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ABSTRACT In the bacterium Salmonella enterica, the CobB sirtuin protein deacetylase and the Gcn5-related N�-acetyltransferase
(GNAT) Pat control carbon utilization and metabolic flux via N�-lysine acetylation/deacetylation of metabolic enzymes. To date,
the S. enterica Pat (SePat) acetyltransferase has not been biochemically characterized. Here we report the kinetic and thermody-
namic characterization of the SePat enzyme using two of its substrates, acetyl coenzyme A (Ac-CoA) synthetase (Acs; AMP form-
ing, EC 6.2.1.1) and Ac-CoA. The data showed typical Michaelis-Menten kinetic behavior when Ac-CoA was held at a saturating
concentration while Acs was varied, and a sigmoidal kinetic behavior was observed when Acs was saturating and the Ac-CoA
concentration was varied. The observation of sigmoidal kinetics and positive cooperativity for Ac-CoA is an unusual feature of
GNATs. Results of isothermal titration calorimetry (ITC) experiments showed that binding of Ac-CoA to wild-type SePat pro-
duced a biphasic curve having thermodynamic properties consistent with two distinct sites. Biphasicity was not observed in ITC
experiments that analyzed the binding of Ac-CoA to a C-terminal construct of SePat encompassing the predicted core acetyl-
transferase domain. Subsequent analytical gel filtration chromatography studies showed that in the presence of Ac-CoA, SePat
oligomerized to a tetrameric form, whereas in the absence of Ac-CoA, SePat behaved as a monomer. The positive modulation of
SePat activity by Ac-CoA, a product of the Acs enzyme that also serves as a substrate for SePat-dependent acetylation, is likely a
layer of metabolic control.

IMPORTANCE For decades, N�-lysine acetylation has been a well-studied mode of regulation of diverse proteins involved in al-
most all aspects of eukaryotic physiology. Until recently, N�-lysine acetylation was not considered a widespread phenomenon in
bacteria. Recent studies have indicated that N�-lysine acetylation and its impact on cellular metabolism may be just as diverse in
bacteria as they are in eukaryotes. The S. enterica Pat enzyme, specifically, has recently been implicated in the modulation of
many metabolic enzymes. Understanding the molecular mechanisms of how this enzyme controls the activity of diverse enzymes
by N�-lysine acetylation will advance our understanding of how the prokaryotic cell responds to its changing environment in
order to meet its metabolic needs.
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Enzymes belonging to the Gcn5-related N-acetyltransferase
(GNAT) superfamily are conserved in all domains of life and

are best described as enzymes that utilize acyl coenzyme A (CoA)
as a donor for the acylation of the epsilon amino group of lysyl
residues (N�-Lys) of proteins and small molecules (1, 2). Members
of the GNAT superfamily (pfam00583) belong to a larger super-
family of enzymes known as lysine acetyltransferases (3) or KATs
(4) (formerly histone acetyltransferases [1, 5]). GNATs and N�-
Lys acetylation have been implicated in many processes, including
antibiotic resistance, regulation of gene expression, and metabolic
flux (reviewed in references 2 and 6). For instance, the activity of
Acs (AMP forming, EC 6.2.1.1), a central metabolic enzyme, is
modulated by N�-Lys acetylation in S. enterica (7–9), mice, and
humans (10, 11). In S. enterica, the SePat GNAT inactivates Acs
upon the acetylation of residue Lys609 (9), whereas deacetylation
of AcsAc by the NAD�-dependent CobB sirtuin deacetylase re-

turns Acs to its active, unmodified state (7, 12, 13). In addition to
acetylation of Acs, we reported that SePat propionylated (i.e., in-
activated) propionyl CoA synthetase (PrpE) in S. enterica (14).
More recently, SePat was reported to regulate the activities of three
other metabolic enzymes by N�-Lys acetylation, namely, glyceral-
dehyde phosphate dehydrogenase (GapA), isocitrate lyase (AceA),
and isocitrate dehydrogenase kinase/phosphatase (AceK) (15),
and the DNA-binding activity of the RcsB regulator (16).

