated with 2 nM �GC for various times. After washing with PBS
to remove unbound �GC, mouse NK T hybridoma DN32D3
cells (5 � 104/well; reference 19) were added and incubated for
20 h in 200 �l of complete media at 37�C. Levels of murine IL-2
were measured by the standard capture ELISA (BD Biosciences).
Displacement of prebound glycolipid was analyzed using CD1d-
coated 96-well plates (0.05 �M CD1d in 50 �l for 1 h at 37�C),
which were sequentially incubated with 33 nM �GC and 33 nM
of purified LPG (or vice versa), each for 1 h at 37�C. For compe-
tition assay, 33 nM �GC was added along with increasing con-
centrations of LPG ranging between 1 and 333 nM, and �GC
binding was determined by IL-2 production of mouse NK T hy-
bridoma DN32D3 (5 � 104) 16 h later.

Results
Increased Susceptibility to Visceral Leishmania Infection in

CD1d-deficient Mice. We tested the relevance of the
CD1d–NK T cell immune axis in antileishmanial immu-
nity by infection of NK T cell–deficient CD1d��� mice
and congenic BALB/c controls. Groups of mice were in-
oculated with splenic amastigotes, and parasite burden was
assessed during 8 wk after infection in liver and spleen. 1
wk after the infection, the parasite burden was equally low
in both mutant and control mice (Fig. 1 A). In contrast, at

Figure 1. Requirement for CD1d expression for normal antileishmanial
resistance. (A) Mouse infection. Female CD1d-deficient BALB/c mice
and congenic controls were inoculated with 107 splenic amastigotes by
tail vein injection, and parasite burden in liver and spleen was assessed
microscopically on Giemsa-stained tissue imprints, and expressed as
Leishman Donovan Units (LDU; see Materials and Methods). Groups of
three to five mice were analyzed per time point. One out of two inde-
pendent experiments with similar outcome is shown. Asterisks indicate
statistically significant differences relative to Leishmania–infected BALB/c
wild-type mice (P 
 0.006 for liver and 0.02 for spleen; unpaired Stu-
dent’s t test). (B) Real-time RT-PCR. Total RNA from infected livers
was extracted at the times indicated and reverse transcribed, and relative
parasite burden was assessed by real-time PCR using specific probes for
Leishmania 18S rRNA and mammalian 18S rRNA as described in Materials
and Methods. Averages of three to five mice were plotted for each time
point. Standard deviation is represented by the bars.
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week 4, liver burdens were 3.5-fold and spleen burdens
were 2.5-fold greater in CD1d-deficient animals versus
control mice. These results suggest that CD1d-restricted
lymphocytes do not eliminate parasites or infected host
cells during the innate response, but rather contribute to
the development of a protective immune response.

Assessment of parasite burden by real-time PCR con-
firmed the increased susceptibility of CD1d-deficient mice
and established a peak parasite load at 4 and 8 wk in liver
and spleen respectively (Fig. 1 B and not depicted). Despite
increased parasite burden at week 4, CD1d��� animals
were able to control liver infection at week 8. Analysis of
the liver lymphocyte populations by flow cytometry re-
vealed a twofold increase of CD8 T cells in CD1d-defi-
cient mice 4–8 wk after parasite inoculation (unpublished
data), which, together with innatelike lymphocytes in the
liver, such as ��T cells, may partially compensate for the
lack of CD1d-restricted T cells (38).

