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ABSTRACT

IL-15 belongs to the common gamma chain cytokine family and has pleiotropic 
immunological functions. IL-15 is a homeostatic cytokine essential for the development and 
maintenance of NK cells and memory CD8+ T cells. In addition, IL-15 plays a critical role in 
the activation, effector functions, tissue residency, and senescence of CD8+ T cells. IL-15 also 
activates virtual memory T cells, mucosal-associated invariant T cells and γδ T cells. Recently, 
IL-15 has been highlighted as a major trigger of TCR-independent activation of T cells. This 
mechanism is involved in T cell-mediated immunopathogenesis in diverse diseases, including 
viral infections and chronic inflammatory diseases. Deeper understanding of IL-15-mediated 
T-cell responses and their underlying mechanisms could optimize therapeutic strategies 
to ameliorate host injury by T cell-mediated immunopathogenesis. This review highlights 
recent advancements in comprehending the role of IL-15 in relation to T cell responses and 
immunopathogenesis under various host conditions.
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INTRODUCTION

IL-15 is a cytokine composed of four alpha-helical bundles (1) and is well-known as a common 
gamma chain (γc, CD132)-dependent cytokine (2), a class that also includes IL-2, IL-4, IL-7, 
IL-9, IL-21, and TSLP (3). IL-15 is frequently referred to as a pleiotropic cytokine due to its 
mediation of multiple functions in various types of immune cells. Since its discovery nearly 
30 years ago (1,4), IL-15 has emerged as a pivotal cytokine with well-established functions in 
mediating lymphoid homeostasis, most notably in compartments of NK cells and memory 
CD8+ T cells (5). However, the functions of IL-15 are not only limited to homeostasis, but are 
also closely associated with a range of contexts, including the activation, effector functions, 
tissue residency, and senescence of CD8+ T cells. IL-15 has been recognized as a potent 
stimulatory cytokine that enhances T-cell immune responses with potential for cancer 
treatment (6). Dysregulated expression of IL-15 has been also demonstrated in various types 
of diseases (7). Moreover, IL-15 activates diverse types of unconventional T cells and triggers 
NK-like cytotoxicity, which could contribute to immunopathogenesis in diverse diseases 
(8,9). This emphasizes the need for a better understanding of the IL-15-mediated T-cell 
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response in various contexts. Although IL-15 is also indispensable in shaping NK cell biology, 
as comprehensively reviewed elsewhere (10), this review focuses on recent advancements in 
understanding the role of IL-15 in relation to T-cell responses under varying host conditions.

EXPRESSION OF IL-15 AND ITS SIGNAL TRANSDUCTION

Despite the abundant expression of IL-15 transcripts in a wide variety of tissues and both 
hematopoietic and non-hematopoietic cells (11-15), IL-15 protein is mainly produced by 
monocytes, dendritic cells, and epithelial cells (12,14,16). IL-15 primarily operates in a cell 
contact-dependent manner through the trans-presentation of membrane-bound complexes 
comprised of IL-15 and IL-15 receptor alpha (IL-15Rα) on the producing cells to IL-2/IL-15 
receptor-β chain (CD122) and γc on the responding cells (17). This process begins with the 
preassembly of IL-15 with IL-15Rα in a complex within the endoplasmic reticulum/Golgi, 
followed by its subsequent transportation to the cell surface. IL-15 has also been reported 
to signal as soluble IL-15-IL-15Rα complexes or IL-15 alone, but trans-presentation has been 
demonstrated to be the dominant mechanism eliciting potent IL-15 signals (18-20).

