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ABSTRACT: The greatest restriction to the theoretical study of the
dynamics of photoinduced processes is computationally expensive
electronic structure calculations. Machine learning algorithms have
the potential to reduce the number of these computations
significantly. Here, PySurf is introduced as an innovative code
framework, which is specifically designed for rapid prototyping and
development tasks for data science applications in computational
chemistry. It comes with powerful Plugin and Workflow engines,
which allows intuitive customization for individual tasks. Data is
automatically stored through the database framework, which enables
additional interpolation of properties in previously evaluated regions
of the conformational space. To illustrate the potential of the
framework, a code for nonadiabatic surface hopping simulations
based on the Landau−Zener algorithm is presented here. Deriving gradients from the interpolated potential energy surfaces allows
for full-dimensional nonadiabatic surface hopping simulations using only adiabatic energies (energy only). Simulations of a pyrazine
model and ab initio-based calculations of the SO2 molecule show that energy-only calculations with PySurf are able to correctly
predict the nonadiabatic dynamics of these prototype systems. The results reveal the degree of sophistication, which can be achieved
by the database accelerated energy-only surface hopping simulations being competitive to commonly used semiclassical approaches.

I. INTRODUCTION

Photoinduced ultrafast processes often proceed on multiple
electronic states and are controlled by nonadiabatic couplings
between electronic and nuclear degrees of freedom. Non-
adiabatic couplings are elaborate to calculate, since they
require the first-order (nonadiabatic coupling vectors (NACs))
and the second-order (scalar couplings) derivatives of the
electronic wavefunction with respect to the nuclear coor-
dinates.1 To study these processes, nonadiabatic dynamics
simulations are performed on potential energy (PE) surfaces.
The surfaces can be either precomputed and fitted2−4 or
computed on the fly, in so-called direct dynamics simu-
lations.5−9 If the PE surfaces are precomputed and fitted, the
computational cost of the dynamic simulation can be
significantly reduced. Fitted surfaces combined with the
multiconfigurational time-dependent Hartree approach
(MCTDH)2,3 became the golden standard for nonadiabatic
dynamics simulations. But fitting the PE surfaces is a tedious
task, in particular for large systems, as PE surfaces have to be
accurately fitted globally or along reaction paths, which have to
be known before the simulation. On the contrary, in on-the-fly
or direct dynamics simulations, the PE surfaces and properties
are only computed on demand. This is the standard approach
in full-dimensional semiclassical molecular dynamics calcu-
lations, like in trajectory surface hopping (TSH) simulations.7,8

In standard implementations of direct dynamics simulations,
an electronic structure calculation is launched at each time step

independent of whether the properties have been already
calculated in this region before. Such an implementation leads
to the recomputation of nearby points multiple times,
especially if the system is trapped in a bound potential. In
this work, the benefits of the two approaches are combined by
introducing a database with an effective fitting algorithm.
Hereby, in unknown regions of the conformational space, new
electronic structure calculations are performed and the results
are added to a database. In regions where calculations have
already been performed, the fitting algorithm is used to
interpolate the stored data and no further electronic structure
calculations are needed, as implemented for the direct
dynamics variational multiconfiguration Gaussian (dd-
vMCG) approach in the Quantics program package.6,10 In
recent years, computational statistical learning methods
(machine learning, neural networks, deep learning, unsuper-
vised clustering, etc.) have found to provide very promising
approaches to construct PE surfaces of high-dimensional
systems.11−17 Using these fitted potentials, the computational
time for molecular dynamics simulations can be substantially
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reduced. This was successfully shown for both ground-state
molecular dynamics simulations18,19 and (nonadiabatic)
excited-state simulations.20−30