Defective Granulomatous Responses in CD1d� Mice. In
experimental visceral leishmaniasis, resistance to L. donovani
depends on T cell–mediated formation of tissue granulomas,
which are assembled around a core of fused, parasitized resi-
dent macrophages (29). We analyzed granuloma formation
in CD1d��� mice and controls 4 wk after infection. Com-
pared with the response in control animals, liver sections of
CD1d��� mice showed a marked decrease of mononuclear
cell infiltration (Fig. 2 A, top), and few or no mononuclear
cells were associated with predominantly immature (�60%)
granulomas at sites of heavily parasitized Kupffer cells (Fig. 2
A, middle and bottom). Only �10% of parasite-free granu-
lomas were present in livers of deficient mice. In contrast,
BALB/c controls showed predominantly mature granulo-
mas, and �50% of these collections were parasite-free and
thus scored as “cured” (Fig. 2 B, left). The total number of
infected foci, identified by the presence of �5 mononuclear
cells associated with parasitized Kupffer cells (29), was not
significantly altered in deficient mice. Together, these re-
sults implicate CD1d-dependent T cells in the granuloma-
tous response during liver infection, and suggest that defec-
tive granuloma assembly likely contributes to the increased
susceptibility of CD1d��� mice to L. donovani.

Induction of IFN� Production by L. donovani in CD1d-
restricted Liver Lymphocytes. The granulomatous response
during experimental visceral leishmaniasis is Th1 cell depen-
dent and largely mediated by IFN� (for review see refer-
ence 39). We tested if CD1d-restricted T cells produced
IFN� early during L. donovani infection by flow cytometry
using �GC-loaded CD1d tetramers (Fig. 3 A). C57BL/6
mice were injected with medium (negative control), �GC
(positive control), promastigotes from stationary culture, or
amastigotes obtained from infected hamster spleens, and the
response was assessed 2 h later by intracellular cytokine
staining of liver lymphocytes. Unlike treatment with �GC,
which induced IL-4 and IFN� secretion in a majority of ca-
nonical iNK T cells (Fig. 3 B), inoculation of either pro-
mastigote or amastigote parasites resulted in induction of
IFN� without detectable IL-4 in 3–6% of the CD1d
tetramer hepatic T cells (Fig. 3, B, middle, and C). No sig-

nificant IFN� induction occurred in the spleens of infected
animals or controls injected with DMEM alone (Fig. 3 C
and not depicted). Thus, intrahepatic CD1d-restricted iNK
T cells rapidly produce IFN� after Leishmania infection,
which may modulate the antileishmanial immune response.

In addition to the early NK T cell activation, Leishmania
had a profound effect on the NK T cell compartment
throughout the entire infection period. We consistently
observed an increase in tetramer liver lymphocytes 2 h af-
ter parasite inoculation, when robust IFN� production was
induced (Fig. 3, D and E). After 24 h, the number of IFN�
positive cells decreased, and a reduction of tet cells by
45% was observed, which were further reduced by 90%
during the following 8 wk of infection (Fig. 3, D and E).
Next, we focused on the mechanism of the early innate ac-
tivation 2 h after infection. Furthermore, to avoid any con-

Figure 2. Participation of CD1d in the granulomatous response to L.
donovani. (A) Histological analysis. Female BALB/c mice were killed 4 wk
after infection, and livers were fixed for 12 h in 10% formalin and embedded
in paraffin. Tissue sections were stained with haematoxylin. The core of
the granuloma containing infected Kupffer cells is denoted by arrow-
heads. The bars correspond to 500 �m (top), 100 �m (middle), and 20 �m
(bottom). (B) Quantification of granuloma formation. The number of
granulomas per 100 fields and the maturation state (i, immature; m, mature;
c, cured) were analyzed microscopically. Experiments was performed in
triplicate, and the bars represent the standard deviation. Asterisks indicate
statistically significant differences relative to Leishmania-infected BALB/c
wild-type mice (P 
 0.04 for cured, and 0.03 for immature granuloma;
unpaired Student’s t test).
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cerns regarding injection of hamster-derived antigens, present
in the splenic amastigote preparations, all the following stud-
ies were performed with culture promastigotes.