IL-15 production is triggered by inflammation, infection, or prolonged cellular stress (7). 
Various types of inflammatory stimuli have been shown to trigger IL-15 expression. Treatment 
with polyinosinic:polycytidylic acid or LPS, either in vivo or in vitro, enhances the expression of 
IL-15 and IL-15Rα on dendritic cells (14,21). Type I IFNs, including IFNα and IFNβ, have also 
been shown to upregulate IL-15 mRNA and protein expression in dendritic cells, monocytes, 
macrophages, and epithelial cells (14,22-25). In addition, IFNγ, a type II IFN, can elevate the 
expression of IL-15 and IL-15Rα in monocytes, endothelial cells, and epithelial cells (12,25-
27). More recently, in epithelial cells, IFNγ was shown to upregulate the expression of IL-15 
and IL-15Rα more potently, promoting the effector functions of NK cells via IL-15 trans-
presentation compared to type I IFNs (25). This previous study showed that IFN regulatory 
factor 1 (IRF1) plays a critical role in IL-15 expression induced by IFNγ and type I IFNs (Fig. 1).  
This result suggests that the IFNs-IRF1-IL-15 axis may serve as a regulatory target for the 
treatment of diseases in which the expression of IL-15 is dysregulated.

IL-15 activates three main downstream signaling pathways, including the JAK/STAT, PI3K/
AKT/mTOR, and Ras/Raf/MAPK pathways (10). Upon binding to IL-15, the IL-2/15Rβγ 
receptors recruit and activate JAK1, leading to the subsequent phosphorylation of STAT3 via 
the β chain (28,29). Simultaneously, JAK3 is recruited to the γ chain, where it phosphorylates 
STAT5. This cascade of reactions results in the formation of phosphorylated STAT3/STAT5 
heterodimers, which subsequently translocate to the nucleus, leading to the activation of 
anti-apoptotic (Bcl-2 and Mcl-1) and oncogenic (c-Myc) transcription factors (30-32). In the 
second signaling pathway, activated adaptor protein, Shc is recruited to a phosphorylated 
site on the β chain and triggers phosphorylation of GAB2 through the adaptor Grb2, which 
in turn activates the PI3K/AKT/mTOR signaling pathway crucial for cell proliferation 
and survival (33). This pathway leads to accumulation of mTORC1 in the nucleus, which 
induces E4 promoter-binding protein 4 (E4BP4)-mediated upregulation of Eomes (34,35). 
Subsequently, Eomes binds to the il2rb promoter, increasing CD122 expression and 
establishing a positive feedback loop of IL-15 signaling. A recent study demonstrated that 
IL-15-mediated phosphorylation of AKT accumulates X-box binding protein 1 (XBP1) in 
the nucleus, where it recruits T-bet to induce the transcription of genes encoding effector 
molecules, such as IFNγ and granzyme B (36). In addition to the PI3K/AKT/mTOR signaling 
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pathway, IL-15-induced activation of Grb2 also triggers the Ras/Raf/MAPK signaling 
pathway, which subsequently activates c-Fos, c-Jun, and c-Myc, which are responsible for cell 
proliferation (37,38).

The IL-15 signaling pathways can be negatively regulated by intracellular checkpoints, namely, 
suppressor of cytokine signaling (SOCS) family members. STAT5 has been shown to upregulate 
genes that encode SOCS proteins (39,40). Cytokine-inducible SH2 protein (CIS) is a member 
of the SOCS family that inhibits the enzymatic activity of JAK1, thereby suppressing JAK-STAT 
signaling (41). Similarly, SOCS3 suppresses IL-15-induced STAT5 phosphorylation, thereby 
inhibiting the IL-15 responsiveness of cells (42). Furthermore, zinc fingers and homeoboxes 
2 (ZHX2), OTU domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1), tumor 
necrosis factor-α-induced protein 8-like 2 (TIPE2), and forkhead box protein O1 (FOXO1) 
have been reported to be transcription repressors that negatively regulate the IL-15-induced 
transcriptional activity of STAT5 (43), AKT (44), mTOR (45), and T-bet (46), respectively.

IL-15 AND T-CELL RESPONSES

Memory CD8+ T cells
IL-15 has been demonstrated to play a significant role in homeostatic proliferation of 
memory CD8+ T cells. Previous studies have demonstrated that the absence of IL-15 results 
in a reduction in the memory CD8+ T-cell population (5,47). Moreover, IL-15 induces the 
proliferation of stem cell-like memory T cells (TSCM) (48) and prevents attrition of the 
pre-existing memory CD8+ T-cell population (49). CD8+ T cells are activated upon TCR-
mediated recognition of cognate peptides presented by MHC-I (50). Notably, IL-15 promotes 
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Figure 1. IFNγ- and type I IFN-mediated IL-15 trans-presentation. 
IFNγ and type I IFNs activate distinct signaling pathways leading to the upregulation of IL-15. However, these 
pathways eventually converge at IRF1. IFNγ signaling primarily depends on STAT1 homodimers for the activation 
of IRF1. In type I IFN signaling, the ISGF3 complex is formed by a phosphorylated STAT1 and STAT2 heterodimer, 
which subsequently activates IRF1. 
ISGF3, IFN-stimulated gene factor 3.