S. enterica Pat (formerly YfiQ) is a large, multidomain protein
that is annotated to be 886 residues (~98 kDa) in size (Fig. 1).
SePat appears to have two distinct domains, which distinguishes it
from a similar acetyltransferase also called Pat in Sulfolobus solfa-
taricus (17, 18). Residues 3 to 625 of SePat are similar to those of
members of the NDP-forming acyl-CoA synthetase family
(COG1042). Notably, the critical histidine residue for NDP-
forming acyl-CoA synthetase activity is not conserved in SePat,

RESEARCH ARTICLE

September/October 2011 Volume 2 Issue 5 e00216-11 ® mbio.asm.org 1

mbio.asm.org


preventing the enzyme from making acetyl-CoA (Ac-CoA) from
acetate, ATP, and CoA (9). In its C terminus (residues 696 to 886),
SePat has similarity to GNATs and RimL-like acetyltransferases
(COG1670), whose members belong to the GNAT superfamily
(Fig. 1). RimL is an N-terminal acetyltransferase that modifies the
alpha amino group of a serine residue of ribosomal protein L12
(19–21). There is no evidence that SePat can catalyze N-terminal
acetylation or O-acetylation of serine residues. SePat, however,
has been reported to acetylate internal lysine residues (9, 10, 15,
16), a hallmark of the majority of reported GNATs. Notably, even
though the acetylatable substrates are diverse, the collective bio-
chemical and structural evidence reported to date supports a con-
served, direct-attack mechanism of acetyl transfer by the GNAT
superfamily of KATs (22–24). In this mechanism, Ac-CoA and the
other substrate bind to form a ternary complex where an active-
site residue deprotonates the substrate lysine, allowing for direct
nucleophilic attack on the carbonyl carbon of Ac-CoA.

To date, the SePat enzyme has not been biochemically charac-
terized. Elucidation of the acetyltransferase activity of SePat is
needed to understand how the acetylation of metabolic enzymes
contributes to cellular homeostasis.

Here we report results of a kinetic analysis of SePat for two of its
known substrates, Ac-CoA and Acs. For this purpose, we used a
truncated, C-terminal domain of Acs (135 residues, AcsC) con-
taining the active-site Lys609 modified by SePat. The response to
various levels of Acs proved to be a typical Michaelis-Menten
curve, while various levels of Ac-CoA produced a sigmoidal curve
consistent with positive cooperativity. We also report thermody-
namic parameters for SePat binding to Ac-CoA, which showed
that SePat has two distinct binding sites for Ac-CoA. Further, an-
alytical gel filtration experiments showed that SePat oligomerizes
to a tetrameric form in the presence of Ac-CoA. Overall, the data
suggest that SePat activity is responsive to small changes in the
levels of Ac-CoA and that oligomerization in response to Ac-CoA
produces the cooperative response observed for this enzyme.

RESULTS
SePat displays positive cooperativity in response to Ac-CoA
substrate levels. To analyze SePat activity, we performed steady-

state kinetic analysis utilizing a smaller construct of Acs, an ap-
proximately 15-kDa truncated C-terminal construct (AcsC). Full-
length Acs is ~72 kDa and proved to be technically difficult to
provide in the large quantity required for the saturation condi-
tions necessary for steady-state kinetic analysis. The acetyltrans-
ferase activity of SePat was assayed by detecting the formation of
2-nitro-5-thiobenzoate (TNB2�) at 412 nm, the colored species
produced by the reaction between 5,5=-dithiobis-2-nitrobenzoate
(DTNB; also known as Ellman’s reagent [25–27]) and the free
sulfhydryl of CoA released by SePat.

Kinetic analysis of SePat showed a typical hyperbolic response
for various Acs concentrations at a fixed, saturating Ac-CoA con-
centration (Fig. 2A, left). In contrast, when Acs was held at a fixed,
saturating concentration and the levels of Ac-CoA were varied, a
sigmoidal response was observed (Fig. 2B, left). This behavior was
consistent with positive cooperativity (28), which was revealed by
the double-reciprocal plot of the velocity data, which is concave
upward (Fig. 2B, right), and the calculated Hill coefficient (h) of
2.2 � 0.2 (Table 1). The apparent Vmax (�mol·min�1 mg�1) val-
ues and apparent turnover numbers (kcat) of SePat were approxi-
mately 2-fold higher for Acs than for Ac-CoA (Table 1). This
difference might be due to slightly different assay buffer condi-
tions due to the presence of saturating levels of the protein sub-
strate, which was stored differently than the Ac-CoA substrate (see
Materials and Methods). The kinetic parameters for Acs and Ac-
CoA were within the range of those reported for other KATs [re-
cently reviewed (29)].

The ITC-generated binding isotherm for the Ac-CoA
titration indicates a biphasic interaction. To further character-
ize the SePat–Ac-CoA binding interaction, we performed ligand-
binding experiments using isothermal titration calorimetry (ITC)
on the full-length enzyme where Ac-CoA was the titrant. The
binding isotherm obtained by integration of the raw data (Fig. 3,
bottom panel) showed a biphasic response to increasing Ac-CoA
concentrations. The binding curve was best fitted to a two-site
model that let us determine thermodynamic parameters (Fig. 3,
represented by solid line).

