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Responsiveness of maturing natural killer (NK) cells to chemotactic molecules directly affect
their retention and relocation in selected bone marrow (BM) microenvironment during
development, as well as their localization at sites of immune response during inflammatory
diseases. BM is the main site of NK cell generation, providing microenvironmental signals
required to sustain cell proliferation and differentiation. Drastic changes of expression and
function of several chemoattractant receptors can be observed during progression from
precursor NK cells to immature and mature NK cells. Indeed, the gradual decrease of
CXCR4 expression parallels the increased expression of CXCR3, CCR1, and CX3CR1 and
S1P5 (Sphingosine-1-phosphate receptor 5) on mature DX5+ NK cells. The chemokine
CXCL12 is produced constitutively in the BM and, acting via CXCR4, is critical for retaining
immature and mature NK cell subsets in the BM. During steady-state, the maintenance of
NK cells into BM parenchyma depends on the equilibrium of CXCR4 retention and S1P5
mobilizing functions, as the gradient of S1P coming from the sinusoids facilitates mature NK
cell egress into circulation via S1P5, when CXCR4/CXCL12-mediated retention decreases.
Chemoattractants are also key factors for the response to inflammatory or infection
conditions that promote mobilization of effector NK cells from storage compartments
(including BM) to sites of disease or for NK cell recruitment/response during pathological
conditions that affect BM integrity, including hematopoietic malignancies. In this review, we
summarize what is known about the requirement for NK cell localization and exit from BM
and how chemokine-mediated functions may affect BM NK cell development and immune
responses.
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Natural killer (NK) cells are innate lymphocytes that provide host
protection against infection diseases and cancer through recogni-
tion of ligands on infected and transformed cells mediated by the
combination of a number of activating and inhibitory receptors
(Lanier, 2008). The final signaling outcome of these receptors is
responsible for the effective control of virus infection and tumor
initiation and dissemination, obtained through induction of NK
cell cytokine production (i.e., IFN-γ), secretion of granules or
expression of death inducing ligands of TNF superfamily receptors
(i.e., TRAIL).

NK CELL DEVELOPMENT IN THE BONE MARROW
Ablation of bone marrow (BM) hematopoiesis irreversibly alters
NK cell development, whereas the absence of other lymphoid
organs including the spleen or thymus through disease or removal
does not result in reduced NK cell number, indicating a pivotal
role of BM in NK cell development (Kumar et al., 1979; Sea-
man et al., 1979; Schwarz and Hiserodt, 1990; Ramos et al., 1996).
Nevertheless, peripheral NK cells from several extramedullary
tissues display tissue-specific phenotypes suggesting that matu-
ration can be completed in organs different from BM including
thymus, spleen, lymph nodes (LNs), and liver (Takeda et al.,

2005; Hayakawa and Smyth, 2006; Vosshenrich et al., 2006;
Münz, 2008).

Natural killer cells can be identified by expression of the
activating NK receptors NK1.1 or NKp46 associated with the
absence of T cell CD3 receptor complex. However, these cells are
highly heterogeneous. In fact, during maturation, mouse NK cells
gradually modulate the expression of several surface receptors.
This process is driven by IL-15, and CD122 (β chain of IL-15/IL-2
receptor) expression is early acquired by the first committed NK
cell precursor (pNK) and maintained by all NK cells (Rosmaraki
et al., 2001; Kawamura et al., 2003; Colucci et al., 2003; Vosshen-
rich et al., 2005). CD127 (α chain of IL-7 receptor) is expressed
only by a small percentage of immature NK cells (iNK) in the BM
while IL-7 dependency has been shown for thymic-derived NK
cells (Vosshenrich et al., 2006).

Integrin expression is tightly regulated by developing NK cells.
In early stages of differentiation NK cells express low levels of
CD11b (αm, also known as Mac-1) and high levels of CD51
(αv). Down-modulation of CD51 expression and acquisition of
CD49b (α2, recognized by DX5 monoclonal antibody) marks
the transition from an immature to a mature NK cell (Kim
et al., 2002). Then, NK cells further mature by up-regulating
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CD11b expression, and subsequent stages of development are
characterized by down-modulation of the tumor necrosis fac-
tor receptor superfamily member CD27 and expression of the
killer lectin-like receptor G1 (KLRG1). The latter population is
characterized by decreased ability to lyse target cells and produce
IFN-γ as well as acquisition of a replicative senescence phenotype
(Robbins et al., 2002; Hayakawa and Smyth, 2006; Huntington
et al., 2007).