TCR-mediated activation of CD8+ T cells by reducing the TCR activation threshold. This was 
demonstrated by upregulation of TCR-mediated ERK phosphorylation and Nur77 expression 
in CD8+ T cells in the presence of concurrent IL-15 stimulation (51,52). IL-15 also contributes to 
TCR-mediated proliferation and IFNγ production by CD8+ T cells (53,54). Correspondingly, IL-
15 significantly augments Ag-specific memory CD8+ T-cell responses and provides protective 
immunity to viral infection (47, 55-57) and bacterial and parasitic infections (58-60).

Senescent CD8+ T cells
Memory CD8+ T cells in an advanced stage of differentiation present senescent-like features, 
including the expression of senescence-associated cell surface (CD57 and KLRG1) and 
intracellular (p38 and γH2AX) molecules (61), low telomerase activity (62), and shortened 
telomeres (63). In addition, senescent CD8+ T cells are hypo-responsive to TCR stimulation 
and exhibit impaired TCR-mediated proliferation (64,65). On the other hand, compared to 
their non-senescent counterparts, senescent CD8+ T cells have a greater responsiveness to IL-
15. IL-15 induces more robust proliferation in highly differentiated and senescent CD8+ T cells 
than their less differentiated counterparts (66). Therefore, IL-15 contributes to the generation 
and expansion of the senescent CD8+ T-cell population (64,67).

Recently, CD5 was shown to function as a negative regulator of the IL-15 response in memory 
CD8+ T cells (66). The expression of CD5 on human CD8+ T cells progressively decreases 
during cellular differentiation and senescence (68,69). Consequently, highly differentiated 
and senescent memory CD8+ T cells with low expression of CD5 exhibit a heightened 
responsiveness to IL-15, revealing an inverse correlation between the level of CD5 expression 
and IL-15 responsiveness. Further analysis showed that CD5 directly suppresses the IL-15-
induced proliferation of human memory CD8+ T cells by inhibiting mTOR pathways (66).

Upon exposure to IL-15, memory CD8+ T cells typically acquire NK cell-like phenotypes 
and functions, including the upregulation of various NK receptors (NKRs) and cytotoxic 
molecules (70-72). IL-15 was shown to activate promyelocytic leukemia zinc finger (PLZF) 
transcription factor, which upregulates NKRs on memory CD8+ T cells (72). Senescent CD8+ 
T cells are characterized by enhanced NK cell-like functions mediated by NK-activating 
receptors (73). Sestrins are stress-sensing proteins produced in response to glucose 
deprivation, oxidative stress, or cellular senescence (74). Sestrins have been shown to 
promote senescence-associated features in CD8+ T cells, such as down-regulation of TCR-
induced intracellular signaling molecules, including LAT, Zap70, and Lck (75). Moreover, 
sestrins upregulate the expression of NKG2D and its adaptor molecule DAP12, which 
trigger cytokine secretion and NKG2D-mediated cytotoxicity without TCR stimulation. This 
indicates that senescent CD8+ T cells are reprogrammed by sestrins as they differentiate 
and exert NK-like cytotoxic activity. Thus, the poor sensitivity to TCR signals and enhanced 
responsiveness to IL-15 render senescent CD8+ T cells sensitive to TCR-independent, IL-
15-induced activation. This may explain the loss of immunity to previously encountered 
pathogens, decreased vaccine efficacy, and enhanced immunopathological tissue injury often 
demonstrated in aged individuals (73). Further work is required to elucidate the molecular 
mechanisms underlying IL-15 hyper-responsiveness and the resulting NK-like functions of 
senescent CD8+ T cells.