The binding isotherm (Fig. 3) suggested that SePat had two
binding sites for Ac-CoA. These two binding sites were both exo-

FIG 1 SePat is a multidomain protein that belongs to the GNAT superfamily of enzymes. SePat is predicted to be a multidomain protein (Conserved Domain
Database [51] search) that has a C-terminal Ac-CoA binding fold whose predicted structure belongs to the large GNAT superfamily of acetyltransferases. N
terminal to this domain is another predicted domain having high similarity to the acyl CoA synthetase (NDP-forming) superfamily of enzymes.

TABLE 1 Kinetic parameters of Pat for Acs and Ac-CoAa

Acs substrateb,c Ac-CoA substratec,d

Km (�M) Vmax (�mol·min�1 mg�1) kcat (s�1) kcat/Km (M�1 s�1) K0.5 (�M) Vmax (�mol·min�1 mg�1) kcat (s�1) kcat/K0.5 (M�1 s�1) h

132 � 5 4.9 � 0.2 8.0 � 0.4 (6.0 � 0.1) � 104 10.3 � 1.0 2.7 � 0.2 4.3 � 0.3 (4.2 � 0.2) � 105 2.2 � 0.2
a These parameters are apparent kinetic values. The values shown are averages and standard deviations.
b The AcsC construct used consisted of the last 135 C-terminal residues.
c The parameters were determined from curves having an r2 value of 0.98.
d For steady-state analysis, the AcsC construct was used at a saturating concentration, 400 �M.
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thermic in nature, having enthalpy changes of �3.93 �
0.34 kcal·mol�1 (�H1) and �16.1 � 0.1 kcal·mol�1 (�H2). The
Gibbs free energy changes of �9.07 � 0.06 kcal·mol�1 (�G1) and
�7.8 � 0.01 kcal·mol�1 (�G2) (Table 2) indicated that the bind-
ing of Ac-CoA to either site was thermodynamically favorable.
The thermodynamic data also showed that the binding affinity of
the first site was approximately 10-fold stronger than that of the
second, as evidenced by the dissociation constant (Kd) of 0.29 �
0.03 �M for the first site and 2.38 � 0.03 �M for the second site.
Binding of Ac-CoA to the site with the lowest Kd was expected to
occur first since Ac-CoA was the titrant and SePat was in excess in
the early injections. Although we could not perform the reverse
titration since SePat aggregates at high concentrations, even in the

presence of higher salt concentrations and 20% (vol/vol) glycerol,
the binding isotherm (Fig. 3) showed that SePat had two binding
sites with distinct properties for Ac-CoA.

The ITC-generated binding isotherm from Ac-CoA titration
into SePatAT indicates a single binding interaction. The biphasic
response to Ac-CoA titration was not detected when a C-terminal
construct of SePat (SePatAT, ~26 kDa), encompassing the pre-
dicted core GNAT fold responsible for Ac-CoA binding, was an-
alyzed by ITC (Fig. 4). The binding constant (Ka) and Kd, (1.65 �
0.02) �105 M�1 and 6.1 � 0.73 �M, respectively (Table 2), were
more similar to the parameters for the second binding site for
wild-type SePat than to those for the first binding site (Table 2).
The Kd was, however, approximately 3-fold higher, indicating a

FIG 2 Initial velocity of SePat in response to AcsC and Ac-CoA substrate concentrations. (A) The graph on the left shows the substrate saturation curve of the
SePat-dependent acetylation reaction velocity in response to various Acs substrate concentrations. The curve is hyperbolic with an r2 value of 0.98 and was
determined from three independent experiments. The graph on the right is a double-reciprocal plot of the kinetic data. SePat was present at 30 nM, and Ac-CoA
(100 �M) was used at a saturating concentration. (B) The graph on the left shows the substrate saturation curve of the SePat-dependent acetylation reaction
velocity in response to various Ac-CoA substrate concentrations. The curve was best fitted to a sigmoidal curve with an r2 value of 0.98 and was determined from
three independent experiments. The graph on the right is a double-reciprocal plot of the kinetic data indicating a concave curve. SePat enzyme was present at
15 nM, and AcsC was present at a saturating concentration (400 �M).

