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Abstract 

Background:  Clear cell renal cell carcinoma (ccRCC) is characterized by the accumulation of lipid-reactive oxygen 
species. Ferroptosis, due to the lipid peroxidation, has been reported to be strongly correlated with tumorigenesis 
and progression. However, the functions of the ferroptosis process in ccRCC remain unclear.

Methods:  After sample cleaning, data integration, and batch effect removal, we used the Cancer Genome Atlas 
(TCGA) and International Cancer Genome Consortium (ICGC) databases to screen out the expression and prognostic 
value of ferroptosis-related lncRNAs and then performed the molecular subtyping using the K-means method. Then, 
the functional pathway enrichment and immune microenvironment infiltration between the different clusters were 
carried out. The results showed a significant difference in immune cell infiltration between the two clusters and the 
associated marker responded to individualized differences in treatment. Then, least absolute shrinkage and selection 
operator (LASSO) Cox regression was used to establish a prognostic signature based on 5 lncRNAs. This signature 
could accurately predicted patient prognosis and served as an independent clinical risk factor. We then combined sig-
nificant clinical parameters in multivariate Cox regression and the prognostic signature to construct a clinical predic-
tive nomogram, which provides appropriate guidance for predicting the overall survival of ccRCC patients.

Results:  The prognostic differentially expressed ferroptosis-related LncRNAs (DEFRlncRNAs) were found, and 5 lncR-
NAs were finally used to establish the prognostic signature in the TCGA cohort, with subsequently validation in the 
internal and external cohorts. Moreover, we conducted the molecular subtyping and divided the patients in the TCGA 
cohort into two clusters showing differences in Hallmark pathways, immune infiltration, immune target expression, 
and drug therapies. Differences between clusters contributed to individualizing treatment. Furthermore, a nomogram 
was established to better predict the clinical outcomes of the ccRCC patients.

Conclusions:  Our study conducted molecular subtyping and established a novel predictive signature based on the 
ferroptosis-related lncRNAs, which contributed to the prognostic prediction and individualizing treatment of ccRCC 
patients.
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Introduction
Renal cell carcinoma (RCC) is one of the most com-
mon malignant tumors of the urinary system [1]. As the 
major pathologic subtype of RCC, clear cell renal cell 
carcinoma (ccRCC), especially metastatic ccRCC, often 
has high morbidity and mortality [2]. Approximately 
25–30% of ccRCC patients have metastasis at initial 
diagnosis, which usually indicates poor prognosis. 
Moreover, the tumor-node-metastasis (TNM) staging 
system, which is currently applied in clinical practice, 
is considered less accurate in evaluating the progno-
sis and progression of ccRCC patients [3]. Meanwhile, 
73–75% of identified ccRCC driver aberrations were 
subclonal, which might contribute to different clinical 
outcomes [4, 5]. Hence, performing suitable molecular 
subtyping and exploring new prognostic signatures to 
diagnose and evaluate the prognosis of ccRCC patients 
remains significant.

During the past decades, ferroptosis has been gradually 
identified as an iron-dependent, nonapoptotic cell death 
mode characterized by the accumulation of lipid reac-
tive oxygen species [6, 7]. An increasing number of stud-
ies have shown that dysregulation of ferroptosis-related 
genes (FRGs) plays an important role in the occurrence 
and development of many diseases, especially cancer [8–
10]. Studies related to ferroptosis have become the focus 
in treating and detecting related diseases. Moreover, as 
the noncoding RNAs play an emerging role in cancer, 
long noncoding RNAs (lncRNAs) have been fully studied 
[11]. Interestingly, an increasing number of studies have 
demonstrated that lncRNAs can participate in the ferrop-
tosis process and then influence tumor development [12–
14]. Therefore, exploring ferroptosis-associated lncRNAs 
might provide new ideas and insights for ccRCC treat-
ment and prediction.

In this study, we first explored the potential biologi-
cal functions and correlation of FRGs. Afterward, we 
screened the prognostic ferroptosis-related lncRNAs 
(FRlncRNAs) and conducted the molecular subtyping 
of ccRCC patients. The correlation between the molec-
ular clusters and immune cell infiltration was explored. 
Afterward, we conducted the LASSO Cox regression to 
establish a 5-ferroptosis-related LncRNAs signature in 
ccRCC patients and validated it in the ICGC database. 
Furthermore, a nomogram was constructed integrating 
the prognostic signature and significant clinical param-
eters. The results showed that a good predictive perfor-
mance for the overall survival (OS) of ccRCC patients.