Virtual memory T cells (TVM)
Memory CD8+ T cells develop from naïve CD8+ T cells after encountering their cognate Ags 
(50). CD8+ T cells exhibiting memory-like characteristics can also develop during routine 
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T-cell homeostasis, referred to as TVM cells (76). TVM cells originate from naïve CD8+ T cells and 
acquire memory-like characteristics without prior exposure to Ags (77). The development and 
maintenance of TVM cells significantly depend on IL-15-mediated stimulation through CD122 
(78). The transcription factor Eomes upregulates expression of CD122, which is essential 
for the TVM cell response to IL-15. Notably, a significant reduction of TVM cells was found in 
mice with a T cell-specific conditional deletion of Eomes (78). Moreover, IL-15 induces TCR-
independent protective immunity mediated by NKG2D and granzyme B expression in TVM 
cells, as demonstrated in a mouse model of Listeria monocytogenes infection (79).

In humans, the expression of inhibitory NKRs, killer cell immunoglobulin-like receptors (KIRs) 
and/or NKG2A, on CD8+ T cells defines TVM cells (79-81). CD8+ T cells expressing KIR/NKG2A 
exhibit NK-like effector functions following stimulation with IL-12/IL-18 and/or IL-15, without 
TCR stimulation (80). The mutually exclusive expression of KIRs or NKG2A on human TVM 
cells has been identified as an indicator of different functionalities (82). Specifically, KIR+CD8+ 
T cells express high levels of NKRs, such as 2B4, CD16, CD56, and NKG2C, compared to 
NKG2A+CD8+ T cells, together with perforin and granzyme B. In addition, KIR+CD8+ T 
cells exhibit enhanced responsiveness to IL-15 with higher levels of STAT5 phosphorylation 
compared to NKG2A+CD8+ T cells (81,82). IL-15 stimulation leads to the upregulation of 
CD107a, perforin, granzyme B, and CD16 and promotes the antibody-dependent cellular 
cytotoxicity of KIR+CD8+ T cells. These findings demonstrate that the IL-15 responsiveness 
differs among heterogenous human TVM cells recognized by KIRs or NKG2A.

Tissue-resident memory CD8+ T cells (TRM)
TRM cells are a long-lasting, non-circulating population that establishes residence in the 
tissue (83). TRM cells have the capacity to rapidly provide on-site immune responses against 
invading pathogens by not only degranulating perforin and granzyme B, but also producing 
cytokines, such as IFNγ and TNF, that effectively coordinate both local innate and adaptive 
immune cells (84,85). TRM cell formation begins with the initial induction of TRM precursor 
cells into epithelial tissues. The local cytokine environment consists of TGFβ and IL-15, 
promoting the residence and development of these cells into long-lived TRM cells (86). IL-15 
plays a crucial role in preserving TRM cells across diverse tissues, including the skin, liver, 
salivary glands, lungs, and kidneys (87-90). However, certain TRM subsets located in non-
lymphoid tissues, such as the female reproductive tract, pancreas, and small intestines, can 
persist without IL-15 (89). Nevertheless, though some TRM populations may not depend on 
IL-15 for their maintenance, these cells still undergo proliferation in response to IL-15 (91).