In this work, we introduce PySurf, a new software framework
for data science applications in computational chemistry. The
software package is specifically designed for rapid development
and prototyping of new algorithms using the Python
programming language at its core.31 The code comes with a
powerful Plugin engine, which allows straightforward exten-
sions of the existing functionality with custom modules that
naturally fit into the existing environment. Its Workflow engine
enables very fast development of customized work and analysis
schemes. The implementation of nonadiabatic surface hopping
using the Landau−Zener scheme32 is presented. The method-
ology is applied to a pyrazine model system and to investigate
the S2/S1 conical intersection of SO2, based on ab initio
calculations. Hereby, standard nonadiabatic surface hopping
dynamics simulations are used to sample the important regions
of the conformational space. Subsequently, an interpolation
scheme is used to predict PE surfaces and gradients based on
the stored data. Using fitted properties significantly reduces the
computational cost, as no electronic structure calculations are
performed, which are typically time determining in direct
dynamics simulations. Finally, having global PE surfaces at
hand, energy-only calculations are performed, where gradients
are calculated directly from the fitted PE surfaces. This opens
the possibility to perform nonadiabatic excited-state dynamic
simulations, where only energies have to be calculated using
electronic structure methods.
The paper is organized as follows: In Section II, the code

infrastructure, along with its Plugin and Workflow engines, is
presented. Section III introduces the theory applied in our
surface hopping simulations, focusing on the energy-only
algorithm, and Section IV shows the results of the dynamics
simulations for the pyrazine model and the SO2 molecule.
Finally, our concluding remarks are given in Section V.

II. CODE INFRASTRUCTURE

PySurf is a new open-source software package written in the
Python programming language (Python 3.6+).31 It is designed
for data science applications and will be published on
Github.33 Its main objective is to provide a simple and
powerful environment to both end users and developers.
Therefore, the software was specifically designed to be easily
extensible. Figure 1 shows a sketch of the main code
architecture. The code is divided into three parts. A core
framework that defines the basic functionalities (blue). A
Plugin engine that allows us to customize each core
component (gray) by user-defined functionality. The third
part is a specifically tailored database engine (green) based on
the Network Common Data Form (NetCDF)34,35 for simple
writing and accessing data. The NetCDF3 format, which is the
standard file format for many molecular dynamics software
packages, like the AMBER36−38 software package, is well suited
to store relevant data from electronic structure calculations
efficiently in a compact and portable binary format (like
coordinates, energies, gradients, and dipole moments).
Many tasks in computational chemistry can be divided into

three main building blocks. The modular design of PySurf tries
to match these basic building blocks, i.e., generating geo-
metries, performing electronic structure calculations, and
analyzing the results. For instance, geometries are needed for
an unrelaxed PE scan along a reaction coordinate, for a
semiclassical dynamics simulation or for the calculations of a
spectrum. With the generalized sampling and propagation
modules, many of these cases can be solved by adding small
customized Plugins. At the moment, the package comes with a
Wigner39 and a normal mode sampler as well as a velocity
Verlet propagator with a Landau−Zener surface hopping
algorithm.32 In most tasks, the evaluation of properties at a
given geometry is central, e.g., performing an electronic
structure calculation for energies and gradients. Therefore,
we introduce a corresponding module in the PySurf frame-
work, namely, the surface point provider (SPP). It is
responsible for the provision of the properties in a standardized
data format at a given geometry. There are already initiatives to

Figure 1. Schematic illustration of the code framework. The core components (blue) provide the general functionality, which can be customized by
Plugins (gray), allowing the user to seamlessly add any new feature to the framework. The output (green) is collected in NetCDF databases to
ensure fast and efficient data processing. SPP stands for the surface point provider.
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provide generalized interfaces to a variety of electronic
structure codes like the atomic simulation environment
(ASE)40 or QCEngine.41 Existing generalized interfaces (as
shown for the ASE in the Supporting Information, SI) can be
easily added as Plugins to the SPP as additional ab initio
methods. At this moment, interfaces to the Q-Chem,42