During differentiation, NK cells modulate in a coordinate
manner the expression of several receptors for chemotactic fac-
tors (Bernardini et al., 2012). The chemokine receptor CXCR4 is
expressed at the higher levels by pNK cells but its expression pro-
gressively decreases during development. The progressive decrease
of CXCR4 parallels the increased expression of CXCR3, CCR1,
and CX3CR1 on mature DX5+ NK cells, being the expression of
CX3CR1 mainly acquired by the KLRG1+ subset (Sciumè et al.,
2011). CX3CR1 expression is associated with lower expression of
CXCR3, CCR1, and CXCR4. Later stages of NK cell maturation
are also accompanied with the acquisition of the Sphingosine-
1-phosphate receptor 5, S1P5 by the CD11bhighCD27− subset
(Walzer et al., 2007).

NK CELL SUBSETS AND TISSUE LOCALIZATION
Mature NK cells predominantly circulate in the peripheral blood,
but are also resident in several lymphoid and non-lymphoid
organs, such as spleen, tonsils, LNs, liver, lungs, intestine, and
uterus (Bernardini et al., 2012). In all these organs, NK cells have
been found in close proximity of vasculature, and in most instances
in areas distinct from those of T or B cells. Different subsets of NK
cells displaying distinctive functional features have been found in
tissues, including thymus and liver, suggesting that they play spe-
cific roles during the induction of an immune response (Takeda
et al., 2005; Vosshenrich et al., 2006; Hayakawa and Smyth, 2006;
Münz, 2008; Paust et al., 2010).

In humans, the predominant NK cell population found in the
LNs and tonsils is CD56bright while the majority of peripheral
blood NK cells are CD56dim (Caligiuri, 2003). CD56bright and
CD56dim NK cell populations are quite different, in that they have
a distinct set of inhibitory and activating receptors and display
diversity in their adhesion and chemokine receptor profile; thus
they have different homing capability, and most importantly, they
are endowed with unique functional ability being CD56bright the
major source of cytokines and the CD56dim the major cytotoxic
population (Cooper et al., 2001; Caligiuri, 2008).

Several mouse NK cell subsets displaying distinct functional
capacities and tissue localization, can be identified also in
the mouse when CD27 or KLRG1 are associated with CD11b
(Hayakawa and Smyth, 2006; Huntington et al., 2007). On the
other hand, CD56 is not expressed in rodent NK cells making it
hard to find mouse counterpart of the CD56bright and the CD56dim

NK cells. Functional characteristics similar to human CD56bright

NK cells were found in the mouse thymic NK cells that can be
distinguished by their expression of CD127 and GATA3 (Vosshen-
rich et al., 2006). CD127+ NK cells are dependent on IL-7 and
the transcription factor Gata-3, lack CD16 expression and most of
Ly49 receptors, preferentially home to LNs, and are biased toward
cytokine production with reduced cytotoxic capacity.

In the liver, NK cells are preferentially located in the hep-
atic sinusoids, often adhering to the endothelial cells (Doherty
and O’Farrelly, 2000). In mouse, these cells are mainly
CD11blowCD27+ and express the TNF-related apoptosis-inducing
ligand (Trail), while they lack expression of CD49b and most Ly49
receptors as well as perforin and granzymes (Hayakawa and Smyth,
2006). These cells specifically require the transcription factor T-
bet for their development (Gordon et al., 2012). A discrete subset
of CXCR6+ NK cells located in the liver sinusoids acquires and
retains antigen-specific memory of viral antigen. CXCR6+ NK cell
maintenance in the liver is dependent on this chemokine receptor,
which regulates the effector function and survival of memory NK
cells. Finally, liver NK cells have also been described as a major
source of IL-10 producing cells, and a role of sinusoidal NK cells
in the elimination of hepatocytes during infection and of stellate
cells during resolution of liver fibrosis has been shown (Lee et al.,
2009; Perona-Wright et al., 2009; Paust et al., 2010).