TABLE 2 Thermodynamic parameters from ITC analysis of Pat for Ac-CoA

Protein Binding site Nd K a
e (M�1) K d

f (�M) �Hg (kcal·mol�1) �Sh(cal·mol�1 K�1) �Gi (kcal·mol�1)

Pata 1 0.88 � 0.02j (3.43 � 0.32) � 106 0.29 � 0.03 �3.93 � 0.34 �16.9 � 0.90 �9.07 � 0.06
Pata 2 1.09 � 0.01 (4.18 � 0.06) � 105 2.38 � 0.03 �16.1 � 0.10 �27.5 � 0.00 �7.80 � 0.01
PatAT

b,c 1 0.86 � 0.01 (1.65 � 0.20) � 105 6.10 � 0.73 �9.18 � 0.51 �6.41 � 1.93 �7.24 � 0.07
a Data were fitted to a two-site binding model.
b The PatAT construct consists of the last 229 amino acids of wild-type Pat, which encompassed the core GCN5-related Ac-CoA binding fold.
c Data were fitted to a one-site binding model.
d N, number of sites.
e Ka, binding constant.
f Kd, dissociation constant.
g �H, enthalpy change.
h �S, entropy change.
i �G, Gibbs free energy change.
j The values shown are averages and standard deviations.
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weaker binding affinity between SePatAT and Ac-CoA. These re-
sults showed that full-length SePat was necessary for efficient
binding to Ac-CoA, indicating that residues N terminal of the
predicted Ac-CoA binding domain were important not only for
the biphasic response but also for binding.

We tested the catalytic activity of SePatAT using the DTNB
assay described here and a radiometric assay using wild-type Acs
described elsewhere (9). SePatAT was catalytically inactive in both
assays (data not shown). These observations suggested that the
N-terminal domain of SePat was essential for function, at least for
the acetylation of Acs.

SePat oligomerizes in the presence of Ac-CoA. To study the
effect of Ac-CoA binding on SePat oligomerization, we incubated
SePat in the absence or in the presence of saturating levels of Ac-
CoA (�15� SePat, as determined from ITC binding experi-
ments). In the absence of Ac-CoA, SePat behaved as a monomer in
solution (Fig. 5). The predicted molecular mass of SePat, which
retains two vector-derived residues, Gly-Thr, following recombi-
nant tobacco etch virus (rTEV) protease cleavage of the
N-terminal tag, is ~98 kDa. At a flow rate of 0.3 ml/min, SePat
eluted at ~40 min (Fig. 5A) and had an apparent molecular mass
of 86 � 2 kDa compared to the elution times of known molecular

masses (Fig. 5B). The difference between the predicted mass of
SePat (~98 kDa) and the observed mass (~86 kDa) was likely due
to compaction of the monomer under the conditions used in this
experiment. A typical standard curve yielded an r2 value of 0.98. In
the presence of Ac-CoA, SePat eluted at ~30 min (Fig. 5A) and had an
apparent molecular mass of 428 � 5 kDa (Fig. 5B), i.e., a tetramer.

DISCUSSION
SePat exhibits positive cooperativity. The kinetic data of wild-
type SePat for Ac-CoA (Fig. 2B; Table 1) are consistent with pos-
itive cooperativity where binding of a substrate to one site in-
creases the affinity of a second binding site. The sigmoidal
response and the concave upward double-reciprocal plot (Fig. 2B)
with a Hill coefficient of 2.2 � 0.2 (Table 1), as well as the biphasic
nature of the SePat–Ac-CoA binding isotherm (Fig. 3), suggest
that the cooperativity observed is the result of Ac-CoA binding to
two distinct sites on SePat. Moreover, the single-site binding of
SePatAT indicates that full-length SePat is necessary for this bipha-
sicity. The fact that SePat oligomerizes from a monomer to a te-
trameric form in the presence of Ac-CoA, as analyzed by size ex-
clusion chromatography (Fig. 5), suggests that the positive
cooperativity observed may be a result of subunit interactions. We

FIG 3 ITC profile of Ac-CoA binding to SePat. The binding isotherm for
Ac-CoA is biphasic. (Top) Raw data from titration of consecutive 5-�l injec-
tions of Ac-CoA (750 �M) into full-length SePat (50 �M), represented as the
heat change (�cal/s) upon injection over time. (Bottom) Binding isotherm
obtained by integration of the raw data (reported as kcal/mol of Ac-CoA in-
jected). The solid line represents the best-fit curve generated from a two-site
binding model.

