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Abstract: The occurrence and prevalence of heart failure remain high in the United States as well
as globally. One person dies every 30 s from heart disease. Recognizing the importance of heart
failure, clinicians and scientists have sought better therapeutic strategies and even cures for end-stage
heart failure. This exploration has resulted in many failed clinical trials testing novel classes of
pharmaceutical drugs and even gene therapy. As a result, along the way, there have been paradigm
shifts toward and away from differing therapeutic approaches. The continued prevalence of death
from heart failure, however, clearly demonstrates that the heart is not simply a pump and instead
forces us to consider the complexity of simplicity in the pathophysiology of heart failure and reinforces
the need to discover new therapeutic approaches.

Keywords: heart failure; excitation–contraction coupling; myocardial contractility; myofilament;
sarcoplasmic reticulum Ca2+ ATPase; sarcoplasmic reticulum; inotrope; beta blocker; calcium tran-
sient; hypoxia

Introduction

Alexandre Fabiato M.D. Ph.D. was a pioneer in studying excitation–contraction (E–C)
coupling in the heart and first introduced the idea of calcium (Ca2+)-induced Ca2+ release
(CICR) from the sarcoplasmic reticulum (SR) [1–9]. According to Dr. Fabiato’s hypothesis,
transsarcolemmal Ca2+ influx did not directly activate the myofilaments, but instead, the
myofilaments were activated by a much larger amount of Ca2+ released from the SR. Dr.
Fabiato showed that the initial relatively fast component of the transsarcolemmal Ca2+

current (nanomolar range) would trigger Ca2+ release (micromolar range) from the SR.
During relaxation, the Ca2+ was reaccumulated into the SR by sarcoplasmic/endoplasmic
reticulum Ca2+ATPase (SERCA), which is regulated by phospholamban as well as backed
up by an efflux of Ca2+ across the sarcolemma through the sodium–calcium exchanger
(NCX) and the sarcolemmal Ca2+ ATPase pump (Figure 1; also see [10–14]).

For many years, an ‘index’ of contractility had been sought [15–19]. Dr. Zia J. Penefsky
demonstrated that the contraction–relaxation cycle of the heart represents the combined
action of a variety of different components (Phases 1–4) in cardiac myocytes. Dr. Penefsky
developed an analytical technique and showed that dF/dt (first derivative of time course of
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contractile force) should not be considered as the ‘index’ of contractility. She demonstrated
that an increase in dF/dt can be paradoxically associated with a lower peak force, while a
decrease in dF/dt can be associated with an increase in contractile response [20–23].

These initial pioneers defined key components involved in E–C coupling in the heart
(Figure 1). Initially, it was thought that in patients with heart failure, the heart needed
more Ca2+ to augment contractility. This led to the primary use of digitalis and other
newly developed inotropes in conjunction with afterload reducers for the treatment of
heart failure [24]. As a result, pharmaceutical companies developed positive inotropes,
which were used as the main clinical approach to treating heart failure.

This review article will cover the origins of several schools of thought regarding E–C
coupling in the failing heart and the treatment of heart failure [24]. We will review the
role of Ca2+ mobilization and the abnormal contractile response seen in failing human
myocardium as well as present challenges to the hypothesis that abnormal Ca2+ handling
is solely responsible for the pathophysiology seen in failing human hearts. We will discuss
how a combination of Ca2+ mobilization abnormalities as well as changes that reside at
the level of the contractile elements (myofilaments) can interact in a dynamic manner.
Furthermore, we will present how changes in myocardial energetics and changes in the
intracellular milieu with regard to pH and/or phosphorylation states of key regulatory
components also can contribute to the pathophysiology seen with heart failure. We will
discuss how the study of animal models and human myocardium pointed to Ca2+ cycling
abnormalities as being pivotal in the pathophysiology of human heart failure, which
then resulted in a shift away from inotropes that simply increased intracellular Ca2+

concentration ([Ca2+]i) to the development of pharmaceutical agents that targeted the
responsiveness to Ca2+ by the myofilaments, the use of antioxidants, and CaMKII inhibitors.
We will show that despite many approaches having targeted individual/single components
of E–C coupling to date, all have shown no benefit and/or differing levels of promise.
This suggests a complexity to the current simplicity of thought regarding the treatment of
heart failure.