CD1d-dependent and IL-12–independent Activation of iNK
T Cells during L. donovani Infection. Minutes after murine
L. donovani infection, large amounts of IL-12 are released
from intracellular storage vesicles in DCs (40), which may
enhance the response of iNK T cells to endogenous gly-
colipid antigens (41). We tested this possibility by follow-
ing IFN� induction during visceral infection of IL-12–
deficient mice and their congenic C57BL/6 controls.
Absence of IL-12 in the mutant mice had no effect on the
induction of IFN� in iNK T cells after either �GC treat-

ment or L. donovani infection (Fig. 4 A). This result rules
out that the initial activation of CD1d-restricted T cells to
L. donovani was due to a direct response to IL-12. In con-
trast, CD3tet� and CD3�tet� cell populations showed a
strong decrease in IFN� production in the IL-12–deficient
animals upon �GC treatment or L. donovani infection (Fig.
4 A), confirming the importance of this cytokine in the ac-
tivation of classical T cells and NK cells.

Next, we used an anti-CD1d antibody-blocking ap-
proach to assess the role of CD1d–TCR ligation in Leish-
mania-induced IFN� production. Antibody-treated mice
showed a more than sixfold reduction in IFN�-producing
iNK T cells during visceral Leishmania infection (Fig. 4 B),

Figure 3. IFN� production in Leishmania-infected livers.
(A) CD1d-tetramer staining. Liver lymphocytes from infected
C57BL/6 mice were isolated by Percoll gradient centrifuga-
tion and stained with PeRCP-conjugated anti-CD3� mAb
and �GC-loaded PE-conjugated CD1d-tetramers. The tetramer
positive, CD1d-reactive T cell subset is identified by flow
cytometry and shows the characteristic intermediate CD3
expression. (B–E) Intracellular cytokine staining. Groups of
C57BL/6 mice were injected intravenously with medium
(DMEM), 200 ng �GC, 107 stationary phase LD1S promastigotes
(pro), or 107 amastigotes (ama) from infected hamster spleen,
and lymphocytes were prepared and stained 2 h after the inoc-
ulation (B and C) or at the times indicated (D and E) as de-
scribed before. Intracellular cytokine staining was performed
using the Cytofix/Cytoperm Kit from Becton Dickinson with
FITC-conjugated anti-IFN� and allophycocyanin-conjugated
anti–IL-4. The analysis in B and C was gated on CD3()tet()
cells. Staining with FITC-conjugated isotype-specific antibody
was performed to control for background (iso). At least three
independent triplicate experiments were performed, and one
representative experiment is shown. For the analysis in D and
E, cells were gated on CD3. One experiment was performed
with three to five mice per time point. Asterisks indicate statisti-
cally significant differences relative to DMEM-injected mice
(*, P � 0.02; **, P � 0.01; unpaired Student’s t test).

Figure 4. Requirement for
CD1d but not IL-12 for activa-
tion of CD3()tet() T cells in
response to L. donovani. Liver
lymphocytes obtained from IL-
12p40��� mice (12���) and con-
genic controls (A) or mice
treated 24 h before the infection
with 0.5 mg anti-CD1d blocking
antibody 1B1 (B) were stained
with PeRCP-conjugated anti-
CD3� mAb and �GC-loaded
PE-conjugated CD1d tetramers,
and intracellular IFN� was re-
vealed as described in Fig. 3.
Percent IFN�-producing cells
2 h after inoculation of �GC,
107 cultured promastigotes (LD1S),
or medium (control) is shown.
Results are representative of two
independent triplicate experi-
ments. (C) Quantification of