ROLE OF CHEMOTACTIC FACTORS IN NK CELL MIGRATION IN
AND OUT THE BM DURING STEADY-STATE
Mechanisms operate under basal conditions to maintain NK cell
numbers in tissues. Among them, directed migration is essential
at several stages of the NK cell life cycle including: (1) precursor
movement toward the sinusoids in the BM; (2) migration of dis-
tinct NK cell population through the sinusoidal endothelium into
systemic circulation; (3) recruitment into tissues.

Several chemoattractant molecules exposed on the surface
of endothelial cells recruit lymphocytes by acting on G protein
coupled receptors (GPCRs) that activate integrins causing adhe-
sion to complementary molecules on the venular endothelium.
Among chemoattractants, chemokines are small cytokines with
pleiotropic functions having effect on a broad range of leuko-
cytes (Bonecchi et al., 2009). So far, more than 50 ligands and
20 receptors have been described in humans and mice. Based on
the presence of conserved cysteine residues there are two major
(CXC and CC) and two minor (C and CX3C) chemokine classes
and accordingly four classes of chemokine receptors (CXCR,
CCR, CX3CR, XCR). Another chemoattractant, the lipid S1P and
its receptors (S1P1−5) are required for lymphocyte egress from
lymphoid organs. S1P is synthesized by most cells, but then is irre-
versibly degraded by intracellular S1P lyase or dephosphorylated
by S1P phosphatases. Thus, S1P levels are extremely low in tis-
sues while they are maintained elevated in the blood and lymph,
allowing the formation of a gradient of S1P that maintains its
concentration elevated at tissue exit site (Cyster and Schwab,2012).

Natural killer cell egress from lymphoid organs is necessary for
immune surveillance and for effector cell trafficking to sites of
inflammation. Under homeostatic conditions, trafficking of NK
cells into BM is mainly governed by the opposite role played by
the chemoattractant receptors CXCR4 and S1P5. CXCR4 is highly
expressed by pNK cells and iNK cells. Successively its expression
decreases in parallel with NK cell maturation (Bernardini et al.,
2008). This chemokine receptor is important to retain NK cells
in the BM parenchyma as shown by promotion of parenchy-
mal NK cell mobilization following in vivo administration of
the CXCR4 pharmacological antagonist AMD3100 (Sciumè et al.,
2011). In the BM, CXCL12 is expressed by osteoblasts located in
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the endosteal region, and CXCL12-abundant reticular (CAR) cells,
which are uniformly distributed throughout the BM (Petit et al.,
2002; Tokoyoda et al., 2004). BM NK cells are found in proxim-
ity to CAR cells that include a fraction of cells able to express
IL-15 together with IL-15Rα and thus might support NK cell
development (Noda et al., 2011). It was previously demonstrated
that KLRG1+ NK cells, also defined as CD11bhighCD27low, have
a markedly reduced CXCR4-requirement for retention in BM.
Indeed, reduction of CXCR4 retention activity and the concomi-
tant engagement of S1P5 (expressed by CD11bhighCD27low cells;
Walzer et al., 2007), allows NK cells to leave the parenchyma and
to move to the blood through the sinusoids. Although CXCR4
desensitization is S1P5 independent, both the release of CXCR4-
mediated retention and activation of S1P5 are necessary for NK
cells to reach the sinusoids (Mayol et al., 2011). Ten to twenty per-
cent of the total BM NK cells reside in this compartment, and
their localization in this site is mainly dependent on the integrin
chain α4. Indeed, the treatment in vivo of C57BL/6 mice with a
specific anti-α4 blocking antibody is able to mobilize all the sinu-
soidal NK cells to the periphery (Sciumè et al., 2011). In addition,
about 80% of KLRG1+CX3CR1+ BM NK cells are located in sinu-
soids, suggestive for a role of this receptor in sinusoidal NK cell
localization or in NK cell exit from BM parenchyma under steady-
state. Of note, the specific ligand for CX3CR1, the chemokine
CX3CL1/fractalkine, was also shown to be expressed by human
BM cells, although the distribution pattern (i.e., vascular ver-
sus parenchymal) of the chemokine has not been clearly defined
(Jamieson et al., 2008). Thus, multiple chemoattractant receptors
play a role (mobilization versus retention) in the regulation of
NK cell egress from the BM (Figure 1). Whether these receptors
are co-expressed or are expressed on different NK cell subsets is
an important issue to be addressed in order to better define their
relative impact on the maintenance of NK cell populations in BM.