Materials and methods
Data selection and processing
The ccRCC sequencing data (HTSeq-FPKM) and the lat-
est corresponding clinical information (Additional file  1: 
Table  S1) were downloaded from the TCGA database 
(https://​cance​rgeno​me.​nih.​gov/), including 539 ccRCC 
samples and 72 normal controls. Moreover, we down-
loaded the transcriptome profile and corresponding sur-
vival data from the ICGC database (http://​daco.​icgc.​org/) 
as the validation cohort, including 91 RCC samples. Then, 
we distinguished between lncRNAs and mRNAs using the 
human GTF annotation file. The Matrix processing and 
batch effect removal were conducted via the limma and sva 
packages in R (v 4.0.3).

Cell lines and clinical specimens
Seven kidney and RCC cell lines (kidney cell lines: HK-2; 
RCC cell lines: 786-O, 769-P, OS-RC-2, A498, ACHN, and 
Caki-1) were obtained from the American Type Culture 
Collection (ATCC). All cells were maintained in RPMI-
1640 (Corning, USA) or high-glucose DMEM medium 
(Gibco, USA) with 10% fetal bovine serum (BI, Israel) and 
1% penicillin and streptomycin (Gibco, USA) at 37 °C and 
5% CO2. Ten paired ccRCC and adjacent normal tissues 
were obtained from ccRCC patients undergoing surgi-
cal resection at Peking University First Hospital. Detailed 
information on the 10 paired tissue specimens is shown in 
Additional file 2: Table S2. The Ethics Committee approved 
this study of PUFH, and all patients signed informed con-
sent forms. All procedures were performed according to 
the World Medical Association Declaration of Helsinki.

Real‑time quantitative PCR (qPCR)
Total RNA of 10 paired clinical samples and 7 cell lines 
were extracted by Takara kit according to the manufac-
turer’s protocol. Then, the RNA was reverse transcribed to 
cDNA in a 20 µl reaction system. All gene transcripts were 
quantified by qPCR using SYBR Premix ExTaq kit, and 
TUBA was used as a normalization control. The primer 
sequences are listed in the Additional file 3: Table S3. Each 
reaction was performed four times, and the 2^−△△CT 
method was used to calculate the relative mRNA expres-
sion level.

Identification of prognostic ferroptosis‑related 
differentially expressed lncRNAs
According to previous studies [15–17], we obtained 
259 FRGs, and the list is shown in Additional file  4: 
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Table  S4. After that, we screened ferroptosis-related 
lncRNAs with a filter (correlation  > 0.5, p < 0.01), 
including 2854 lncRNAs. The limma package was used 
to determine the differentially expressed lncRNAs 
(DElncRNAs) between the ccRCC patients and normal 
controls, including 1333 lncRNAs [18]. We intersected 
the DELncRNAs and ferroptosis-related LncRNAs to 
obtain the ferroptosis-related DElncRNAs (FRDElncR-
NAs). Univariate Cox regression of OS was performed 
on the FRDElncRNAs. Those with p < 0.01 were con-
sidered prognostic FRDElncRNAs.

Molecular subtyping in ccRCC based on prognostic 
FRDElncRNAs
After obtaining prognostic FRDELncRNAs, we per-
formed consensus clustering to identify the molecular 
subtypes of ccRCC by using the ConsensusClusterplus 
R package [19]. We selected 80% of the prognostic 
FRDElncRNAs resampling 100 times and determined 
clusterings of specified cluster counts (k). After this, 
the pairwise consensus values were calculated and 
stored in a symmetrical consensus matrix for each 
k. The k, at which there was no appreciable increase, 
was determined by the cumulative distribution func-
tion (CDF) plot and delta area plot. The alteration in 
immune infiltration between different clusters was 
estimated using the CIBERSORT method (Additional 
file 5: Figure S1).

Potential biological functional enrichment
To gain insights into the cellular functions directly reg-
ulated by FRG transcriptional control, we compared 
the list of FRGs to the biological pathways annotated 
by the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) [20]. Afterward, according to the two clusters, 
Gene Set Variation Analysis (GSVA) was conducted 
using the GSVA package in R software v.4.0.3 to inves-
tigate the enrichment of HALLMARK pathways with 
the h.all.v7.4.symbols.gmt gene set from the Molecular 
Signature Database [21].