CD11c() cells. Liver-lymphocyte preparations from untreated mice and mice treated with anti-CD1d mAb 1B1 were incubated with Fc�R-blocking
antibody 2.4G2 and stained with FITC-conjugated anti-CD11c and PE-conjugated anti-CD3� mAbs. Numbers indicate percent of CD11c()CD3(�)
dendritic cells. Asterisks indicate statistically significant differences between wild-type and IL-12–deficient mice (*, P � 0.04; **, P � 0.01; unpaired
Student’s t test).
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whereas production of the cytokine was reduced by only
threefold in the tetramer� CD3 and CD3� lymphocyte
populations (Fig. 4 B). A major concern associated with an-
tibody-blocking experiment arises from depletion of anti-
body-reactive cells, in our case CD11cDCs, which would
result in generalized immunosuppression. However, as as-
sessed by flow cytometry, the antibody treatment did not
affect the amount of CD11c DCs in the liver (Fig. 4 C).
Together, these data implicate Leishmania glycolipids in the
activation of a subset of iNK T cells through CD1d, which
may contribute (likely together with IL-12; Fig. 4 A) to the
activation of classical T cells and CD3� NK cells.

Leishmania LPG Binds to CD1d and Activates a Subset of
Hepatic NK T Cells In Situ. The Leishmania glycophos-
pholipids LPG and GIPLs show striking structural similar-
ity to the glycosphingolipids �GC and sulfatide, which are
known CD1d-presented lipid antigens (Fig. 5 A, top and
references 2, 32, 37, 42). We investigated whether purified
LPG and related GIPLs bind to CD1d and, thus, may
qualify as bona fide glycolipid antigens using a competitive
�GC-binding assay. After incubation of soluble CD1d at
increasing molar ratios with sulfatide and Leishmania gly-
colipids, plate-bound lipid–CD1d complexes were pulsed
for various periods of time with �GC, and binding of the
synthetic glycolipid was determined by measuring cyto-
kine production of �GC-restricted NK T hybridoma cells.
In the absence of parasite glycolipids, �GC stimulated a
strong IL-2 response, which was increased at longer pulse
periods (Fig. 5 A, bottom). Sulfatide, a known CD1 ligand
(42), bound to CD1d and inhibited the �GC-dependent
response with increasing concentrations. At prolonged �GC
incubation periods, bound sulfatide was efficiently dis-

placed as judged by partial restoration of the NK T cell re-
sponse. Likewise, Leishmania GIPLs competed with �GC
in a dose-dependent manner and were displaced at in-
creasing �GC pulse times. In contrast, LPG abolished
the �GC-dependent response even at the lowest concen-
tration and could not be displaced by increasing periods of
�GC treatment. These results suggest LPG and GIPLs as
potential glycolipid antigens, which bind to CD1d with
different affinities. However, LPG binding does not ex-
ceed the affinity of �GC, as a threefold molar excess of
LPG was necessary to efficiently compete with �GC–
CD1d binding when both glycolipids were simultaneously
incubated (Fig. 5 B). Also, CD1d-bound �GC activated
NK T cells even after subsequent incubation with LPG
(Fig. 5 C), suggesting that LPG was unable to displace pre-
bound �GC from CD1d. These data further show that
competition occurred only when LPG was able to bind
CD1d and, therefore, was independent from nonspecific
effects of LPG on NK T cell function or the recognition
of the CD1d–�GC complex.

Next, we tested if competition of LPG with �GC occurs
also in a biologically more relevant setting using antigen-
pulsed BM-DCs. Untreated controls and cells treated with
5 �M LPG were pulsed with �GC (37), and NK T hybrid-
oma cells or splenocytes obtained from C57BL/6 mice
were added, and NK T cell activation was determined by
measuring IL-2 and IFN� production, respectively. In both
cases, treatment with LPG alone did not result in NK T
cell activation, indicating that the CD1d–LPG complex
was not recognized by these cells, or other lymphocyte
populations present in the spleen. In contrast, LPG treat-
ment strongly limited the otherwise robust response of