Figure 1. Schematic of excitation–contraction (EC) coupling in cardiac myocyte. Ca2+, calcium;
CIRC, Ca2+-induced Ca2+ release; SERCA, sarcoplasmic/endoplasmic reticulum Ca2+ ATPase; PLB,
phospholamban; RyR, ryanodine receptor; NCX, sodium–calcium exchanger; LTCC, L-type Ca2+

channel; TRP channels, transient receptor potential channels; TCA, tricarboxylic acid (Krebs) cycle;
CrP, creatine phosphate; CK, creatine kinase [25,26].
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Calcium Cycling in Pressure Overload Hypertrophy, Dysthyroidism, and Human
Heart Failure

Aequorin is a bioluminescent Ca2+ indicator that can be used in multicellular prepa-
rations [27–34]. The use of aequorin was initially applied to muscle biomedical research
in the laboratory of John Rogers Blinks M.D [35–37]. To our knowledge, only two labs
succeeded in using it successfully in animal and human myocardium (James P. Morgan
M.D. Ph.D.) and vascular smooth muscle (Kathleen G. Morgan Ph.D.) [38,39]; also see [40]
for a comprehensive review.

Aequorin signals were demonstrated to primarily represent SR Ca2+ release and re-
uptake in mammalian myocardium [41,42]. Initially, phosphodiesterase (PDE) inhibitors
like milrinone, amrinone, and piroximone were studied with regard to the impact on the
time course of contraction and Ca2+ transients in papillary muscles as well as smooth mus-
cle strips from ferrets [43,44]. Ca2+ transients showed an increase in peak amplitude and
demonstrated an abbreviation in the time course of decline (relaxation), reflecting increased
SR Ca2+ release and faster reuptake when stimulated by PDE inhibitors in cardiac tissue.
Correspondingly, myocardial contractility demonstrated increases in peak twitch force and
faster relaxation times. Hypertrophied muscles demonstrated a prolonged duration of
isometric contraction and relaxation [45–48]. The increased duration of isometric contrac-
tion/relaxation in the hypertrophied muscles correlated with a similar prolongation of the
Ca2+ transient, which was interpreted to mean that the rate of sequestration and release of
Ca2+ by the SR was decreased in hypertrophy [46]. This study clearly demonstrated that in
hypertrophied myocardium in the absence of heart failure, there was a prolongation in the
Ca2+ transient, reflecting slowed Ca2+ reuptake and pointedly suggested a pivotal role for
SR Ca2+ handling [47–49].

Interestingly, a study comparing weanling vs. juvenile ferrets with pressure overload
hypertrophy (POH) provided insight with regard to another contributor to changes in
heart function in hypertrophied myocardium [45]. Isometric twitch force, passive stiffness,
[Ca2+]i, markers of myocardial energy supply, and connective tissue content were quan-
tified. Although weanling animals with POH showed a similar degree of hypertrophy
to that found in juvenile animals with POH, there were differences in peak twitch force
despite there being no difference in peak [Ca2+]i. Connective tissue content, however,
showed significant differences. In weanling animals with POH, connective tissue content
was 10 ± 2% compared to 24.0 ± 6.8% in juvenile animals with POH (p < 0.001), which
might have contributed to the lower peak twitch force in juvenile animals. Despite a lack
of change in connective tissue content or resting [Ca2+]i in weanling animals, passive
stiffness in muscles was increased. Lactate dehydrogenase was significantly higher (38%)
in weanling animals. However, total creatine kinase activity and total creatine content
were significantly less (22%) in hearts from juvenile animals. This study demonstrated that
despite having similar levels of hypertrophy, there can be differences in the remodeling of
the extracellular matrix (increased fibrosis) as well as molecular remodeling (decrease in
the creatine kinase system) [45].

In muscles from hypothyroid ferrets, peak tension was reduced and the duration of
contraction prolonged [50]. These changes were associated with a decrease in amplitude
and a prolonged duration of the Ca2+ transient. Hyperthyroidism produced opposite
changes in the time course of the Ca2+ transient and the associated isometric contraction [50].
Gels of myosin from hypothyroid and euthyroid ferrets showed a single myosin isoform,
which migrated with the slowest of the bands from the hyperthyroid ferrets (three bands).
These results suggested that changes in both Ca2+ handling and myosin isoenzymes may
contribute to contractile abnormalities and indicated a role for the contractile elements in
hypertrophied myocardium [50]. These two early studies demonstrated for the first time
that not only the amplitude of the Ca2+ transient or the amount of Ca2+ released from the
SR, but also the time course of the Ca2+ transient could impact not only the time course
of contraction and relaxation in the heart but the force of contraction as well [45,46,50].
Furthermore, these early studies suggested that changes at the level of the myofilaments
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might also contribute to differences in myocardial contractility [45,50]. Therefore, these
studies suggested that the peak amplitude of Ca2+ released from the SR might not be the
sole contributor to changes in myocardial contractility, but that changes at the level of the
myofilaments might also be a contributor to observed changes in heart function.