NKR-expressing CD8+ T cells
Subpopulations of CD8+ T cells express NKRs such as NKG2C (92). The expansion of 
NKG2C-expressing CD8+ T cells have been observed in response to various pathological 
conditions, including cytomegalovirus (CMV) infection, Stevens-Johnson syndrome, toxic 
epidermal necrolysis, and celiac disease (92). NKG2C+CD8+ T cells expressing high levels 
of cytotoxic molecules have been shown to effectively lyse target cells upon co-stimulation 
with anti-CD94 and anti-CD3 Abs (71,93). However, another study reported that, even in the 
absence of TCR stimulation, the ligation of NKG2C alone can trigger T cells to proliferate and 
eliminate HLA-E-transfected target cells lacking expression of other MHC-I molecules (94). 
This suggests that NKG2C signaling may serve as a potential alternative to TCR-mediated 
activation of CD8+ T cell cytotoxicity.
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NKR-expressing CD8+ T cells exist at a higher frequency in the liver than the peripheral 
blood (95). Recent advancements in multi-omics analysis have investigated the diverse 
subgroups of liver sinusoidal CD8+ T cells that express NKRs. A specific NK-like CD8+TCRαβ+ 
liver sinusoidal T-cell population characterized by high expression of CD56 without CD161 
expression (CD56hiCD161-CD8+ T cells) was found to express various NKRs, including CD94, 
KIRs, and NKG2C (96). In addition, this population exhibits hyper-responsiveness to IL-15, 
IL-12, and IL-18 but weak responsiveness to TCR stimulation. Upon stimulation with IL-15, 
in addition to both IL-12 and IL-18, these CD56hiCD161-CD8+ T cells expand and exert NK-
like effector functions through NKG2D and NKG2C in a TCR-independent manner (96). 
Further investigation is required to elucidate the precise role and regulatory mechanisms of 
CD56hiCD161-CD8+ T cells in various types of disease, particularly in relation to IL-15.

Innate-like, unconventional T cells
Beyond its role in conventional CD8+ T cells, IL-15 also plays a critical role in homeostasis 
and effector functions of innate-like unconventional T cells including mucosal-associated 
invariant T cells (MAIT) and γδ T cells (97). MAIT cells recognize intermediates of riboflavin 
(microbial vitamin B2 metabolites) biosynthesis, presented on class I-related molecule 1 
(MR1) on Ag-presenting cells, through semi-variant TCRs composed of Vα 7.2-Ja33, 12, or 20 
with limited TCR Vβ diversity (98). IL-15 activates mTORC1 and upregulates T-bet, inducing 
proliferation and maintenance of MAIT cells (99). In addition, IL-15, in combination with 
IL-12 or IL-18, can activate MAIT cells to produce IFNγ and granzyme B in a STAT5-dependent 
manner (100,101).

The γδ T cells express lineage-specific γδ TCR and share numerous characteristics with αβ 
T cells in terms of cytotoxic effector functions and pro-inflammatory cytokine production 
(102). However, γδ T cells do not rely on MHC molecules. This MHC-independent property 
involves the recognition of both exogenous and endogenous Ags, encompassing both foreign 
and self-Ags (103,104). IL-15 plays a pivotal role in proliferation and homeostasis of γδ T cells 
(105). γδ T cells sensitized by IL-15 were shown to maintain the expression of Mcl-1 following 
the activation of STAT5 and ERK for promoting cell survival against apoptosis (106). 
Moreover, IL-15 has been shown to activate γδ T cells and enhance their anti-tumor immune 
response (102,106,107).

IL-15 PROMOTES CD8+ T CELL-MEDIATED ANTI-TUMOR 
IMMUNE RESPONSES
IL-15 can enhance the anti-tumor immune response of CD8+ T cells (108). Previous studies 
in mouse tumor models demonstrated that IL-15 treatment increases the number of 
tumor-infiltrating CD8+ T cells and their IFNγ production (109,110). In addition, IL-15 has 
been shown to improve the CD8+ T-cell response to immune checkpoint blockade. IL-15 
reinvigorated tumor-infiltrating CD28-PD-1+CD8+ T cells that are unresponsive to PD-1 
blockade in non-small cell lung cancer (NSCLC) (111). IL-15 also plays a crucial role in the 
self-renewal of progenitor exhausted TCF-1+PD-1+CD8+ T cells, which are characterized by 
stem-like properties and associated with a more favorable response to PD-1 blockade (112).