Figure 5. Binding of LPG to
CD1d and competition with
�GC. (A) Glycolipid structures
(top) and CD1d-binding assay
(bottom). Soluble mouse CD1d
was incubated with sulfatide (�),
purified L. donovani GIPLs (�),
or LPG (�) at the molar ratios
indicated. Immobilized com-
plexes were incubated with 200
nM �GC for 20, 40, and 60 min,
and �GC-binding was deter-
mined by adding NK T cells (hy-
bridoma DN32D3) and measuring
IL-2 release after 24 h. (B) Com-
petitive binding assay. Plate-bound
CD1d was incubated with 33 nM
�GC and increasing amounts of
purified LPG. Binding was de-
termined by NK T cell activation
as described before. (C) �GC dis-
placement. Plate-bound CD1d
was treated with �GC alone
(control) or sequentially incu-

bated with LPG and �GC as indicated by the arrowhead. NK T cell activation was determined by IL-2 ELISA. Two independent duplicate experiments
were performed, and one representative experiment is shown (mean � SD). (D) NK T cell activation assay. Murine BM-DCs were incubated with
5 �M of purified L. donovani LPG for 2 h at 37�C and, thereafter, were treated with 100 ng/ml �GC for 12 h. DN34A-1.2 hybridoma cells or spleno-
cytes from naive C57BL/6 mice were added, and IL-2 and IFN� release were measured in the supernatant 2 d later. Three independent triplicate exper-
iments were performed, and one representative experiment is shown. Error bars represent standard deviations.
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these cells to �GC (Fig. 5 D), suggesting competitive bind-
ing of both glycolipids to CD1d in DCs.

Activation of IFN� Production by LPG in Naive Liver Lym-
phocytes through CD1d. We observed during our in vivo
studies that IFN� is predominantly induced in the infected
liver, but absent in spleen (Fig. 3 and not depicted), sug-
gesting the presence of liver-enriched lymphocytes with
specificity to Leishmania glycolipids. We tested for the pres-
ence of this responsive subset of liver lymphocytes in vitro
using LPG-treated BM-DCs. Hepatic lymphocytes from
naive mice were incubated with �GC- or LPG-treated
BM-DCs in the absence or presence of the CD1d-blocking
antibody 1B1. LPG-pulsed BM-DCs induced robust IFN�
at levels that were at least 50% of those induced by �GC-
treated cells, and this was reduced to background levels in
the presence of anti-CD1d antibody (Fig. 6 A, left).

During experimental infection, LPG is released from the
surface of the parasite into the host cell where the gly-
colipid may be processed and intersect with CD1d (4, 43).
Therefore, we tested truncated fragments of LPG for their
ability to induce an IFN� response. Significantly, hydro-
lyzed LPG lacking the [P-Gal-Man] repeats was still able to
induce IFN� in naive liver lymphocytes similar to un-

treated LPG (Fig. 6 A, right). In contrast, the PI anchor
alone was not able to induce a response, despite binding to
CD1d and efficient competition with �GC (Fig. 6 B). As
expected from the absence of a lipid anchor, the [P-Gal-
Man]-phosphoglycan repeats alone had no effect on either
IFN� production or �GC binding. Together, these data
further confirmed the CD1d dependence of the IFN� re-
sponse to LPG, which required both the lipid and the gly-
can portion of the molecule. LPG-mediated activation of
iNK T cells was further confirmed in vivo in LPG-treated
C57BL/6 mice. 2 h after intraperitoneal injection of LPG,
ca. 1.4% of tetramer iNK T cells isolated from the liver
showed IFN� production (Fig. 6 C), suggesting that LPG,
along with related GPI anchors and GIPLs present during
Leishmania infection, may contribute to the early antileish-
manial immune response.

Discussion
CD1d-deficient mice are susceptible to a variety of mi-

crobial pathogens, suggesting glycolipid antigen presenta-
tion as an important part of the innate response to infec-
tion. Although CD1d binds promiscuously to a variety of
microbial lipoglycans (18–21), the immunological signifi-
cance of this phenomenon has not been established firmly,
and no pathogen-associated glycolipid has yet been shown
to stimulate a T cell response in the context of CD1d. By
using a murine model of visceral leishmaniasis in combina-
tion with CD1d-deficient mice, we revealed a requirement
for CD1d in the establishment of a protective, Th1-driven
granulomatous response, and identified a subset of liver
lymphocytes, which showed a CD1d-dependent burst of
IFN� in response to L. donovani infection. Our data sup-
port a model whereby Leishmania glycolipids may activate
CD1d-restricted T cells, either directly in the context of
CD1d or indirectly by induction of altered self-glycolipids,
which could participate in the polarization of the early im-
mune response and control parasite burden in the viscera.