FIG 4 ITC profile of Ac-CoA binding to SePatAT. (Top) Raw data from
titration of consecutive 5-�l injections of Ac-CoA (750 �M) into SePatAT

(50 �M), represented as the heat change (�cal/s) upon injection over time.
(Bottom) Binding isotherm obtained by integration of the raw data (reported
as kcal/mol of Ac-CoA injected). The solid line represents the best-fit curve
generated from a one-site binding model.
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also determined by size exclusion chromatography that the
SePatAT construct behaved as a monomer both in the absence and
in the presence of saturating levels of Ac-CoA (data not shown).
This construct was determined to be catalytically inactive but able
to bind to Ac-CoA (as observed in our ITC experiments). Thus,
although the ITC data support the prediction that the conserved
core GNAT fold is likely primarily responsible for binding to
Ac-CoA, it appears that the domain N terminal to the core fold is
necessary for SePat oligomerization and activity.

Future experiments using more sensitive, dynamic methods,
such as structure-function analysis, are necessary to determine if
Ac-CoA binding induces conformational changes/subunit inter-
actions that might explain the cooperative behavior of SePat.

Does the sigmoidal response to Ac-CoA suggest that SePat
utilizes a novel mechanism for catalysis? Although there has
been some debate over how KATs catalyze the transfer of the
acetyl group of Ac-CoA, the collective biochemical and structural
evidence reported to date supports a direct-attack mechanism of
acetyl transfer (22). In this mechanism, Ac-CoA and the cosub-
strate bind (in either a random or an ordered fashion) to form a
ternary complex, which is then followed by deprotonation of the
substrate lysine, triggering a direct nucleophilic attack on the car-
bonyl carbon of Ac-CoA.

Several observations suggest that the overall mechanism of
acetylation employed by KATs is likely utilized by SePat. In the
yeast GCN5 enzyme, residue Glu173 acts as the general base cat-
alyst (5, 24, 30–32). Sequence alignment using the SCOP super-
family (33) of acyl-CoA N-acetyltransferases (SCOP 55729) re-
vealed that the SePat enzyme contains an equivalent Glu residue at
position 809. We are currently exploring the role of Glu809 in
SePat function. Although it is evident that additional experiments
are needed to characterize in detail the mechanism used by SePat,
it is unlikely that the enzyme uses the only other mechanism that
has been reported for Ac-CoA-dependent acetylation, i.e.,
through a covalent intermediate where the enzyme is transiently
acetylated on a Cys residue (34, 35). The fact that we used the
reagent DTNB, which forms conjugates with sulfhydryl groups
(25–27), for our activity assays suggests that SePat does not require
a Cys residue for catalytic activity.

The positive cooperative response of SePat for Ac-CoA is rare
for a GNAT. To our knowledge, only one other GNAT has been
reported to behave in this manner toward Ac-CoA. Aminoglyco-
side acetyltransferase AAC(6=)-Ii, a homodimeric GNAT from
Enterococcus faecium, was recently shown by ITC analysis to bind
to two molecules of Ac-CoA at two active sites in a positive coop-
erative manner (36). Subsequently, the authors utilized nuclear
magnetic resonance analysis and circular dichroism spectroscopy
to show that the allosteric mechanism behind this behavior of
AAC(6=)-Ii was competition among folding, binding, and confor-
mational changes where partial unfolding of the subunits is cou-
pled to Ac-CoA binding (37). Like other GNATs, AAC(6=)-Ii uti-
lizes a ternary complex mechanism for catalysis (38). Thus, even
though not all of the details of the mechanism of catalysis are
known, there is little reason to suggest that SePat does not utilize
the overall mechanism employed by KATs.

Control of SePat activity by positive cooperativity indicates
another layer of metabolic control. The cell cannot metabolize
acetate until it is converted to Ac-CoA. Acs (AMP forming; EC
6.2.1.1) converts acetate to Ac-CoA via two half reactions (39–41).
In the first half reaction, Acs converts acetate and ATP to the
enzyme-bound intermediate acetyladenylate (Ac-AMP) while
producing pyrophosphate. In the second half reaction, Acs reacts
Ac-AMP with HS-CoA to form Ac-CoA, releasing AMP. In S. en-
terica, and presumably in Escherichia coli, Pat inactivates Acs by
acetylation of active-site Lys609, preventing catalysis of the first
half reaction (9, 40, 41). In S. enterica and E. coli, Acs is considered
a high-affinity pathway for acetate assimilation, with E. coli and
S. enterica Acs having reported Km values of 0.2 and 6 mM, respec-
tively, for acetate (the proteins are 96% identical) (41, 42). This
pathway is considered to be anabolic and a means of scavenging
acetate when the concentration of this short-chain fatty acid in the
environment is low, �10 mM (8, 42, 43).