Various forms of IL-15 have been developed as immunotherapeutic agents and are presently 
undergoing clinical trials in combination with anti-PD-1 Abs for the treatment of cancer 
patients (113-115). N-803 (formerly known as ALT-803) is a superagonist complex consists 
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of an IL-15 mutant bound to a bivalent IL-15Rα sushi domain and IgG1-Fc fusion protein 
(116). N-803 has been recognized as a potent inducer of the activation, proliferation and 
cytotoxicity of CD8+ T cells and NK cells, thereby conferring anti-tumor efficacy in preclinical 
models including breast cancer (117), colon cancer (116) and glioblastoma (110). N-803 is 
currently being evaluated in several ongoing clinical trials (118). Results from the recent 
clinical trials demonstrated that N-803 yielded promising responses with a tolerable safety 
profile when used in patients with NSCLC (113) and bladder cancer (119). IL-15 has also 
been integrated in chimeric Ag receptor T cell (CAR-T) engineering for the treatment of 
cancer through adoptive cell therapy. CAR-T cells expanded ex vivo with IL-15 exhibit a less 
differentiated phenotype, reduced expression of exhaustion and pro-apoptotic molecules, 
and enhanced mitochondrial metabolism, with administration resulting in a stronger anti-
tumor response (120-123).

IL-15 has been shown to activate tumor-infiltrating bystander memory CD8+ T cells.  
A considerable portion of memory CD8+ T cells present within tumor infiltrates is specific for 
tumor-unrelated viruses, such as CMV and Epstein-Barr virus (EBV) (124). Though tumor-
specific CD8+ T cells typically express CD39, bystander CD8+ T cells within tumor tissues 
lack CD39 expression. IL-15-induced activation of memory CD8+ T cells has been shown 
to contribute to the anti-tumor immune response via an NKG2D-dependent mechanism, 
enhancing tumor control even in the absence of cognate Ag recognition (125).

IL-15-INDUCED T CELL-MEDIATED IMMUNOPATHOGENESIS

Viral infection
IL-15 has been shown to activate memory CD8+ T cells to proliferate and exert effector 
functions in the absence of TCR stimulation (126). During viral infection, the upregulation 
of IL-15 triggers bystander activation of memory CD8+ T cells (8,127). IL-15 induces polyclonal 
expansion of bystander memory CD8+ T cells with a highly diverse TCR repertoire (128). 
Though several studies have reported a protective effect (129-131), a significant number of 
studies have demonstrated a detrimental effect of IL-15-induced bystander activation of 
memory CD8+ T cells, leading to host tissue damage during microbial infections (95,132-137).

The pathological contribution of IL-15-drvien bystander-activated memory CD8+ T cells 
is well described in acute hepatitis A virus (HAV) infection (Fig. 2). In adults, acute HAV 
infection often causes severe liver injury (138). During acute HAV infection, independent of 
TCR, elevated IL-15 activates pre-existing memory CD8+ T cells specific for HAV-unrelated 
viruses, such as human CMV, EBV, influenza A virus (IAV), respiratory syncytial virus, and 
vaccinia virus (133). These bystander-activated memory CD8+ T cells express increased levels 
of NK cell-activating receptors (NKG2D and NKp30) and cytotoxic molecules (perforin and 
granzyme B), as well as activation markers (CD38 and HLA-DR) and proliferation marker 
Ki-67. In addition, IL-15 upregulates chemokine receptor CCR5 via ERK signaling pathway, 
facilitating the migration of bystander-activated memory CD8+ T cells to the infected liver 
during acute HAV infection (134). This finding aligns with previous studies indicating that 
IL-15 promotes the migration of memory CD8+ T cells to the infection site without antigenic 
stimulation (139-141). In the HAV-infected liver, bystander-activated memory CD8+ T cells 
exert NKG2D-dependent NK-like cytotoxicity and kill hepatocytes expressing NKG2D ligands 
(133). This NK-like cytotoxicity significantly correlates with liver damage in patients with acute 
HAV infection, indicating the presence of IL-15-induced immunopathological mechanisms 
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performed by bystander-activated memory CD8+ T cells. Similarly, this NK-like cytotoxic 
attribute driven by IL-15 has been also observed in MAIT cells (142), the most prevalent innate-
like T cells in human liver (100). In the absence of a TCR-MR1 interaction, the combination 
of IL-15 with IL-12 and IL-18 upregulates of NKG2D, granzyme B, and CD2 in a PI3K-mTOR 
signaling-dependent manner (142). Subsequently, MAIT cells kill hepatocytes through NK-like 
cytotoxicity which is associated with severe liver damage in patients with acute HAV infection.