Recently, a unique activation mechanism of iNK T cells
has been described during infection with Salmonella typhimu-
rium. Brigl et al. (41) demonstrated that the CD1d-depen-
dent response to S. typhimurium did not require recognition
of foreign antigens, but was driven by IL-12 produced in re-
sponse to microbial lipopolysaccharides, which enhanced the
recognition of self-glycolipids by autoreactive iNK T cells. A
similar scenario could be applicable to the Leishmania-
induced activation of CD1d-restricted T cells. Like S. typh-
imurium, L. donovani induces robust amounts of IL-12 in DCs
during visceral infection, which determines the development
of the protective Th1 immune response (27, 44–46) and
may participate in the activation of iNK T cells (41). How-
ever, our data do not fit the S. typhimurium model for several
reasons. First, S. typhimurium–induced IL-12 production
leads to broad activation of �35% of tetramer T cells (41).
In contrast, infection with splenic L. donovani amastigotes or
cultured promastigotes activated only 3–6% of tetramer T
cells, even in IL-12–deficient mice (Fig. 4 A). These data
rule out a role for this cytokine in early NK T cell activation.

Figure 6. Induction of IFN� in CD1d-restricted T cells by LPG. (A) Acti-
vation assay. Murine BM-DCs were treated with �GC and Leishmania
glycolipids as described in Fig. 5, and 104 liver lymphocytes from naive
C57BL/6 mice were added. Anti-CD1d antibody 1B1 was added as indi-
cated. Core, Gal2GalfMan2GlcN-PI; PI, 1-O-alkyl-2-lyso-phosphatidyl-
inositol lipid anchor, PG, [P-Gal-Man]-phosphoglycan repeats. (B) Com-
petitive binding assay. Plate-bound CD1d was incubated with 33 nM
�GC and a 10-fold excess of purified glycolipids. Binding was determined
by NK T cell activation as described in Fig. 5. (C) Flow cytometry. Groups
of C57BL/6 mice were injected with 50 �g of purified LPG and staining
with PeRCP-conjugated anti-CD3� mAb, �GC-loaded PE-conjugated
CD1d-tetramers, and FITC-conjugated anti-IFN� was performed 2 h
later. The total lymphocyte population (containing both CD3() and
CD3(�) cells) is shown. The experiment was performed with three mice
per condition, and the number indicates the mean of IFN�-producing
cells in the tetramer positive cell population. One out of two independent
experiments performed is shown.
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However, we cannot exclude a potential effect of other cy-
tokines in this response, although activation by direct cell–
cell interaction seems more likely given the small subset of
responsive cells. Second, S. typhimurium products were able
to activate �GC-responsive canonical iNK T cell clones in
vitro. On the contrary, LPG did not activate NK T cell hy-
bridomas or iNK T cells in the spleen, but limited the re-
sponse of these cells to �GC (Fig. 5). Finally, infection with
Leishmania, but not S. typhimurium, was associated with a
dramatic decrease of CD1d-reactive T cells, which remained
absent for at least 8 wk after infection (Fig. 3). The impact of
this altered lymphocyte homeostasis on host immunity and
the question, if these cells are depleted by activation-induced
cell death or down-regulate the TCR and loose tetramer re-
activity is currently under investigation.