Turbomole,43 PySCF,44 and XTB45 program packages are
provided. The SPP extends the idea of generalized interfaces
further. Depending on the preferences, information is gathered
by launching an electronic structure calculation from a model
system or from an interpolation scheme. For this work, an
interpolator based on SciPy’s46 radial basis function (Rbf)
interpolator was implemented as a Plugin. The use of machine
learning techniques and methods, borrowed from the realm of
artificial intelligence, offers a promising alternative for the
interpolation procedure.19 Currently, work in this direction is
in progress in our group. All data-intensive output is stored in
databases, where it can be easily accessed. The package comes
with a variety of predefined analysis tools and a powerful
Workflow47 engine, which allows very efficient development of
customized Workflows and analysis tools.
II.I. Plugin Engine. A Plugin engine is designed to

guarantee PySurf’s modularity and to make it a simple and
flexible development platform to prototype and test innovative
approaches. It allows extension of the core package by
providing Plugins that are seamlessly and natively integrated
into the framework.47 Plugins are available for all key
components (see Figure 1) and make it trivial to add custom
functionality. Due to the modular framework and the design-
by-contract principle applied to all components, it is possible
to ensure that all functionality is validated at the setup step.
Additional user input is added inside the code with the help of
a domain-specific language (DSL), which is used to create the
input parser automatically.47 The parser validates the given
input, making it unnecessary to check user input manually
inside the Plugin. This provides several advantages: (i) The
specific user input needed for the Plugin is written in the code
of the Plugin and there is no need to extend an existing input
parser manually. This avoids duplication errors and improves
the code readability, leading to very clear codes. (ii)
Additionally, the engine can create the documentation
automatically from the information provided in the source
code using the Sphinx documentation framework.48 Thus,
there are no undocumented keywords and the documentation
is always up-to-date with the source code.
For most modules, the user input is stored in an input file. If

there is no complete input file, e.g., when the code is executed
for the first time, the missing user input is asked via a
command-line interface. In the SI, we provide examples on
how to write a Plugin for a model and an additional sampler.
The underlying code package, which implements the Plugin
engine, is outside the scope of this manuscript and will be the
focus of a complementary publication. Nevertheless, we refer
interested readers to ref 47 for more details.
II.II. Workflow Engine. PySurf uses a powerful Workflow

engine, which allows the user to intuitively combine and build
new custom Workflows, like analysis tools or task sequences
with little to no programming skills. A Workflow consists of
different functions that are executed sequentially to fulfill a
certain task. For the Workflow, a DSL is used, based on a
subset of the Python programming language. This has the
advantages that more advanced tasks like full-fledged
command-line interfaces or error handling can be automati-

cally taken care of for the user. Additionally, before a Workflow
is executed, it is checked for type correctness, which can
already capture a significant amount of mistakes. Users can add
new functions to the Workflow engine either in Python or by
combining already existing Workflow functions in a modular
approach. The Workflow engine exploits the full modularity of
the PySurf package and custom Plugins are automatically
usable in the Workflow engine. Examples on how to set up
individual Workflows are given in the SI.

III. PYSURF: APPLICATION DOMAIN
PySurf is a framework with a powerful toolbox to treat and
automatize many tasks in computational chemistry. In this
work, PySurf is used to implement the Landau−Zener surface
hopping scheme for nonadiabatic dynamics simulations. In
surface hopping simulations, the computationally most
expensive part is the large number of electronic structure
calculations that need to be performed for the independent
trajectories.9 An obvious way to reduce computational costs is
to use the ability of the SPP to fit surfaces based on already
precomputed electronic structure data. Similar approaches
have been presented by Worth et al.6 for the dd-vMCG
method with a modified Shepard interpolation scheme.49,50