Importantly, though IL-15 upregulates surface expression of NKG2D and CCR5 on memory CD8+ 
T cells, TCR stimulation has no impact on these markers (133,134). Interestingly, concurrent 
TCR stimulation abrogates the IL-15-induced upregulation of NKG2D and CCR5. Therefore, 
the upregulation of NKG2D and CCR5 serves as a marker of IL-15-induced bystander activation 
of memory CD8+ T cells (143). Consistent with this, IFN-induced transmembrane protein 3 
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Figure 2. Bystander-activated memory CD8+ T cells induced by IL-15 contribute to liver damage during acute HAV 
infection. 
During acute HAV infection, elevated IL-15 activates pre-existing memory CD8+ T cells that are specific for HAV-
unrelated viruses, independent of TCR engagement. This IL-15-induced bystander activation of memory CD8+ T 
cells occurs both outside the liver and in the areas surrounding infected hepatocytes (left). These bystander-
activated memory CD8+ T cells express upregulated NKG2D and CCR5. Bystander-activated memory CD8+ T cells 
migrate into the HAV-infected liver via a CCR5-dependent mechanism (right). Within the HAV-infected liver, 
NKG2D triggers NK-like cytotoxicity against hepatocytes expressing NKG2D ligands. Notably, in patients with 
acute HAV infection, the NK-like cytotoxicity of bystander-activated memory CD8+ T cells significantly correlates 
with liver injury, as reflected by the level of ALT in serum. 
ALT, alanine transaminase.



(IFITM3) has been recognized as an indicator of IL-15-induced bystander activation of memory 
CD8+ T cells in a murine model of IAV infection (144). This suggests that IL-15 promotes innate-
like features, whereas TCR stimulation is responsible for preserving the intrinsic adaptive 
nature of memory CD8+ T cells. However, the regulatory mechanisms underlying IL-15-induced 
bystander activation in memory CD8+ T cells have not been fully elucidated yet.

Chronic inflammatory diseases
Overexpression of IL-15 is associated with pathology in various chronic inflammatory 
diseases (7). The pathological contribution of TCR-independent, IL-15-induced upregulation 
of NKG2D on CD8+TCRαβ+ intraepithelial lymphocytes (IELs) has been demonstrated in 
celiac disease (145). In celiac disease, intestinal epithelial cells overexpress IL-15 and the 
NKG2D ligand MHC class I polypeptide-related protein (MICA) (146). Dysregulated IL-15 
production upregulates NKG2D on CD8+TCRαβ+ IELs in the absence of TCR stimulation, and 
they contribute to intestinal-tissue damage through NK-like killing activity (145).

The intestinal mucosa serves as a primary site for extrathymic lymphopoiesis of γδ T cells, 
often referred to as γδ intestinal IELs (147). The homeostatic proliferation of γδ IELs is mainly 
induced by the IL-15 produced by adjacent epithelial cells (148). γδ IELs exhibit NK-like 
features, responding rapidly and consistently to tissue alarmins and stress-induced ligands of 
NKRs without requiring Ag recognition (149). Although γδ IELs play a critical role in mucosal 
protection, dysregulated activation of γδ IELs can exacerbate inflammation and contribute 
to the progression of intestinal diseases (150,151). Interestingly, the Ikaros zinc finger (IKZF) 
transcription factor Aiolos has been identified as a regulator that suppresses expression of 
NKRs, cytotoxic molecules, and chemokines in γδ IELs (9). This Aiolos-induced regulatory 
mechanism involves a partial attenuation of IL-15 signaling in γδ IELs and has been shown to 
ameliorate colitis in a mouse model. As unrestricted IL-15 production can lead to T cell-mediated 
tissue damage, the Aiolos-mediated regulation of IL-15 signaling is crucial for maintaining 
intestinal homeostasis. Further investigation into other regulatory factors suppressing IL-15 
signaling, as well as the expression of NKRs and cytotoxic mediators (43-46,66) that may 
contribute to tissue damage and disease pathogenesis, is warranted. These could serve as 
promising therapeutic targets for alleviating IL-15-induced T cell-mediated immunopathological 
tissue damage.