Our results are more consistent with a model where
components of the Leishmania glycocalyx are recognized by
the host immune system and stimulate a CD1d-dependent
T cell response. Despite the robust immune response to
LPG, and the presence of LPG-responsive T cells in in-
fected mice and patients suffering from visceral leishmania-
sis (33, 47–49), presentation of microbial glycolipids by
CD1d to NK T cells has not been described in experimen-
tal leishmaniasis or any other infection model. Our data, for
the first time, link CD1d-dependent antimicrobial immu-
nity during liver infection to the potential presentation of
microbial lipoglycans by CD1d. We found that purified
Leishmania LPG binds CD1d in vitro (Fig. 5) and induces
IFN� in hepatic lymphocyte preparations from naive mice
in a CD1d-dependent manner (Fig. 6 A). Treatment of
mice with purified LPG activated a subset of CD1d
tetramer iNK T cells, but no other lymphocyte popula-
tion in the liver (Fig. 6 C), ruling out the involvement of
other innate immune pathways, such as the toll-like recep-
tors. However, our data do not exclude the possibility that
LPG or related glycoconjugates may interact with TLRs in
other experimental systems (50, 51). Furthermore, both the
glycan and the lipid portions of LPG were required to in-
duce IFN� in our system, further supporting the model of
a CD1d-mediated, TCR-dependent response (Fig. 6 A).
Our results are compatible with an alternative model, where
Leishmania infection or LPG treatment induces structurally
altered endogenous glycolipids similar to tumor ganglio-
sides (52), which may stimulate NK T cells in a CD1d-
dependent manner. However, to the best of our knowl-
edge, the presence of altered glycolipids during Leishmania
infection has not been described to date.

The phenotype of the responsive NK T cells eludes us so
far. These cells are preferentially expressed in the liver and
show a polarized IFN� response (Fig. 3), which is critical
for granuloma formation and parasite killing (Figs. 1 and 2).
Ablation of the NK T cell response by anti-CD1d antibody
blocking experiments strongly reduced IFN� production
in CD3 and CD3� lymphocytes (Fig. 4) and, hence,
Leishmania-responsive NK T cells may modulate early im-
munity during visceral infection toward establishment of a
protective Th1 response. In vivo, these cells react with
�GC tetramers and, thus, are considered canonical iNK T,

yet V�14J�18 NK T hybridoma cells and splenic iNK T
cells failed to respond to CD1d-bound LPG. How can we
explain this paradoxical result? It is possible that iNK T cell
activation during Leishmania infection may be indirect and
in response to activation of diverse NK T cells in the liver,
which may recognize CD1d-bound microbial or endoge-
nous glycolipid but do not react with �GC-loaded tetra-
mers (CD3tet� subset; Fig. 4). Alternatively, a subset of
iNK T cells may exist in the liver that recognize the gly-
colipid antigen and are cross-reactive with �GC-loaded
CD1d tetramers. �GC activates a heterogenous population
of iNK T cells, which show invariant usage of the V�14
chain, but have a diverse repertoire of V� gene segments
and may display CDR3 region diversity (9, 10). It is con-
ceivable that some of these iNK T cell subsets may provide
specificity to glycolipid antigens other than �GC, which
are physiologically more relevant. So far, isolation of these
cells using LPG-loaded tetramers has been unsuccessful,
possibly because the TCR of the putative LPG-restricted T
cells do not recognize full-length LPG but rather a yet un-
known processed version of the molecule (Fig. 6 A). Dur-
ing intracellular infection, LPG is shed from the parasite
surface into the lumen of the host cell phagosome (4, 43),
where it may intersect with the endolysosomal compart-
ment and be processed by various hydrolases and glycosi-
dases for binding to CD1d and TCR recognition. Deter-
mining the fine structure of processed LPG in future studies
may allow us to identify the putative LPG-reactive T cell
population by tetramer staining and elucidate parasite-spe-
cific immunodominant glycolipid epitopes. These epitopes
may be born on lipoglycans of other pathogens, such as
Mycobacterium bovis, Trypanosoma brucei, or pathogenic fungi,
providing a molecular pattern for innate immune recogni-
tion through CD1d.
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