In 1985, a cardiac transplantation program was established at the Brigham and
Women’s Hospital, Harvard Medical School. After obtaining patient consent, hearts were
harvested from patients undergoing heart transplantation as well as non-failing hearts
from organ donors (family consent) without known cardiac disease. Wisconsin solution
was used for transporting the heart samples to the laboratory. The transportation of heart
samples was controlled for temperature and tissue oxygenation [51].

For the first time, physicians and scientists observed intracellular Ca2+ signals in
cardiac trabeculae from patients with heart failure due to ischemic and idiopathic dilated
cardiomyopathy [51]. In contrast to trabeculae from non-failing human left ventricles,
contractions and Ca2+ transients of muscles from failing hearts were markedly prolonged,
and the Ca2+ transient exhibited two distinct components (Figure 2). Muscles from failing
hearts also showed a diminished capacity to restore low resting [Ca2+] during diastole.
These experiments provided the first direct evidence that intracellular Ca2+ handling is ab-
normal and may cause systolic and diastolic dysfunction in heart failure [49,52]. What was
most striking was that, unlike earlier animal studies (pressure overload hypertrophy and
dysthyroidism), the Ca2+ transient consisted of two components (referred to as L1 and L2)
that were shown to reflect SR Ca2+ release and reuptake [49,51]. However, an unexpected
observation was that the peak isometric contractile force was similar for the non-failing
and failing human myocardium. This indicated the complexity of myocardial contractility
and led to the question of whether the heart samples truly reflected global myocardial
function and/or whether there were other factors involved in the systolic failure of the
heart [53–55]. Muscle trabeculae were therefore challenged with increasing frequencies of
stimulation [56–60]. It was demonstrated for the first time that there was indeed a negative
force–interval relationship in failing human hearts that was rate dependent [56,58,60–63],
and that contractile force development was a dynamic process.

Experiments were performed in human myocardium in order to investigate the re-
lationship of intracellular Ca2+ handling and availability to alterations in the strength of
contraction produced by changes in stimulation rate and pattern [61–63]. Both control
and myopathic muscles exhibited potentiation of peak isometric force during the postex-
trasystolic contraction, which was associated with an increase in the peak intracellular Ca2+

transient. Frequency-related force potentiation was attenuated in cardiac muscles from pa-
tients with heart failure compared to cardiac muscles from non-failing hearts. This occurred
despite an increase in resting intracellular Ca2+ and in the peak amplitude of the Ca2+

transient. Therefore, abnormalities in contractile function of myopathic muscles during
frequency-related force potentiation were not due to decreased availability of intracellular
Ca2+, but were more likely due to differences in myofibrillar Ca2+ responsiveness.
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Figure 2. Calcium transients as detected with aequorin in trabeculae from non-failing (green) and failing (red) human
myocardium with associated isometric contraction (green and red, respectively). L1 is the first fast component of SR Ca2+

release, and L2 is the much slower Ca2+ release and reuptake before restoring [Ca2+]i to diastolic levels. Furthermore, there
was a prolonged time to peak twitch force and slowed relaxation response.

Sarcolemmal Ca2+ influx might have also contributed to frequency-related changes
in contractile force in myopathic muscles as suggested by a decrease in action potential
duration with increasing stimulation frequency, which was associated with fluctuations
in the peak Ca2+ transient amplitude [58,64]. Furthermore, it was found that a complex
exponential function best fit Ca2+ transients at higher frequencies of simulation. It was
suggested that NCX was not the source of the Ca2+ and the possibility was raised that
restitution of the contractile response was related to Ca2+ supplied from some other source.
This suggested that not only the Ca2+ released from SR and Ca2+ mobilized by the NCX,
but Ca2+ from another source might be involved. These Ca2+ channels may later have
been identified to be transient receptor potential canonical (TRPC) channels [65–72], which
have been reported to mediate store-operated Ca2+ entry (SOCE) and mechano-electrical
feedback in the cardiomyocyte [73–80]. Moreover, the mechanistic link between TRPCs and
Ca2+ mishandling has been reported in multiple experimental models of cardiac disease
including myocardial infarction [66,81–87], atrial fibrillation [88–91], and iron overload
cardiomyopathy [92]. In addition to TRPCs, other members of the TRP superfamily [93–95],
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e.g., melastatin (TRPM) [96–104] and vanilloid (TRPV) subtypes [105–116], are also poten-
tial candidates mediating the non-canonical Ca2+ entry into cardiomyocytes.