For dynamics simulations using Tully’s fewest switches surface
hopping (FSSH) algorithm, machine learning models to fit
excited-state properties have been implemented.24,29 Combin-
ing Tully’s approach with machine learning algorithms
demands to fit nonobservables, i.e., NACs. It has been
shown that phase correction is necessary for the fitting of
NACs in such a dynamics simulation.29 To overcome these
circumstances, different surface hopping algorithms that
depend only on observables can be used, such as the
Landau−Zener32 or the Zhu−Nakamura schemes.51−53 The
latter was combined with deep learning algorithms to
successfully simulate the S1/S0 transition of CH2NH and 6-
aminopyrimidine.22,23 Recently, it has been shown that
nonadiabatic dynamics simulations with the Landau−Zener
algorithm and the FSSH algorithm produce very similar
results.54 The main difference between both approaches is the
way how the hopping probability from state i to state j is
computed. In Tully’s approach, this is done as a function of the
coefficients of the electronic wavefunction and the non-
adiabatic coupling vector.55 The Landau−Zener hopping
probability, however, is given purely as a function of the
energy gap (ΔVij = |Vi − Vj|) between the two states and its
second derivative at a certain nuclear position R(t), if there is a
minimum in the energy difference at time tc
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Therefore, nonadiabatic dynamics simulations can be per-
formed using only energies and gradients. This simplicity
makes it attractive for excited-state methods, where NACs are
not available or too expensive to compute. It is worth
mentioning that the Landau−Zener hopping probability
reflects the inverse proportionality of the NACs on the energy
gap of the PE surfaces. Here we demonstrate that combining
the interpolation capability of PySurf with the Landau−Zener
algorithm opens up another attractive and cheap doorway for
surface hopping simulations. Having global PE surfaces at hand
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from the interpolation, gradients can be calculated from the
fitted energies either by a finite difference scheme or by
computing the analytic gradient of the fitting algorithm
itself.22,24,29 The latter is common in machine learning libraries
that support automated gradient generators.56,57 As the
prediction of energies by interpolation is computationally
cheap, it is also inexpensive to predict the gradients of the PE
surfaces based on the interpolation. This approach, hereafter
called energy-only simulations, allows one to perform non-
adiabatic molecular dynamics simulation using only energies as
input from ab initio calculations. Nuclear gradients needed for
the propagation are computed numerically or analytically
derived from the fitting algorithm itself. This scheme is of
particular interest for electronic structure methods for which
the analytic gradients are not available. The general Workflow
has the following steps: (i) Filling the database using typical
sampling approaches, e.g., Wigner sampling, or performing
nonadiabatic dynamics simulations as it is done in this work.
(ii) After the conformational space is sampled, nonadiabatic
dynamics are performed using only the fitting algorithm until
the trajectory leaves the conformational space, where the fit is
accurate. If this occurs within the simulation time, it is
necessary to extend the database by performing new ab initio
calculations. Additionally, a so-called adaptive sampling
scheme can be applied. Hereby, the fit is used, whenever it
is accurate, else ab initio calculations are performed and are
used to extend the database. In the ideal case, the database
contains only the data points needed to accurately fit the
relevant conformational space and should therefore not show
an exponential increase with the number of degrees of
freedom. However, this depends on the sampling approach
and on the system at hand. The proposed Workflow can be in
principle applied in all cases as long as Landau−Zener surface
hopping is valid, i.e., it is exact for the two-state case and can
be successfully used for transitions that mainly involve two
states, which are reasonably well separated from other
electronic states, whereas it conceptually fails when more
electronic states are within a small energy range. Additionally,
the selection of the training data for an accurate fit can be
considered as another limiting factor, and so far, no general
solution to this problem exists. In the following, we reveal the
degree of sophistication that can be achieved by energy-only
dynamics being competitive with dynamics using both energies
and analytic gradients from ab initio computations.

IV. RESULTS AND DISCUSSION
As proof of principle for surface hopping simulations using
fitted properties as well as the energy-only algorithm, dynamics
simulations of a pyrazine model are performed.58 To analyze
the energy-only surface hopping simulations and to validate the
accuracy of the fitting algorithm, our results are compared with
previous simulations.54,58 Moreover, the population transfer at
the S1/S2 conical intersection of SO2 was simulated based on
ab initio calculations and compared with the dynamics on
interpolated surfaces. The simulations followed a general
protocol: First, an independent set of 100 trajectories is
propagated to sample the conformational space and the data is
stored in a database. Second, the data (i.e., energies and
gradients) is used as training data for the fitting algorithm (for
SO2, additional data from grid sampling supplements the
training data). Subsequently, the quality of the fitted properties
has to be checked in the validation step. For this, another set of
100 trajectories, based on independent Wigner sampling, is

propagated and the data is stored. The latter data points are
compared with the predictions of the interpolator. Finally, the
fitted properties are used to perform dynamics simulations
with 1000 trajectories (production runs), which are compared
with reference calculations. The reference calculations are a set
of 1000 trajectories, starting with the same initial conditions as
the production calculations, but taking energies and gradients
directly from the model or ab initio calculations without
interpolation.