Analysis of potential therapeutic targets in different 
clusters
According to the two divided clusters, we determined 
whether there were differences in treatment effects 
between groups based on relevant databases. Since tar-
geted drugs are commonly used to treat advanced kidney 
cancer, we used the R pRRophetic package to estimate 
drug response as determined by the half-maximal inhibi-
tory concentration (IC50) for each kidney cancer patient 
on the Genomics of Drug Sensitivity in Cancer (GDSC) 
website [22]. The drug predictive model was applied to 
the processed, standardized, and filtered clinical tumor 
expression data, and then it estimated the drug sensitiv-
ity for each patients. Furthermore, based on the Cancer 
Immunome Altas (TCIA) database (http://​tcia.​at/), the 
Immunophenoscore (IPS) was obtained [23, 24]. To pre-
dict sensitivity to immunotherapy between different clus-
ters, we compared the IPS of the two clusters in different 
immunotherapy decisions.

Construction of the prognostic predictive risk signature
First, the TCGA cohort patients were randomly divided a 
the training set and an internal validation set. Meanwhile, 
the patients in the ICGC cohort were used as the exter-
nal validation cohort. Based on the prognostic FRDEL-
ncRNAs, we performed LASSO Cox regression using 
the glmnet R package. We calculated each patient’s risk 
score using the regression coefficient score of the indi-
vidual lncRNAs and their expression values. We defined 
the formula for calculating the prognostic risk score as 
follows: Risk score = coef(Lnc1)*Exp(Lnc1) + coef(Lnc2
)* Exp (Lnc2) + … + coef(Lncn)* Exp (Lncn), where “coef” 
represents the coefficient score estimated by LASSO Cox 
regression, and “Exp” represents the expression value 
of the individual LncRNAs. The detailed information 
of the signature is shown (Table  1). Then, we classified 
the ccRCC patients into the high- and low-risk groups, 
according to the median risk score of the training group 
as the cutoff [25].

Validation of the prognostic risk signature
We conducted the Kaplan–Meier and receiver operat-
ing characteristic (ROC) curve analyses to assess the 

Table 1  Detailed information of the LncRNAs in the prognostic signature

Gene Ensembl ID Description Located Coef.

LINC00460 ENSG00000233532 Long intergenic non-protein coding RNA 460 13q33.2 0.05808

LINC00894 ENSG00000235703 EOLA2 divergent transcript Xq28 0.08831

VPS9D1-AS1 ENSG00000261373 VPS9D1 antisense RNA 1 16q24.3 0.11775

CYTOR ENSG00000222041 Cytoskeleton regulator RNA 3q13.2 0.01316

FOXD2-AS1 ENSG00000237424 FOXD2 adjacent opposite strand RNA 1 1p33 0.07545

http://tcia.at/
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prognostic risk signature’s validity. According to the 
calculated median risk score, all samples in each group 
were divided into high- and low-risk groups, and the sur-
vminer and timeROC packages were used to validate the 
predictive accuracy in the training and validation sets. 
The area under the curve (AUC) values corresponding to 
1-, 3-, and 5-years were calculated. The time-dependent 
ROC curve was used to validate the predictive perfor-
mance of the signature. An AUC value of 0.75 or higher 
was considered the significant predictive value, and the 
value of 0.60 or higher was regarded as acceptable for 
prediction. Furthermore, univariate and multivariate Cox 
regression was conducted to explore whether the ferrop-
tosis-signature (FerroSig) could serve as an independent 
factor.

Construction and validation of the nomogram
To better predict the prognosis of patients with ccRCC, 
we established a predictive nomogram based on clini-
cal parameters and prognostic signature [26]. In brief, 

we first performed univariate and multivariate Cox 
regression analyses to identify clinical parameters and 
risk scores that could be used as independent risk fac-
tors. Subsequently, the significant factors were used to 
construct the predictive nomogram. We then evalu-
ated the nomogram effect using calibration curves and 
time-dependent ROC curves. An AUC value of 0.75 or 
higher was considered a significant predictive value, and 
a value of 0.60 or higher was regarded as acceptable for 
prediction.