There remains controversy as to whether the regulation of SERCA activity is altered in
human myocardium from patients with heart failure or whether decreased SERCA activity
is due to changes in SERCA or phospholamban expression. Cyclic adenosine monophos-
phate (cAMP)-dependent phosphorylation of phospholamban has been proposed to be
in part responsible for the reduced SERCA activity in human heart failure [117,118]. It
was reported that the protein levels of phospholamban and SERCA were unchanged in
failing compared with non-failing human myocardium. A decrease in responsiveness to
the direct activation of SERCA activity by either cAMP or protein kinase A (PKA) was
also reported in failing myocardium. From these observations, it was concluded that the
impaired SR function in human heart failure might be due to reduced cAMP-dependent
phosphorylation of phospholamban resulting in a difference in SERCA activity [117,118].

Two of the most significant characteristics of failing human myocardium that have
been reported are an increase in diastolic [Ca2+] and a prolonged diastolic relaxation. These
abnormalities are more pronounced at higher frequencies of stimulation and may be caused
by an altered Ca2+ resequestration into the SR. SERCA activity has been reported to be
positively correlated with diastolic force. Diastolic force has an inverse relationship with
the SERCA activity in failing myocardium. These findings suggested that a reduction in
SERCA activity could contribute to both an impairment in systolic as well as diastolic
function in failing human hearts [117].

Connecting the [Ca2+]i availability and myofilament contractile activation is cross-
bridge cycling dynamics (Figure 1). In skinned muscle fibers, a maximal Ca2+-activated
force was found to be similar between muscle fibers from non-failing and failing human
hearts. Dynamic stiffness was larger in muscles from failing human hearts. Cross-bridge
cycling rates were significantly slower in muscles from failing hearts compared to muscles
from non-failing human hearts [119]. It was suggested that because failing hearts have a
markedly diminished energy reserve, the slowing of the cross-bridge cycling rate might
reflect changes in contractile protein composition. Yet again, the potential to generate
maximal Ca2+ activated force was found to be similar in non-failing and failing human
muscle strips, raising once more the question of whether contractility was depressed in the
failing human heart [120,121].

The question was then asked whether the pharmacological agent milrinone (a PDE
inhibitor) might be beneficial in the treatment of heart failure. Studies on isolated muscles
from failing human hearts demonstrated a decrease in inotropic response to milrinone [122].
In order to attain a beneficial effect, extremely high concentrations were needed as well as
an increase in cAMP. Adenylate cyclase was therefore stimulated using forskolin. Only then
did an increase in cAMP restore myocardial contractility in muscles from failing human
hearts and responsiveness to milrinone. It was predicted based on studies using muscle
preparations from failing human hearts that the PROMISE trials using milrinone would
likely fail and show toxicity, as it was designed to include digitalis, which it did [122,123].
Our prediction of toxicity and reduced inotropic response was borne out in clinical trials
despite the considerable fanfare afforded to milrinone at the American Heart Association
for the use of PDE inhibitors as a new class of agents to be used as clinical tools to treat
heart failure [123,124]. To the clinical community and pharmaceutical industry, this failure
was a severe and disheartening disappointment [123]. Despite milrinone’s beneficial effects
on hemodynamics, long-term therapy with milrinone was shown to increase morbidity and
mortality in patients with severe chronic heart failure. The class of drugs referred to as PDE
inhibitors appeared to exert deleterious effects and is currently used primarily as a bridge to
cardiac transplantation. Animal studies also showed that dobutamine, which is often used
to treat acute heart failure, resulted in increased mortality (Figure 3) [125]. Dobutamine is
known to produce a relatively strong inotropic effect via stimulating primarily β1 and β2
adrenergic receptors. Its clinical use is often referred to as dobutamine holidays [126].
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Figure 3. Dobutamine effect on survival. Heart failure was induced in rats by banding the aorta. Dobutamine is a
catecholamine that acts on α1, β1, and β2 adrenergic receptors. Stimulation of these receptors by dobutamine produces a
relatively strong inotropic effect. Treatment by dobutamine resulted in a significantly higher and earlier mortality rate. This
demonstrates the negative impact of increased inotropy in the treatment of heart failure.