IV.I. Pyrazine Models. As the first example of the
performance of the energy-only dynamics using PySurf, a
pyrazine model is investigated. Pyrazine is a molecule with 24
degrees of freedom and complicated dynamics, which is
governed by a conical intersection between the S1 and S2
electronic states. A considerable amount of theoretical
investigations, ranging from fully quantum dynamics simu-
lations59 to semiclassical direct dynamics,54 revealed the S1 and
S2 vibronic coupling dynamics in pyrazine.
Here we use the two-state model by Sala et al.58 with five

dimensions. The model was extended by a harmonic ground-
state PE surface using the ground-state frequencies of the
equilibrium geometry. Adiabatic energies are obtained by
diagonalization of the diabatic matrix. Adiabatic gradients are
calculated by a first-order finite difference scheme from the
adiabatic energies. The model is implemented in the PySurf
framework and is included as an example system in the
program package as the PyrazineSala Plugin.
Following the simulation protocol described above,

appropriate data has to be fed in the database as training
data for the fitting algorithm. To sample relevant data, 100
trajectories, whose initial geometry and velocity are based on a
Wigner sampling algorithm, were propagated for 100 fs with a
time step of 0.5 fs. The initial state for the trajectories was
chosen to be the second excited adiabatic state of the model,
which corresponds primarily to the bright B2u(π−π*) state.
Energies and gradients of each state at each point along the
trajectories were stored in the database. After the simulations,
points close to each other were deleted from the database. As
the hopping probability is high in regions with small energy
gaps (cf. eq 1), two different radii were introduced for points
being close to each other. In regions, where the energy
difference between two states is smaller than 0.5 eV, points
closer than 0.25 in dimensionless normal mode coordinates
(using the Euclidean norm) were deleted from the database. In
areas, where the surfaces are energetically well separated
(energy gap >0.5 eV), points closer than 0.75 (using the
Euclidean norm in the dimensionless normal mode coor-
dinates) were deleted from the database. Following that
procedure, the number of data sets in the database was reduced
from 20 100 to finally 6148 data sets, which corresponds to a
reduction of almost 70%. Please note that the fraction of the
data that is deleted in the cleaning process may be considered
as the first indicator of whether the training data is sufficient.
We assume that only a fraction of the complete conformational
space is relevant for the simulation and needs to be sampled
accurately. Using an equidistant grid, the number of points
increases exponentially with the dimensionality. An adaptive
sampling scheme may overcome that hurdle, as it samples only
the important regions in the conformational space. The latter
allows us to treat high-dimensional systems with a limited
number of points.
After generating data, it is crucial to test its capabilities and

validity. Specifically, it is important to get an estimate of the

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00825
J. Chem. Theory Comput. 2020, 16, 7681−7689

7684

pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00825?ref=pdf


error that comes with predictions based on the data. For our
validation procedure, 100 trajectories, based on independent
Wigner sampling, were propagated for 100 fs with a time step
of 0.5 fs, using the information from the models, i.e., an
independent set of 20 100 data points is created and used as
validation data. The energies and gradients of these points are
compared to the predictions based on the training data. As a
fitting algorithm, a radial basis function (Rbf) interpolator was
used with multiquadric basis functions. The width of the
multiquadric function was chosen to be ε = 1.0. The root-
mean-square deviations (RMSD) is used here to indicate
whether the training set and interpolation algorithm are
capable to reproduce the desired observables. The RMSD of
the energy and gradients for the model are 5.9 and 11 meV,
respectively, which confirmed the validity of the employed
scheme.
Figure 2a shows the PE surfaces as functions of time of a