Results
Identification of the prognostic FRDElncRNAs
The data processing was performed as described in the 
methods above. The flow chart of the whole process 
is shown (Fig.  1). To explore the potential functions of 
the FRGs, we first conducted KEGG pathway enrich-
ment analysis. The results showed that FRGs were 
mainly enriched in ferroptosis and autophagy pathways 
(Fig. 2A). Afterward, we explored the FRlncRNAs with a 

Fig. 1  Flow chart of the whole analysis processes of this study
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correlation  > 0.5 and p < 0.01, using the limma package. 
Next, 1333 DElncRNAs between the ccRCC and normal 
samples from the TCGA set were screened, and the 5 
most obvious upregulated- and downregulated lncRNAs 
were identified (Fig.  2B). Theoverlapping lncRNAs in 
both DElncRNAs and FRlncRNAs were identified as the 
FRDElncRNAs. There were 723 lncRNAs for OS selected 
as prognostic FRDELncRNAs for subsequent analyses 
(Fig. 2C).

Molecular subtyping showed differences in therapeutic 
choice and immune microenvironments
The prognostic FRDElncRNAs above were used to 
screen the molecular subtypes of ccRCC by using the 
ConsensusClusterPlus packages. The K-means method 
was performed for clustering, and 80% of the lncRNAs 
were sampled 100 times using the resampling method. 
The consensus CDF and delta area were calculated to 
determine the clustering outcomes, as shown in Fig. 3B. 
When the cluster number was 2, there was no signifi-
cant increase in the area under the CDF curve. Hence, 
we finally divided the samples in the TCGA cohort into 
cluster 1 and cluster 2. The representative consensus 
matrix of two clusters (Fig. 3A) displayed a well-defined 
2-block structure. Principal component analysis (PCA) 
showed that the samples from two clusters could be well 

separated (Fig.  3C). Then, a heatmap integrating the 
expression of the prognostic FRDElncRNAs and clinical 
parameters in each subtype was generated, as is shown 
in Fig. 3D. The results showed that pM stage was higher 
in cluster1 than in cluster 2, which also clarified that the 
patients in cluster 1 had a worse prognosis.

Comprehensive analyses of the molecular clusters
Subsequently, we explored HALLMARK pathway enrich-
ments alterations between the two clusters using the 
GSVA method. The results showed that several onco-
genic pathways were significantly altered between the 
two clusters, such as hypoxia and apoptosis (Fig.  4A). 
Furthermore, using the pRRophetic packages, we calcu-
lated and analyzed the IC50 between the two clusters for 
clinical drugs used for advanced ccRCC patients. Accord-
ing to the median IC50 value, the outcome indicated that 
the patients in cluster 2 were more sensitive to Dauno-
rubicin and Tipifarnib. In contrast, using the Dasatinib, 
Paclitaxel, Sorafenib, and Pazopanib would be more 
effective for patients in cluster 1 (Fig. 4B).

Since the tumor microenvironment (TME) plays a vital 
role in the development of tumors, we further explored 
the correlation between the TME and molecular clus-
ters. As shown in Fig. 5A, we first calculated the stromal 
score, immune score, and ESTIMATE score. Only the 

Fig. 2  Function annotations of ferroptosis-related genes and Identification of the ferroptosis-related LncRNAs. A KEGG enrichment analysis of 
the ferroptosis-related genes, the larger the shape of the dot, the more corresponding genes are represented. B Volcano plot of the differentially 
expressed ferroptosis-related LncRNAs between the ccRCC and normal samples. The 5 most significant up-and down-regulated LncRNAs were 
labeled separately. C The Venn plot of the overlapped LncRNAs between two cohorts
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Fig. 3  Molecular subtyping of the ccRCC patients based on the prognostic ferroptosis-related LncRNAs. A The heatmap corresponding to the 
consensus matrix for k = 2 was obtained by applying consensus clustering. Color gradients represent consensus values from 0–1; white corresponds 
to 0 and dark blue to 1. B Consensus among clusters for each category number k. C Principal Component Analysis and D K-M survival analysis of the 
two clusters. E The composite heatmap corresponding to the cluster and mRNA expression, TNM stage, AJCC stage, and ISUP grade, and Age as the 
annotations. **P < 0.01