Inotropes vs. Beta Blockers in the Treatment of Heart Failure: Paradigm Shift

Data were pointing to a potentially detrimental effect from increasing [Ca2+]i and en-
hancing inotropy/myocardial contractility in heart failure patients. A simple increase in in-
tracellular Ca2+ was being shown to be clinically detrimental (Figure 4). The clinical and sci-
entific communities were beginning to understand that abnormal Ca2+ handling was more
complex. Agents targeting the myofilaments referred to as Ca2+ sensitizing agents showed
little beneficial effect and actually pointed to possible detrimental outcomes [53,127–132].
After careful review of animal models of cardiomyopathy, two avian models of heart
failure were selected for comparative studies addressing controversial findings reported
in myocardium from failing human hearts [133–135]. One was induced by furazolidone
(700 ppm) added to the food, and the other occurred spontaneously in turkey poults (resem-
bling idiopathic dilated cardiomyopathy) [136]. Furazolidone-induced cardiomyopathy
and spontaneous dilated cardiomyopathy in turkey poults shared significant similarities to
human heart failure at the cellular, subcellular, receptor, and organ levels [135–151].
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Figure 4. The impact of calcium overload on systolic and diastolic function. In trabeculae from a
patient with heart failure, there was a slowed contractile response as well as slowed reuptake of Ca2+

by the SR and delayed return to normal diastolic Ca2+ levels. When diastolic Ca2+ concentration was
reduced and restored to pre-Ca2+ loading concentrations, there was first an overshoot in the Ca2+

transient amplitude showing increased SR Ca2+ re-uptake, which was followed by a normalization
of amplitude and time course of the Ca2+ transient. Associated with these changes in Ca2+ transient
amplitude and time course and a decrease in diastolic Ca2+ concentration, there was a tremendous
increase in contractile force. This figure demonstrates the negative impact of elevated diastolic Ca2+

on not only diastolic force and muscle relaxation, but systolic force as well.

β-Adrenergic blocking agents had been approved for clinical use in the treatment
of hypertension [152–156], coronary artery disease [157–161], and arrhythmias [162–164].
However, the underlying mechanisms of potential beneficial effects of β-blockers in heart
failure remained unsolved [165]. The use of β-blockers in animal models of heart failure
had been investigated, but the results were found to be ambiguous. For example, in
the Syrian hamster model of cardiomyopathy, β-blocker treatment showed no benefit in
preventing the development of heart failure [166]. However, early studies showed that
β-blockade with propranolol was cardioprotective and prevented the development of
dilated cardiomyopathy (DCM) in turkey poults [137,141]. The avian models similar to
human idiopathic DCM showed left ventricular dilatation, decreased ejection fraction, left
ventricular free wall thinning, decreased β1-receptor density, decreased SERCA, decreased
myofibrillar ATPase activity, and reduced metabolism markers [142]. Histologically, there
was myocyte hypertrophy and increased interstitial fibrosis. The animals also showed,
unlike many animal models of heart failure, cachexia. Furazolidone was later shown to
impair SERCA activity [167].

Carteolol, a β-adrenergic blocking agent was tested in turkey poults with DCM
(Figure 5). There was 59% mortality in the untreated DCM group and 22% mortality in the
group treated with carteolol. The treated group showed a restoration of ejection fraction
and left ventricular peak systolic pressure [142]. Carteolol treatment increased β-adrenergic
receptor density, decreased the amount of connective tissue (fibrosis), restored SERCA
and myofibrillar ATPase activities, and restored creatine kinase, lactate dehydrogenase,
aspartate transaminase, and ATP synthase activities. It is important to note that a lower
dose of carteolol did not restore heart function despite restoring β-receptor density, energy
metabolism, and SERCA and ryanodine receptor (RyR) protein expression. These data
suggest that adaptations in myocardial energy metabolism and Ca2+ cycling proteins are
more quickly restored than the negative impact at the level of the contractile elements (i.e.,
myofibrillar ATPase activity), which may explain in part the failure of the gene therapy trial
(CUPID) using SERCA2a in heart failure patients [168–171]. The duration and extent of
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continued expression of SERCA2A may have been reduced over time despite early Phase 1
studies having shown continued expression in cardiac biopsies. Changes at both the level
of the thick and thin myofilaments appear to be important in the pathophysiology of heart
failure and must be addressed if there is to be the development and successful clinical
testing of new therapeutic agents [53]. This study was the first to show that β-blockade
could improve survival, reverse contractile abnormalities, and induce cellular remodeling.
Furthermore, it showed that end-stage heart failure could be reversed.