representative validation trajectory (solid) together with the
predictions of the interpolator (dashed). From the figure, it is
hard to see any difference as the curves lie on top of each
other, reflecting their excellent agreements. The good fitting
result relies on appropriate training data. The training
trajectories naturally sample the important parts of the
conformational space including the areas of high hopping
probabilities. Figure 2b shows a close view of the crucial area,
i.e., where the S1 and S2 surfaces are close to each other, which
is explored by the trajectory after about 48 fs. The fitted PE
surfaces (dashed) show a slightly larger energy gap than the
model PE surfaces (solid). The difference in the energy gap is
about 25 meV. The increase of the energy gap can be
explained, as the Rbf interpolator smoothens the PE surfaces.
Therefore, it is particularly difficult for the Rbf interpolator to
predict the kink at the intersection. More advanced fitting
algorithms like neural networks may be better suited to
overcome that limitation.
After training and validation of the properties, the SPP

provides global surfaces for energies, gradients, and optionally
other properties, which can be used in further applications. In
this study, the PE surfaces and gradients are used to run
surface hopping dynamics simulations, which can be directly
compared with reference calculations. As reference calcu-
lations, 1000 trajectories, based on independent Wigner
sampling, are propagated for 100 fs using the fitted PE
surfaces and gradients without consultation of the model. For a
one-to-one comparison, reference calculations using the same
initial conditions and the same random number seeds for the
Landau−Zener algorithm were performed. Figure 3 shows the

population dynamics for the 5D model of the simulations
based on the fitted properties (dashed line) compared to the
populations of the reference calculations (solid line). The
populations are in very good agreement within the first 20 fs.
Subsequently, a more extensive population transfer is observed
for the reference simulations, leading to a final population in
the S1 state of almost 90%. The simulations using the fitted
properties stretch the population transfer slightly, leading to a
smaller population of the S1 state and a larger population in the
S2 state compared to the reference calculations for the time
between 20 and 60 fs. However, they reproduce the
modulations of the population curves during the transfer
process. From 60 fs to the end, the populations coincide very
well again. Considering the accuracy of the surface hopping
method in general, which neglects all nuclear quantum effects,
using the fitted properties seems an appropriate approximation.
A possible explanation for the slightly faster population transfer
of the reference data is that it is hard for the Rbf to reproduce
the kink of the conical intersection accurately, as shown in
Figure 2b. This leads to a larger energy gap and a smaller
second derivative close to the conical intersection, leading to
an overall smaller hopping probability of the Landau−Zener
algorithm.
As the fitted PE surfaces are available globally, gradients can

be numerically calculated from the fitted PE surfaces by a finite
difference scheme, as explained above, leading to the so-called
energy-only simulations. In Figure 3, the dotted lines show the
population dynamics of 1000 trajectories of an energy-only
simulation, using the same initial conditions and random seed
as for the reference calculations. The populations of the
energy-only simulations coincide very well with the popula-
tions of the simulation, where also the gradients were fitted. It

Figure 2. Comparison of fitted (dashed) and original PE surfaces (solid) along a representative validation trajectory of the five-dimensional (5D)
pyrazine model. S0 (black); S1 (blue); and S2 (orange).

Figure 3. Comparison of the population dynamics of the 5D pyrazine
model of the reference (solid), fitted (dashed), and energy-only
(dotted) calculations. S0 (black); S1 (blue); and S2 (orange).
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shows that the additional deviations due to the energy-only
algorithm (dotted) are much smaller than the deviations
between reference (solid) and fitted calculations (dashed). So,
energy-only seems to be a reasonable simplification when
accurate PE surfaces are available.
The results are compared with the populations obtained

from full quantum calculations and previous trajectory-based
semiclassical surface hopping simulations of the same
model.54,58 The population transfer from the S2 to the S1
state is slightly slower compared to the previous surface
hopping simulations with the Landau−Zener algorithm.54 This
can be explained by the fact that in the calculations here, all
trajectories start from the adiabatic S2 state. In the previous
simulations, trajectories are excited to the bright diabatic B2u
state. Subsequently, the system is transformed to the adiabatic
representation, leading to slightly different initial conditions,
i.e., not all trajectories start from the adiabatic S2 state.
Comparing the population transfer obtained from surface
hopping simulations, following the scheme proposed here, with
full quantum dynamics simulations using the MCTDH
method,54 it is apparent that the population transfer is
accurately reproduced. To sum up, the different preparation
scheme of the initial conditions has more influence on the
results than the semiclassical approximations during the
simulations.
IV.II. SO2: Ab Initio-Based Example. In the last decade,

several studies investigated the excited-state dynamics of SO2,
showing that intersystem crossing plays a crucial role.60−62