Fig. 4  Biological functions and immune infiltration between two clusters. A Gene set variation analysis (GSVA) was performed to compute 
HALLMARK pathways between two clusters. B The IC50 data on drugs for ccRCC differentially expressed in the two clusters obtained by applying 
pRRophetic were shown
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immune score showed a significant difference between 
the two clusters. Hence, we then explored the immune 
cell infiltration between two clusters using the CIBER-
SORT method. Cluster 1 exhibited a higher infiltration 
of CD8 T cells, regulatory CD4 T cells, and Neutrophils. 
In comparison, cluster 2 showed a higher infiltration of 
macrophages (Fig.  5B). Meanwhile, the expression lev-
els of some potential immunotherapy targets changed 
significantly in both classifications. The mRNA expres-
sion levels of potential immune therapeutic targets, 
such as BRAF and PD-1, were markedly higher in clus-
ter 1 (Fig. 5C). Next, we explored the TCIA database for 

differences in the presence of immunotherapeutic targets. 
Previous studies reported the role of IPS in predicting the 
immunotherapy response of ccRCC patients. According 
to the IPS, the outcome showed that patients in Cluster 
1 obtained a higher IPS of CTLA4 and CTLA4 + PD-1 
than Cluster 2 (Fig.  5D). These results suggest that the 
cluster 1 group may be more sensitive to immunotherapy.

Construction and validation of the prognostic signatures 
based on the prognostic FRDELncRNAs
Based on the prognostic FRDElncRNAs obtained from 
the univariate Cox regression analysis, we constructed a 

Fig. 5  Tumor environment especially immune infiltration and potential immune therapeutic target between two clusters. A Tumor environment 
scores between two clusters. B The differentially expressed immune infiltrated cells in the two clusters obtained by applying Cibersoft were shown. 
C Common potential immune therapeutic targets between two clusters were shown. *P < 0.05, **P < 0.01, *** P < 0.001 D The different expressed of 
four immune status targets between two clusters were explored from the TCIA database
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5 FRDElLncRNAs based prognostic signature using the 
LASSO regression (Fig. 6A and B). Detailed information 
on the lncRNAs from the signature is shown in Table 1. 
The risk score was constructed according to the follow-
ing formula: risk score = 0.058 (LINC00460) + 0.088 
(LINC00894) + 0.118 (VPS9D1-AS1) + 0.013 
(CYTOR) + 0.075 (FOXD2-AS1).   Then, we explored 
the prognosis of TCGA-KIRC patients affected by the 
expression levels of the five LncRNAs, including overall 
survival and disease-free survival (Additional file  5: Fig. 
S1).  Then, based on the calculated median risk score 
cutoff, patients were divided into the high- and low-risk 
groups. The risk score distribution, survival status, and 
expression of ncRNAs from the signatures are exhib-
ited in the TCGA training cohort, TCGA validation set, 
and ICGC validation set are exhibited in Fig. 6C–E. The 
Kaplan–Meier log-rank test and the time-dependent 
ROC curve were used to evaluate the predictive ability 
and accuracy of the prognostic signature. The results of 
the Kaplan–Meier log-rank test showed that the high-
risk group had a significantly worse OS than the low-
risk group in the TCGA training set (Fig.  7A), TCGA 
validation set (Fig. 7B), and ICGC validation set (Fig. 7C). 
Moreover, the time-dependent ROC curve proved the 
1-year, 3-year, and 5-year predictive accuracy of the sig-
nature for OS (Fig. 7A–C).

Construction and validation of the prognostic nomogram
After establishing and validating the signatures based 
on the prognostic FRDElncRNAs, univariate and mul-
tivariate Cox regression analyses were used to explore 

independent risk factors in the TCGA dataset. As 
shown in Table  2, univariate Cox regression analy-
sis showed that AJCC stage, ISUP grade, age, and the 
risk signature were significantly correlated with OS 
(Table  2). Moreover, the multivariate Cox regression 
analyses of the clinical parameters above showed that 
AJCC stage, ISUP grade, age, and the risk signature, 
were significantly correlated with OS (Table 2).