This observation began the paradigm shift towards the use of β-blockers for the
treatment of heart failure. Ca2+ sensitizers (e.g., MCI-154 and DPI201-106) as well as
PDE inhibitors (e.g., amrinone, milrinone, and piroximone) had been shown to have
potential detrimental effects in failing human myocardium [53,127,129,131,132,172,173].
The paradigm shift resulted in a number of clinical studies that showed that β-blockers
had long-term beneficial effects in patients with heart failure. In a multicenter trial, the
β1-selective antagonist metoprolol was found to reduce the combined end point of death
and the need for transplantation in patients with idiopathic DCM [174]. Another large
multicenter clinical trial, in which the nonselective β-blocker carvedilol was used in patients
with heart failure, showed a 65% reduction in mortality [175].

Figure 5. Treatment of animals with dilated cardiomyopathy with carteolol, a beta blocker. (a) Sur-
vival of turkey poults with furazolidone-induced heart failure (DCM). Carteolol is a β-blocker.
Animals treated with carteolol had significantly improved survival (blue) compared to untreated
animals with heart failure (red). (b) Effect of carteolol on echocardiography-derived ejection fraction.
Animals with heart failure treated with carteolol had restored ejection fractions (blue) compared
to untreated animals with heart failure (red). Untreated animals continued to have worsening of
their heart failure, demonstrating that there was progressive heart failure (red, 29 days). (c) Left
ventricular end-systolic pressure was also maintained in turkeys treated with carteolol (blue) com-
pared to non-treated animals with heart failure (red). (d) Changes at the level of the contractile
elements may explain in part the beneficial effects seen with carteolol treatment. Myofibrillar Ca2+

ATPase was significantly reduced in animals with heart failure (red). Carteolol treatment tended to
restore myofibillar Ca2+ ATPase activity (blue) to levels similar to what was seen in control animals
(green). Furthermore, β-adrenergic receptor density, forced interval relationships, SERCA activity,
and myocardial energetics were restored with carteolol treatment.
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Myofilaments and Ca2+ Responsiveness

It was the labs of Leslie Leinwand and Michael Bristow that first identified changes
in myosin isoforms in myocardium from patients with heart failure. They found that the
relative amounts of the α isoform of myosin heavy chain (α-MyHC) were significantly
lower or non-existent in failing hearts regardless of the cause of heart failure [176]. They
posited that this molecular alteration may be sufficient to explain systolic dysfunction in
failing hearts and that therapeutics targeting increasing α-MyHC gene expression might be
a feasible therapeutic approach [176]. This landmark work by Leinwand and Bristow set the
stage for consideration that changes at the level of the contractile elements might contribute
in a significant way to the pathophysiology of human heart failure and that [Ca2+]i and SR
Ca2+ release were not the sole contributors to heart failure. A novel mutation in TnC was
also reported that further strengthened this school of thought [177]. To address the potential
functional changes in myocardial contractility as a result of reported changes that resided
at the level of the myofilaments, both skinned as well as intact myocardium from failing
human hearts were studied [178]. Ca2+ concentration required for 50% activation and Hill
coefficient for fibers from non-failing and failing human hearts at pH 7.1 were not different.
Maximum Ca2+-activated force again was not different. However, at lower intracellular
pH (6.8 and 6.9), differences were seen in myofilament Ca2+ activation between non-failing
and failing hearts. At lower intracellular pHs, failing myocardium was shifted left on
the Ca2+ axis, indicating an increase in myofilament Ca2+ responsiveness. Increases in
inorganic phosphate, cAMP, and PKA stimulation impacted Ca2+ responsiveness differently
in non-failing vs. failing human myocardium. Interestingly, the combination of PKA
stimulation in the presence of increased [cAMP] resulted in a further rightward shift in
non-failing human myocardium, but did not further shift the Ca2+-force relationship in
fibers from failing hearts. Importantly, cyclic guanosine monophosphate (cGMP) resulted
in a greater decrease in myofilament sensitivity in fibers from failing hearts. From these
studies, it was suggested that not only changes at the level of the thick myofilaments, as
previously reported by Leinwand and Bristow [176], but also changes at the level of the
thin myofilaments could result in differential responses to changes in the intracellular
Ca2+milieu in failing myocardium. Furthermore, changes at the level of the myofilaments
might also contribute to the reduced cross-bridge cycling rate that had been reported earlier
in failing human myocardium [119].