Moreover, its conical intersection between the two lowest
singlet excited states, 11A2 and 11B1, has been studied in
detail.63,64 Excitation from the ground state to the 11B1 state is
a dipole-allowed transition, which corresponds to the S0−S1
excitation at the Franck−Condon position. It has been shown
that excitation to the 11B1 state leads to small intermediate
population transfer to S2, but most of the population stays in
the S1 state throughout the simulation.63,64 Since we use the
system and its S1/S2 conical intersection as a proof-of-principle
example for the energy-only approach, trajectories are initially
located on the S2 state. This allows us to study a large
population transfer from the S2 to the S1 state within 100 fs.
Corresponding results for trajectories starting from the S1 state
are given in the SI.
The ground-state energy of SO2 has been minimized to

obtain the equilibrium geometry. Frequencies and normal
mode displacements were calculated at the ground-state
minimum energy position and used in the Wigner sampling.
To enhance the convergence and stability of the excited-state
electronic structure calculations during the dynamics simu-
lations, an additional ghost state (S3) was included, which was
not considered in the propagation. As an underlying electronic
structure method, time-dependent density functional theory
was applied using the B3LYP functional65 and Pople’s 6-31G*
basis set,66 as implemented in the Q-Chem program package.42

Following the same protocol as for the model systems, the
first 100 trajectories were propagated for 100 fs with a 0.5 fs
time step based solely on ab initio calculations and starting
from the S2 state. The data was stored in the database, and
subsequently, the nearby points were deleted. The threshold
for regions with small energy gaps (<0.5 eV) was 0.05 Bohr,
whereas for areas where the surfaces are well separated, the
radius is 0.1 Bohr (using the Euclidean norm). By this, a
database with 1524 data sets was generated. Moreover, a grid
in internal coordinates, containing 1759 data points, was added

to the training data, to make sure that no extrapolation is
needed. The data points are shown in Figure 4 in blue. The

fitting was performed in internal coordinates, i.e., atomic
distances, reducing the dimensionality of the system from 9 to
3, excluding overall translation and rotation of the molecule
during the fitting procedure. The width of the multiquadric
basis functions of the Rbf interpolator has been set to ε = 0.35
Bohr. As a validation set, another 100 trajectories were
propagated for 100 fs with a time step of 0.5 fs based on
independent Wigner sampling. The points of the validation set
are illustrated in orange in Figure 4. To validate the fit, the
energies of the validation set were compared with the
corresponding predictions from the fit, getting an RMSD for
the energy surfaces of 35 meV.
Figure 5 shows the fitted PE surfaces of the S1 and S2 states

along the angular bending mode and the antisymmetric

stretching mode, spanning the branching space and thus
showing the cone of the conical intersection. The symmetric
stretch normal mode is fixed at its equilibrium position.
Moreover, we have implemented an algorithm for

optimization of the conical intersection following the Lagrange
multiplier constraint approach proposed by Yarkony et al.,67

utilizing SciPy46 constrained optimization. The obtained
structure from the conical intersection optimization on the
fitted PE surface is then compared with the structure obtained
using the minimum energy crossing point optimization
(MECP), as implemented in Q-Chem Software suite.42 The
RMSD of the internal coordinates between the latter structures
is around 0.01 Å, showing the accuracy of the fitted PE
surfaces.

Figure 4. Data points in the space of internal coordinates for the SO2
molecule. The blue points (3283) represent the training set, whereas
the orange points correspond to the validation set (20 100).