ROLE OF CHEMOTACTIC FACTORS IN NK CELL MIGRATION
IN AND OUT THE BM DURING PATHOLOGICAL
CONDITIONS
Beside CXCR4, other two CXC chemokine receptors, CXCR3 and
CXCR6, are expressed by NK cells, but their role in NK cell traffick-
ing into BM during steady-state is unclear. Indeed, CXCR3 seems
to play a major role in regulating NK cell trafficking outside the BM
during inflammatory conditions (Beider et al., 2003; Wald et al.,
2006; Gregoire et al., 2007). Beider et al. (2003) analyzed the hom-
ing of unstimulated or IL-2-treated human NK cells after transfer
into immunodeficient mice. While CXCR4 expression promoted
homing of unstimulated NK cells to BM, down-regulation of
CXCR4 and up-regulation of CXCR3 obtained following in vitro
stimulation with IL-2 inhibited their migration in response to
CXCL12 and their homing and retention in the BM. In agree-
ment with a prevalent role of CXCR4 in NK cell BM tropism
during homeostasis, NK cell trafficking to BM was observed only
when non-irradiated immunodeficient animals where used in a
model of allogeneic BM transplantation (Olson et al., 2009). Con-
versely, donor NK cell accumulation in the BM was selectively
impaired in conditioned mice, indicating that NK cell trafficking
and expansion in BM may be driven by homeostatic mechanisms
that are negatively affected by inflammation.

Bone marrow is a storage compartment for mature NK cells to
be mobilized in inflammatory conditions. Indeed, mobilization of
NK cells from BM markedly contributes to their recruitment into
the liver in mouse models of hepatic inflammation promoted by
Concanavalin A as well as by mouse cytomegalovirus (MCMV)
infection (Salazar-Mather et al., 1996; Wald et al., 2006). Previ-
ous studies have shown that CCL3, the ligand for the chemokine
receptors CCR1 and CCR5, plays a crucial role in the recruitment
of BM-derived NK cells to the inflamed liver during MCMV infec-
tion (Salazar-Mather et al., 1996). The increased plasma levels of
CCL3 that occur during liver infection can also directly enhance
NK cell exit from BM to the periphery, as shown by in vivo admin-
istration of the recombinant chemokine CCL3 (Bernardini et al.,
2008). Interestingly, CCL3-promoted mobilization was facilitated
by CCL3-induced down-modulation of CXCR4 expression and
function. Thus, while during homeostatic conditions, desensitiza-
tion of CXCR4 occurs independently of mobilizing stimuli (i.e.,
S1P), chemokines released during inflammation can favor NK cell
entry into circulation by acting both directly on the migration of
BM NK cells and, indirectly, by reducing their CXCR4-dependent
retention control.

Beside egress of effector NK cells, a selective migration into BM
of CD11b+CD27− long-lived NK cells was also described during
influenza virus infection (van Helden et al., 2012). This population
was maintained into BM, underwent homeostatic proliferation
and was able to proliferate in response to a new infection. Since BM
was the only site where proliferation was observed during infec-
tion, it has been hypothesized that this population is important
to support NK cell accumulation at infection site and constitute a
reservoir of NK cells able to rapidly expand in response to a new
infection.

CXCL12 and other chemokines are produced by BM cells under
physiological conditions. Bone marrow stromal cells (BMSC) iso-
lated from subchondral bone during steady-state secreted a ligand
for CXCR1 and CXCR2, CXCL8, and a ligand for CCR2, CCL2
(Lisignoli et al., 1999). While the relevance of these chemokines
under steady-state conditions is still unclear, KC, another ligand
for the mouse CXCR2, and CCL2 were shown to play a critical
role in the egress from BM into blood of leukocyte populations
during activating conditions, i.e., G-CSF treatment or infection,
respectively (Martin et al., 2003; Serbina and Pamer, 2006). Inter-
estingly, this effect was associated with their enhanced expression
in proximity to the vascular compartment, thus facilitating target
leukocyte migration toward blood circulation (Köhler et al., 2011;
Shi et al., 2011).