Studies on Mg-ATPase and Ca2+-activated myosin ATPase activity in failing human
myocardium and the effect of agents referred to as Ca2+ sensitizers provided insights into
the impact on the contractile elements in patients with heart failure and were confirmed
in an animal model reflecting the pathophysiology and subcellular remodeling being
discovered in failing human hearts [53,150,173]. These studies revealed differences between
disease states (idiopathic vs. ischemic cardiomyopathy) as well as suggested that the thin
myofilament component TnI might be important. It was proposed that myosin light-chain-
related regulation might also play a complementary role in the troponin-related regulation
of myocardial contractility [53,150].

Protein kinase C (PKC) activation is known to be a major regulator of vascular smooth
muscle function [39,179]. Furthermore, activated PKC phosphorylates different substrates
including ion channels and pumps. PKC has yet to be targeted for the treatment of heart
failure. PKC is known to phosphorylate both troponin I (TnI) and troponin T (TnT). In
human myocardium, PKC activation was shown to result in a decrease in myofilament
Ca2+ sensitivity as well as a decrease in maximal Ca2+-activated force [180]. Stimulation of
PKC also resulted in a decrease in peak isometric twitch force and peak SR Ca2+ release.
Further, in the presence of 12-deoxyphorbol 13 isobutyrate 20 acetate (DPBA), a PKC
stimulator, the steady-state force-Ca2+ relationship was shifted to higher [Ca2+]i, and there
was a change in the Hill coefficient (myofilament cooperativity). These findings indicated
that there was a decrease in myofilament Ca2+ sensitivity and a change in cooperativity
among thin myofilament proteins most likely reflecting phosphorylation of thin filament
regulatory proteins by PKC. Both TnT and TnI have at least two phosphorylation sites. In
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heart failure tissue, there are two TnT isoforms. These findings might reflect the effect on
relative states of phosphorylation of two TnT isoforms. PKC activation, which decreased
SR Ca2+ release while decreasing the Ca2+ responsiveness of the myofilaments with a
change in cooperativity among thin myofilament proteins, might be a future approach to
the treatment of heart failure and Ca2+ regulation in the failing heart. However, the impact
of PKC stimulation on vascular smooth muscle remains unclear and must be considered
before possible future clinical development [39,40,179]. Some reports suggest vasodilation
while others suggest a vasoconstrictive effect with PKC stimulation [181].

Over twenty years ago, as early as 2000, the effect of cGMP on failing human my-
ocardium was reported [180,182,183]. cGMP stimulates cAMP-dependent PDE, which
results in an increase in cAMP hydrolysis [183]. cGMP activation of cGMP-protein kinase
results in the phosphorylation of TnI and a decrease in myofilament Ca2+ responsiveness.
As failing myocardium had been reported to have significantly less cAMP [122], a lesser
inhibitory effect would be expected for the cGMP-induced decrease in Ca2+ sensitivity.
Potent drugs are now available to augment these signaling systems with conventional
soluble guanylate cyclase (sGC) stimulators, novel NO-independent sGC stimulators, GC-
A and GC-B agonists, and PDE inhibitors [182,184–186]. Guanylate cyclase has recently
become a new target for the treatment of heart failure [187,188]. In clinical trials, the
incidence of death from heart failure has been reported to be lower for patients receiving
vericiguat, a guanylate cyclase stimulator [188]. Although the mechanism of action of its
beneficial effects in heart failure is still reported as being unknown, with vascular effects
being highlighted, it has been reported that increasing cyclic GMP in skinned fibers from
failing human hearts resulted in a decrease in myofilament Ca2+ sensitivity with no change
in maximal Ca2+ activated force [178].