To better assess patient prognosis and guide clinical 
decision-making, we established a nomogram integrat-
ing the risk signature and significant clinical parameters 
in the multivariate Cox regression analyses (Fig.  8A). 
The C-index of 0.773 showed a good agreement, and 
the established nomogram was shown (Fig.  8B). The 
calibration curves showed that the predictive nomo-
gram could well predict the survival status of patients 
at 1, 3, and 5  years (Fig.  8C). Additionally, the nomo-
gram showed better predictive value than clinical indi-
cators and the FRlncRNAs signatures (Fig. 8D).

Validation of the lncRNAs in cell lines and clinical 
specimens
We finally validated the 5 lncRNAs in signature in 
ccRCC clinical samples and RCC cell lines. Compared 
to the normal cell line HK-2, the expression levels of 
LncRNAs in RCC cell lines were inconsistent, with 
higher or lower levels present (Fig.  9A). The results 
may be due to the inability of a single cell line to mimic 
the overall situation of RCC and adjacent normal tis-
sues. We then examined the expression levels of the 

Fig. 6  Establishment of the 5-LncRNAs based prognostic signature. A LASSO coefficient profiles of the prognostic DEFRGs. B Partial likelihood 
deviance was plotted versus log (Lambda). The vertical dotted line indicates the lambda value with the minimum error and the largest lambda 
value. (C-E) LncRNA expression patterns and the distribution of survival status increased risk score in the TCGA training set, TCGA internal validation 
set, and ICGC external validation set
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corresponding mRNAs in 10 paired clinical samples, 
in which LNC000894, VPS9D-AS1, and CYTOR were 
highly expressed in cancer, while LNC000460 and 
FOXD2-AS1 were not evident (Fig. 9B).

Discussion
The ccRCC is a molecularly heterogeneous tumor char-
acterized as radiotherapy and chemotherapy-resistant [2, 
5]. With the development of diagnostic and therapeutic 
techniques, the 5-year survival rate of ccRCC patients has 
been significantly improved. However, 25–30% of ccRCC 

patients have metastases at initial diagnosis [4]. The 
5-year survival rate is merely 10%. Most ccRCC patients 
have no apparent symptoms such as pain and hematuria, 
usually resulting in diagnostic difficulty in the early stage 
[27]. Moreover, the current TNM staging system used 
in clinical practice lacks accuracy for prognostic evalua-
tion [28, 29]. The early diagnosis and accurate assessment 
of ccRCC patients remain challenging for the reasons 
mentioned above. Therefore, it is still vital to screen out 
new clinical and molecular biomarkers for diagnosis and 
treatment.

Ferroptosis plays essential roles in the progression and 
tumorigenesis of RCC [30]. Notably, the expression lev-
els of various ferroptosis-related genes were significantly 
correlated with the prognosis of ccRCC patient, suggest-
ing that targeting ferroptosis-related pathway might be 
an effective option for ccRCC treatment [31, 32]. More-
over, lncRNAs plays important roles in regulating the 
expression of FRGs and the process of ferroptosis [33, 
34]. Hence, in this study, we comprehensively analyzed 
the expression and prognosis of ferroptosis-related lncR-
NAs. And then, we performed molecularly typing and 
developed a prognostic model based on 5 lncRNAs in 
patients with ccRCC, using the method above.

Fig. 7  Validation of the prognostic signature. K-M plot analyses between the high-and low-risk patients in the TCGA training cohort A, TCGA 
validation cohort B, and ICGC validation cohort C. The 1-, 3-, 5-year time-dependent ROC curves in the TCGA training cohort (A), TCGA validation 
cohort (B), and ICGC validation cohort (C)

Table 2  Univariate and multivariate Cox analyses of clinical 
parameters and risk signature

Parameters Univariate analysis Multivariate analysis

HR (95%CI) P value HR (95%CI) P value

Gender 0.963 (0.703, 1.319) 0.815 0.964 (0.700, 1.326) 0.820

AJCC stage 1.870 (1.638, 2.136)  < 0.001 1.597 (1.373, 1.859)  < 0.001

ISUP grade 2.251 (1.835, 2.763)  < 0.001 1.326 (1.051, 1.673) 0.017

Age 1.690 (1.241, 2.303)  < 0.001 1.567 (1.145, 2.145) 0.005

RiskSig 6.535 (4.608, 9.267)  < 0.001 3.733 (2.513, 5.546)  < 0.001
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Although many molecular subtypes of ccRCC based on 
gene expression have been proposed in recent years, the 
cluster of lncRNAs associated with ferroptosis has not 
been fully explored [35]. Therefore, we divided ccRCC 
patients into two clusters based on prognostic DEFRl-
ncRNAs using the NMF algorithm. PCA analysis showed 
significant differences between the two clusters. The 
Kaplan–Meier plot showed that cluster 1 had a worse 
prognosis than cluster2. GSVA analysis showed that 
many tumor-related pathways were significantly altered 
between the two clusters (such as hypoxia and coagula-
tion), suggesting that patients in the two clusters may 
have different sensitivities to some clinical drugs. We 