The apparent half-maximal velocity (K0.5; 10.3 � 1.0 �M) and
low Kd values for Ac-CoA (Tables 1 and 2) indicate that SePat has
high affinity for Ac-CoA. That Acs and SePat levels peak at late log
phase (15, 44), when nutrients become limiting, highlights the
importance of posttranslational modification systems such as
SePat to rapidly modulate protein activity in response to changes

FIG 5 Oligomeric state of Pat in the presence and absence of Ac-CoA. The molecular mass of Pat in solution was estimated by gel filtration. At a flow rate of
0.3 ml/min, Pat (2.5 �M) in the absence of Ac-CoA eluted at 40 � 0.1 min (red chromatogram) and had an apparent molecular mass of 86 � 2 kDa compared
to the elution times of known molecular masses. In the presence of 50 �M Ac-CoA, Pat eluted at 30 � 0.1 min (blue chromatogram) and had an apparent
molecular mass of 428 � 5 kDa.
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in homeostasis. In this case, we propose that SePat-dependent
inactivation of Acs activity is triggered by high Acs activity. Re-
cently, Chan et al. reported insights into the physiological role of
SePat function during the growth of S. enterica on low concentra-
tions of acetate and concluded that SePat control of Acs activity is
needed to maintain energy homeostasis (45). How these condi-
tions affect the molecular mechanism behind the activation of
SePat activity toward its other substrates (15) remains to be eluci-
dated.

MATERIALS AND METHODS
Construction of pat overexpression plasmids. The 2,661-bp pat gene of
S. enterica serovar Typhimurium LT2 was inserted into plasmid pKLD66
(46) using KpnI and HindIII sites as reported previously (16). This plas-
mid directs the synthesis of wild-type SePat protein with an N-terminal
hexahistidine–maltose-binding protein (His6-MBP) tag cleavable by
rTEV protease (47, 48). The resulting overexpression plasmid, pPAT8,
was used as the template to produce the construct for producing SePatAT.
An insert that encoded the last 229 residues of SePat, starting with Val658,
was amplified from pPAT8 using 5= (an ATG start codon was included)
and 3= primers that included KpnI and HindIII sites, respectively. The
insert was ligated into pKLD66, and the resulting plasmid for SePatAT

production was named pPAT17. The construct was verified by DNA se-
quencing using BigDye Terminator v3.1 protocols (Applied Biosystems).
Sequencing reactions were resolved and analyzed at the University of Wis-
consin Biotechnology Center.

Construction of the acs overexpression plasmid. The last 408 nucle-
otides (encoding the C-terminal 135 residues, 518 to 652 [40]) of the acs
gene of S. enterica were inserted into plasmid pKLD66 as described above
for pPAT8. The resulting overexpression plasmid was named pACS34,
which produced variant Acs518-652 protein (AcsC) upon rTEV protease
cleavage of the His6-MBP tag.

Overproduction and purification of SePat protein. rTEV protease-
cleavable, His6-MBP-tagged wild-type and truncated SePat (SePatAT)
proteins were purified at 4°C by a two-step method similar to that previ-
ously described (16). Briefly, plasmids were transformed into E. coli strain
C41(DE3) (49), and overnight cultures were subcultured 1:100 into 4 li-
ters of LB (1.0% tryptone, 0.5% yeast extract, 0.5% NaCl) containing
ampicillin (200 �g/ml). Cultures were grown at 37°C with shaking to an
optical density at 600 nm (OD600) of 0.6, induced with 1 mM isopropyl-
�-D-thiogalactopyranoside (IPTG), and shaken overnight at 28°C. Cells
were harvested by centrifugation at 8,394 � g for 12 min at 4°C.

(i) Step 1. Cells were resuspended in resuspension buffer {binding
buffer 1 [HEPES buffer (50 mM, pH 7.5), NaCl (500 mM) containing
imidazole (20 mM)] plus lysozyme (1 mg/ml), DNase I (25 �g/ml), and
phenylmethylsulfonyl fluoride (0.5 mM)} at a ratio of 5 ml of buffer per g
of wet cell paste. Cells were lysed by French pressing (2� at 6.9 � 103 kPa),
and clarified cell lysates were obtained after centrifugation for 45 min at
4°C at 43,667 � g, followed by filtration of the supernatant through a
0.45-�m filter (Millipore). Samples were loaded onto a 10-ml HisTrap FF
column attached to an ÄKTA fast protein liquid chromatography (FPLC)
system (GE Healthcare), and rTEV protease-cleavable, His6-MBP-tagged
SePat protein was eluted with a linear gradient of imidazole (20 to
500 mM).