Figure 5. Fitted PE surfaces of SO2, showing the cone of the S1/S2
conical intersection.
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Having the PE surfaces at hand, nonadiabatic surface
hopping simulations using the energy-only algorithm were
performed. In total, 1000 trajectories based on Wigner
sampling were propagated for 100 fs with a time step of 0.5
fs. Another 1000 trajectories with exactly the same initial
conditions purely based on ab initio calculations without any
support of the database and interpolation were propagated as a
reference set. The corresponding population dynamics for the
energy-only calculations is shown in Figure 6 (dotted)

compared with the populations of the fully ab initio-based
reference simulations (solid). The two simulations coincide
very well during the first 10 fs, where half of the population is
transferred from S2 (blue) to the S1 (orange) state. Between 10
and 40 fs, the energy-only results predict a slightly larger
population in the S1 state. Subsequently, the population of the
S1 state of the energy-only simulation is a little bit smaller than
for the reference calculations. Finally, for both simulations,
about 85% of the population is in the S1 state. At about 50 fs, a
small population transfer is observed to the ground state
(black) for both methods. However, the energy-only
simulations predict a larger transfer, which leads to the final
occupation of the ground state of more than 5%. The results
are also in good agreement with surface hopping simulations
using the linear vibronic coupling scheme4 (see SI).
Comparing computational times shows the speedup by the
interpolation compared to direct ab initio calculations. The
interpolator can provide energies and gradients for all states for
one geometry roughly 1000 times faster than an electronic
structure calculation. Already for this small system, the
interpolation gives an enormous speedup, but the benefit
gets much larger for larger systems. Developing and applying
the derived methodology will open up new doorways for
nonadiabatic excited-state dynamic simulations for large
molecular systems.

V. CONCLUSIONS
PySurf is a modular software package in Python applying state-
of-the-art best coding practices. By design, new features, like
interpolators, interfaces, and samplers, can be easily and
seamlessly added via the Plugin engine. Ab initio calculations
are set up and launched from the framework, and their data can
be stored in the powerful PySurf database environment.
Properties can be interpolated, for example, the interpolation
of energies leads to PE surfaces. Once the important areas of
the conformational space are sampled, training of the fitting
algorithm and the actual evaluation of the surfaces require

orders of magnitude less computational time than electronic
structure calculations. The Workflow engine provides a
toolbox for analysis methods and task sequences. Custom
Workflows can be easily developed by combining existing
modules or adding functionality in a modular approach. This
makes PySurf an excellent development platform for data
scientific approaches in computational chemistry.
In this work, the PySurf package was used for nonadiabatic

surface hopping simulations. The conformational space was
explored, and the data was stored in the database environment
and afterward used to produce fitted PE surfaces. With these
fitted surfaces, so-called energy-only surface hopping simu-
lations, where gradients are calculated numerically from the PE
surfaces, were performed. For the pyrazine model system as
well as the S1/S2 conical intersection of the SO2 molecule, the
energy-only simulations predicted the dynamics correctly. The
proposed protocol allows us to perform surface hopping
simulations using only adiabatic energies. Specifically for large
molecules and electronic structure methods, where gradients
and NACs are costly or not implemented, energy-only
dynamic simulations open new possibilities. Furthermore, we
are working on more sophisticated fitting procedures for the
data, i.e., machine learning techniques like neural networks.
Having global PE surfaces at hand and systematically
overcoming the technical and conceptual difficulties, PySurf
can be further extended to include various algorithms, such as
transition-state search, minimum energy crossing points, and
conical intersection optimization. This will bring a novel
platform for the excited-state nonadiabatic dynamics com-
munity.
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Highly efficient surface hopping dynamics using a linear vibronic
coupling model. Phys. Chem. Chem. Phys. 2019, 21, 57−69.
(5) Ben-Nun, M.; Quenneville, J.; Martínez, T. J. Ab Initio Multiple
Spawning: Photochemistry from First Principles Quantum Molecular
Dynamics. J. Phys. Chem. A 2000, 104, 5161−5175.
(6) Worth, G. A.; Robb, M. A.; Burghardt, I. A novel algorithm for
non-adiabatic direct dynamics using variational Gaussian wavepackets.
Faraday Discuss. 2004, 127, 307−323.
(7) Barbatti, M. Nonadiabatic dynamics with trajectory surface
hopping method. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011, 1,
620−633.
(8) Mai, S.; Marquetand, P.; Gonzaĺez, L. Nonadiabatic dynamics:
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