Despite indications that changes at the level of the thick and thin myofilaments
and diastolic [Ca2+] and SR Ca2+ release are key contributors to the pathophysiology of
heart failure and possible targets for therapeutic intervention, there is a dynamic state
that occurs in the failing heart, especially when blood circulation is impaired and when
increases in heart rate can induce a hypoxic milieu [189–191]. Changes in intracellular
pH, phosphate levels, and phosphorylation states in the heart are dynamic processes
all of which must be taken into consideration when treating heart failure. Myocardial
energetics changes in a dynamic way both on the demand and the utilization side of the
equation (Figure 1) in response to changes in heart rate and other pathophysiological
stresses [25,26,59,137,148,192–194]. It is the complexity of simplicity in thinking applied
to understanding heart failure and regarding the heart only as a pump that needs to be
addressed if safe and efficacious therapeutics are to be attained. Herd thinking will not
get us there. Although the phenotype of heart failure is an enlarged heart with poor
contractility, the molecular phenotype and response to functional stresses must be studied.
Animal models reflective of the human condition must be used in pre-clinical development
and testing of new therapies. It is because of possible detrimental impacts on the heart
and possible fatal consequences that every drug during pre-clinical development must
be tested for cardiotoxicity [147,195]. Cardiotoxicity remains a major decision factor for
success or failure in clinical drug development and successful marketing (e.g., in the case
of the COX-2 inhibitor rofecoxib for arthritis [196–200]).

Antioxidants and CaMKII Inhibitors in the Treatment of Heart Disease

Calcium/calmodulin-dependent protein kinase II (CaMKII) is a serine/threonine
kinase that has emerged as a key regulator of cardiac physiology and pathology [201–204].
CaMKII can be activated by phosphorylation, oxidation, or O-linked N-acetylglucosamine
modification [205,206]. Excessive activation of CaMKII has been suggested to promote the
development of cardiac diseases including cardiac hypertrophy, heart failure, and cardiac
arrhythmias [207–211]. Activation of CaMKII has been shown to promote late Na current,
late-phase L-type Ca2+ current, and RyR Ca2+ leak, which facilitate the progression of the
above-mentioned diseases [207,212]. Therefore, CaMKII has been considered as a target
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for the treatment of arrhythmias and heart failure [213,214]. Beneficial effects of CaMKII
inhibition have been observed in experiments using animal models and cardiac myocytes
from heart failure patients [214–217]. However, a recent report on the first clinical trial
(Phase II) with the CaMKII inhibitor (NP202) revealed no prevention of post-MI heart
failure [218]. One reason might be that NP202 did not substantially inhibit CaMKII due
to its low potency [219]. Future clinical studies using high-potency CaMKII inhibitors or
genetic strategies are warranted to reveal the potential of CaMKII inhibitors as a therapeutic
approach to cardiovascular diseases.

A main upstream regulator of CaMKII is the oxidation at M281/282 by reactive oxygen
species (ROS) [205,220,221]. While ROS are necessary for normal cellular functions, exces-
sive levels of ROS induce oxidative stress and cause damage to DNA, lipids, and proteins,
and thus promote cardiovascular diseases [222]. Therefore, focusing on oxidative stress
(e.g., use of antioxidants) remains a potential therapeutic strategy in treating cardiovascular
diseases [223–225].

Conclusions

Despite progress in the clinical management of heart failure, it continues to be as-
sociated with a high rate of mortality and morbidity worldwide [226–228]. Much re-
mains to be understood regarding heart failure and its treatment by targeting receptors
(e.g., angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors
(ACEIs), angiotensin receptor-neprilysin inhibitors (ARNIs), β-adrenergic receptor block-
ers, and α-adrenergic receptor blockers), guanylate cyclase stimulators, and CaMKIIδ in-
hibitors [218,219]. Combination therapies still leave much to be desired. Positive inotropic
agents still remain major players in the clinical management of heart failure, especially in
patients with acute decompensation [229–232]. A recent clinical trial “CUPID” used gene
therapy to target the major Ca2+ cycling protein SERCA2a [233–235], yet failed in Phase
IIb trials despite having shown promise in early Phase 1 trials [168–171,236–240]. The
clinical and research communities need to better appreciate the complexity of a simplicity
in thinking when it comes to heart failure and future perspectives for the development
of targeted gene therapy or other therapies for its treatment and/or prevention. Will
end-stage heart failure forever remain or need to remain end-stage?
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