To cleave the tag, His7-TEV protease was purified as previously de-
scribed (47) and cleavage of tagged SePat protein was performed as fol-
lows. rTEV protease was added to the eluted protein supplemented with
dithiothreitol (DTT, 1 mM) at a 1:10 ratio of protease to tagged protein,
and the mixtures were incubated at room temperature for 3 h.

(ii) Step 2. The protein mixture was dialyzed against buffer {binding
buffer 2 [HEPES buffer (50 mM, pH 7.5), NaCl (500 mM), and Tris(2-
carboxyethyl)phosphine hydrochloride (0.5 mM)] plus EDTA (0.5 mM)
and no imidazole}. Prior to loading onto the 10-ml HisTrap FF column,
DTT and EDTA were extensively dialyzed away at 4°C in binding buffer 2.
Protein was eluted off the column using a 40 mM imidazole wash step,

followed by a linear gradient to 500 mM imidazole, which allowed us to
separate tagged from untagged protein. At this particular scale, active,
untagged SePat eluted in the wash step. SePat proteins were stored in
HEPES buffer (50 mM, pH 7.5) containing NaCl (150 mM) and glycerol
(20%, vol/vol), flash-frozen in aliquots in liquid nitrogen, and stored at
�80°C.

Overproduction and purification of Acs protein for activity assays.
Untagged AcsC was purified at 4°C by a two-step method similar to that
described above. Plasmids were transformed into E. coli strain C41(DE3)
yfiQ11::kan�, and overnight cultures were subcultured (1:100) into 12 li-
ters of Super Broth (3.3% [wt/vol] tryptone, 2.0% [wt/vol] yeast extract,
0.5% [wt/vol] NaCl, 23.3 mM NaOH) containing ampicillin (200 �g/ml).
Cultures were grown at 37°C with shaking to an OD600 of 0.6, induced
with IPTG (0.5 mM), and shaken overnight at 28°C. Cells were harvested
by centrifugation and resuspended at 5 ml/g of wet cell paste with binding
buffer 1. Cells were lysed by sonication for 6 min (2 s, 50% duty) on ice
using a 550 Sonic Dismembrator (Fisher Scientific) at setting 6. Clarified
cell lysates were loaded onto a 15-ml HisTrap HP column, and rTEV
protease-cleavable, His6-MBP tagged AcsC protein was eluted off the col-
umn as described above for tagged SePat.

rTEV protease was added to tagged AcsC protein at a 1:100 protease-
to-tagged-AcsC ratio, and the mixture was incubated at room temperature
for 3 h and then dialyzed and purified as described above for the rTEV
protease-treated sample. Untagged AcsC protein did not interact with the
column and was recovered in the flowthrough fraction. AcsC was initially
dialyzed into HEPES buffer (50 mM, pH 7.5) containing KCl (500 mM)
and glycerol (20%, vol/vol), concentrated to at least 2 to 3 mM at 4°C
using Amicon Ultracentrifuge filters (3-kDa molecular mass cutoff; Mil-
lipore), and then slowly dialyzed and stored in HEPES buffer (50 mM,
pH 7.5) containing KCl (150 mM) and glycerol (20%, vol/vol). The pro-
tein was flash-frozen in aliquots in liquid nitrogen and stored at �80°C.

SePat in vitro activity assays. All chemicals were obtained from
Sigma-Aldrich unless otherwise noted. A SpectraMax Plus384 microplate
spectrophotometer (Molecular Devices) equipped with a temperature
control and SoftMax Pro v4 software was used for data acquisition and
analysis. Assays were performed at 37°C in 50-�l volumes in half area,
white with a clear bottom polystyrene, nonbinding surface 96-well micro-
plates (Corning). Reaction mixtures contained HEPES buffer (50 mM,
pH 7.5), DTNB (0.3 mM), Ac-CoA (lithium salt; prepared as previously
described [50]), SePat, and AcsC protein. Reactions were initiated by the
addition of SePat enzyme following a 1-min period of prewarming at
37°C. To avoid air bubbles, reaction components were mixed by careful
pipetting. A no-enzyme control was used to correct for the background.
Data were acquired every 15 s over a 6-min time period. To determine
pseudo-first-order kinetic parameters when AcsC was the substrate, SePat
was present at 30 nM, Ac-CoA was used at a saturating concentration
(100 �M), and AcsC concentrations were varied from 17 to 400 �M.
Under the above conditions, we observed a linear response between the
enzyme concentration and the initial velocity. In assays where the Ac-CoA
concentration was varied (from 3.5 to 50 �M), AcsC was present at a
saturating concentration (400 �M). SePat enzyme was present in the re-
action mixture at 15 nM. Data were acquired every 10 s over a 5-min time
period.