then tested the sensitivity of different cluster of patients 
to some drugs commonly used in advanced kidney can-
cer. The results showed promising differences, which 
contributed to the implementation of individualized 
treatment.

The immune components of the tumor microenvi-
ronment and immune cells significantly regulate tumor 
development [36]. We further compared the differences 
in immune cell infiltration between the two clusters. We 
found high levels of the CD8 + T cells, T cell regulatory, 
follicular helper T cells, and memory B cells were pre-
sented high expression levels in cluster 1. In contrast, the 
expression levels of neutrophils and macrophages were 

Fig. 8  Construction and validation of the prognostic nomogram. A Forest plot of the significant clinical parameters in the multivariate Cox 
regression. B The nomogram based on the significant clinical parameters and risk signature C Calibration curves of the nomogram for 1-, 3-, and 
5-year survival prediction. D The predictive value of the nomogram, risk signature, and clinical parameters
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significantly increased in cluster 2. Unlike most cancer 
types, previous studies have shown that the density of 
CD8 T cells is correlated with poor prognosis in patients 
with RCC [37, 38]. This also explains why patients in 
cluster 1 have a worse prognosis. Moreover, the infiltra-
tion of mesenchymal cells and neutrophils may serve as 
a protective factor for RCC. We then examined at the 
mRNA expression levels of common therapeutic tar-
gets, and patients in cluster 1 had significantly upregu-
lated expression levels of PD1, CTLA4, and other genes. 
We also examined IPS under different immunotherapy 
modalities through the TCIA database. We found higher 
CTLA4 and CTLA4 + PD1 IPS in cluster1, suggesting 
that patients in cluster1 may be more sensitive to immu-
notherapy. However, cluster 1 patients showed a worse 
prognosis in previous results. This suggests that the sen-
sitivity of immunotherapy may not have a significant 
impact on prognosis.

Afterward, we established a predictive signature using 
LASSO regression. The Kaplan–Meier plot and time-
dependent ROC curves showed that the predictive 
signature exhibited good predictive performance. Fur-
thermore, most of the lncRNAs in our signature have 
been reported in various cancer types. LINC00460 has 
been extensively studied in cancer and has been shown 
in several studies to be a prognostic target in renal clear 
cell carcinoma [39–41]. LINC00894 was reported to pro-
mote breast cancer metastasis by regulating ZEB1 [42]. 
CYTOR and VPS9D1-AS1 are associated with the prog-
nosis of multiple cancers and can regulate the progres-
sion of multiple cancers by sponging miRNAs [43–45]. 
Similarly, FOXD2-AS1 was strongly associated with the 

prognosis and progression of cancer patients in various 
cancers [46, 47]. These validation results in multiple data-
sets and literature mining results indicate that the prog-
nostic signature predicts the prognosis of ccRCC patients 
and may function as the regulator of ccRCC progression.

Nevertheless, this study has several certain limita-
tions. First, our data are based on the TCGA and ICGC 
databases, and more independent datasets are needed 
for testing and validation. Second, some lncRNAs in our 
signature play an essential role in cancer and need to be 
validated in future experiments. In conclusion, we first 
systematically analyzed the expression and prognos-
tic value of ferroptosis-related lncRNAs and assessed 
immune infiltration and potential prognostic targets by 
molecular subtyping in ccRCC patients.

Conclusion
In conclusion, our study identified the FRDELncRNAs 
and successfully constructed an individualized ccRCC 
signature (riskScore), which proved to be significantly 
correlated with OS in both the training and validation 
cohorts. We also estimated the potential relationships 
among immune cell infiltration, immunotherapy-related 
targets, and potential therapeutic drugs between the two 
molecular subtyping clusters. Our research is anticipated 
to provide new insights into ferroptosis-related lncRNAs 
for future work.
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