In human joint diseases, such as osteoarthritis and rheuma-
toid arthritis, NK cells were shown to constitute a large fraction of
synovial joint infiltrate and to support osteoclastogenesis thanks
to their expression of the receptor activator of NF-κB ligand
(RANKL; Huss et al., 2010; Söderström et al., 2010). Beside expres-
sion of chemokines in the inflamed joints, significantly higher
levels of CXCL8, CXCL1, and CCL5 are produced by BMSC dur-
ing disease and may contribute to recruitment of effector cells into
BM parenchyma or to their egress into circulation (Lisignoli et al.,
1999; Haringman et al., 2006; Huss et al., 2010). Nevertheless, NK
cell distribution within the immune cell infiltrate of subchondral
bone in inflammatory joint disease has not been investigated yet.
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FIGURE 1 | Expression of several chemoattractant receptors is

modulated on NK cells maturing in BM. During steady-state, the
maintenance of NK cells into BM parenchyma depends on the equilibrium of
CXCR4 and S1P5 function, as the gradient of S1P coming from the sinusoids
facilitates mature NK cell egress into circulation via S1P5, while CXCR4/
CXCL12-mediated retention decreases. Prevalent CX3CR1 expression by

KLRG1+ NK cells located in sinusoids is suggestive of a role of this receptor
in NK cell entry into the vascular compartment. NK cells are maintained into
sinusoids through alpha4 integrin-dependent mechanisms. Inflammatory
receptors (written in red) are also up-regulated during maturation and regulate
NK cell trafficking into BM during inflammation. Size of the alphabetic
characters indicate level of receptor expression.

The BM is the site of disease of most hematological tumors, and
increasing evidence demonstrates that the endogenous immune
response toward the malignant cells has a critical role in pre-
venting tumor progression. When tumor progress, hematopoietic
stem cell transplantation (HSCT) is considered a promising ther-
apeutic strategy for the cure of hematologic malignancies for
patients lacking an HLA-identical donor. NK cells mediate anti-
tumor activity without causing graft versus host disease (GVHD)
and are thus under evaluation for cellular immunotherapy after
haploidentical HSCT (Ruggeri et al., 1999; Farag et al., 2002;
Frohn et al., 2002). Although NK cell anti-tumor activity in
vivo is likely dependent on the recruitment of NK cells to the
tumor site, the mechanism of NK cell homing to BM follow-
ing adoptive immunotherapy is still unclear. In a mouse model
of multiple myeloma (MM), tumor clearance was associated to
effector cell homing to tissues infiltrated by MM cells, includ-
ing BM, when IL-2-activated NK cells were adoptively transferred
to MM-bearing mice (Alici et al., 2007). In addition, during
MM disease progression (Han et al., 2001; Giuliani et al., 2006),
expression of several chemokines potentially capable of promot-
ing NK cell migration in vivo was shown to be up-regulated
in BM.

Besides their role in limiting primary tumor growth in BM, NK
cells were also shown to prevent bone metastasis of a number of

solid tumors (Lode et al., 1998; Smyth et al., 1999; Bidwell et al.,
2012). In this context, the importance of NK cell homing to BM
is unclear as the contribution of NK cells against in situ metastatic
tumor cells with respect to circulating tumor cells is still poorly
investigated.

CONCLUDING REMARKS
Beside a prominent function in development, correct localization
of NK cells in BM have a fundamental role in several aspects of
NK cell-mediated immune response in vivo. Thus, the study of
chemoattractant-mediated NK cell trafficking to BM and their
regulation of NK cell migration in selected BM niches is directly
linked to the understanding of the mechanisms of NK cell func-
tion in vivo. Chemoattractants are key factors for the response to
inflammatory or infection conditions that promote mobilization
of effector cells from storage compartments (including BM) to sites
of disease or for NK cell recruitment/response during patholog-
ical conditions that affect BM integrity, including hematopoietic
malignancies. Additionally, recent observations indicate that long-
lived NK cells undergo homeostatic proliferation into BM during
viral infections. This is reminiscent of what happen to memory
CD8 T cells that proliferate more extensively in the BM than
they do in peripheral organs (Parretta et al., 2005) and suggests
that activated NK cell homing to BM is needed to maintain a
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population of cells more responsive to previously experienced
pathogens. In these contexts, it will be important to address
which chemoattractants can determine the specificity of niche–
NK cell interaction, and to identify molecular mechanisms by
which BM cells regulate generation, maintenance, and exit of NK
cells during homeostasis, microbial infection, inflammation, and
hematological malignancies.
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