Data analysis of initial velocity determinations. The initial rates of
color development, acquired as milliunits of OD/min at 412 nm, were
converted to units of OD/min by way of the PathCheck Sensor feature,
which allowed for the normalization of well absorbance to a path length of
1 cm. Output data were subsequently exported as ASCII text and analyzed
in Excel (Microsoft), and pseudo-first-order kinetic parameters were de-
termined using Prism v4 (GraphPad) analytical software. The concentra-
tion of the TNB2� anion was determined using a molar extinction coef-
ficient of 12.39 � 103 M�1 cm�1, which was experimentally determined at
37°C in HEPES buffer (50 mM, pH 7.5) from the slopes of three indepen-
dent experiments performed in triplicate using 1.6 to 100 �M CoA and
0.3 mM DTNB.

Thao and Escalante-Semerena

6 ® mbio.asm.org September/October 2011 Volume 2 Issue 5 e00216-11

mbio.asm.org


Data for AcsC were fitted to the equation V° � (Vmax � [S])/(Km �
[S]), where V° is the initial velocity, Vmax is the maximum velocity, [S] is
the substrate concentration, and Km is the substrate concentration for
half-maximal velocity.

Data for Ac-CoA were fitted to the equation V° � (Vmax � [S]h)/(K0.5
h

� [S]h), where h represents the hill coefficient and K0.5
h denotes the sub-

strate concentration for half-maximal velocity.
Purification of full-length SePat and SePatAT for ITC. Proteins used

for ITC were produced in Super Broth (3.3% [wt/vol] tryptone, 2.0%
[wt/vol] yeast extract, 0.5% [wt/vol] NaCl, 23.3 mM NaOH) instead of LB
medium to yield the large, concentrated quantity of protein necessary for
binding assays. The purification of SePat and SePatAT was similar to that
described above, except that rTEV protease was added to the eluted pro-
tein supplemented with 5 mM DTT. The proteins were concentrated with
Amicon Ultra-15 centrifuge filters at 4°C, followed by slow and extensive
dialysis into storage buffer (HEPES buffer [50 mM, pH 7.5] containing
NaCl [150 mM] and glycerol [20%, vol/vol]).

ITC. All binding assays were performed with a Microcal VP-ITC iso-
thermal titration calorimeter (GE Healthcare). As indicated above, SePat
was extensively dialyzed against storage buffer (HEPES buffer [50 mM,
pH 7.5] containing NaCl [150 mM] and glycerol [20%, vol/vol]). An
Ac-CoA (10 mM, lithium salt; Sigma-Aldrich) stock was prepared with
the final dialysate. Proteins were present at 50 �M in the sample cell, and
750 �M Ac-CoA (15-fold excess over SePat) was present in the injection
syringe. Titrations were carried out at 30°C with 5-�l injections at an
interval of 3 min with a stirring speed of 307 rpm. Background experi-
ments where Ac-CoA was injected in the absence of protein allowed the
subtraction of heats of dilution for Ac-CoA. All analyses of ITC data were
done using the companion software Origin 7.0, which has a chi-square
minimization feature that iteratively allows the determination of best-fit
parameters. The Gibbs free energy change (�G) was calculated using the
equation �G � �RT ln(Ka) where T � 303 K.

Analytical gel filtration experiments. Per run, a sample volume of
100 �l of 25 �g of Pat (~2.5 �M) was injected onto a Superdex 200 HR
10/30 gel filtration column (GE Healthcare) attached to an ÄKTA purifier
FPLC system (GE Healthcare) that was equilibrated with HEPES (50 mM,
pH 7.5) containing NaCl (150 mM) and glycerol (10%, vol/vol). Glycerol
was included to prevent aggregation. For runs including Ac-CoA, 20� the
amount of Ac-CoA was added to the sample (50 �M Ac-CoA) and the
sample was incubated at room temperature for 15 min prior to injection;
Ac-CoA (50 �M) was also included in the column buffer. A flow rate of
0.3 ml/min was used, and elution peak analysis was performed using the
UNICORN v4.11 software. A calibration standard (Bio-Rad Laborato-
ries) was used to generate standard curves from elution times of molecules
with known molecular masses (open squares, from top to bottom: thyro-
globulin [670 kDa], �-globulin [158 kDa], ovalbumin [44 kDa], myoglo-
bin [17 kDa], and vitamin B12 [1.35 kDa]). Typical linear regression anal-
yses of the standard curves yielded an r2 value of 0.98. Data were graphed
and analyzed using Prism v4 (GraphPad) analytical software.
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