The TCR-independent, IL-15-induced NK-like cytotoxicity of effector memory CD8+ T 
cells was also shown to contribute to the pathogenesis of alopecia areata (152). IL-15 was 
shown to expand TVM cells expressing remarkably high levels of CD44 and lacking CD49d 
(CD44s-hiCD49dlo), which cause alopecia areata in a mouse model (153). IL-15 upregulated 
NKG2D and cytotoxic molecules in CD44s-hiCD49dlo TVM cells and facilitated their migration 
to the cutaneous tissues. Here, the local expression of IL-15, IL-12, and IL-18, as well as 
NKG2D ligands, leads to the damage of hair follicles by CD44s-hiCD49dlo TVM cells through 
their NKG2D-dependent killing activity. This finding was further supported by effectively 
controlling disease progression through the administration of blocking Abs targeting CD122, 
IL-12, and IL-18 or NKG2D in the mouse model (153).

Interestingly, a study reported that germline STAT3 gain-of-function mutations in mice 
induce CD122-dependent expansion of CD8+ T cells, which contribute to the autoimmune-
like pathology (154). These expanded CD8+ T cells were characterized by the upregulation 
of NKG2D and effector molecules (IFNγ, granzymes, and perforin), and their accumulation 
significantly correlated with the development of autoimmune-like pathology.
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In non-alcoholic steatohepatitis (NASH), IL-15 drives hepatic accumulation of CXCR6+CD8+ 
T cells, which cause liver damage (155). During NASH, uncontrolled production of IL-15 in 
the liver down-regulates FOXO1, rendering liver-resident CXCR6+CD8+ T cells susceptible 
to metabolic stimuli, including acetate and extracellular ATP. Upon exposure to acetate, 
liver-resident CXCR6+CD8+ T cells upregulate granzyme B expression and TNF production to 
become auto-aggressive CD8+ T cells. With subsequent exposure to extracellular ATP, which 
signals through P2X7 purinergic receptor, auto-aggressive CD8+ T cells kill hepatocytes in 
an MHC-I-independent, Fas ligand-dependent manner, contributing to the liver damage in 
NASH (155). Further research to elucidate the mechanisms underlying uncontrolled IL-15 
production and how IL-15 reprograms T cells to acquire pathological functions could support 
the identification of therapeutic targets for ameliorating T cell-mediated tissue injury.

CONCLUSION

In summary, IL-15 is essential for the homeostasis and effector functions of T cells. However, 
dysregulated IL-15 production can trigger TCR-independent, NK-like activation of T cells that 
contributes to immunopathological tissue damage (Fig. 3). Although significant progress has 
been made in demonstrating the pathological contribution of IL-15, further investigations are 
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Figure 3. IL-15-induced T cell-mediated immunopathogenesis in various diseases. 
Dysregulated production of IL-15 triggers TCR-independent and NK-like cytotoxicity of T cells that contributes to immunopathological tissuse damage in various 
diseases. IL-15 activates bystander memory CD8+ T cells to kill hepatocytes in an NKG2D-dependent manner, leading to severe liver injury during acute HAV 
infection. This IL-15-induced immunopathological liver injury was also induced by MR1-indpendent activation of MAIT cells during acute HAV infection. IL-15 
activates intraepithelial intestinal CD8+ T cells independenly of TCR signaling to exert inestinal tissue damage through NKG2D-dependent cytotoxicity during 
celiac disease. IL-15 activates CD44s-hiCD49dlo TVM cells to damage hair follicle cells through NKG2D-dependent cytotoxicity, contributing to alopecia areata 
pathogenesis. IL-15 upregulates NK-like feuatures of γδ intestinal intraepithelial lymphocytes that contribute to the pathogenesis of colitis. IL-15 drives hepatic 
accumulation of CXCR6+CD8+ auto-aggressive T cells, which contribute to liver damage by killing hepatocytes in an MHC-I-independent and Fas ligand-
dependent manner during NASH.



required to explore T cell-mediated immunopathogenesis in various diseases, encompassing 
those not yet thoroughly examined. Moreover, it is necessary to determine the specific types 
of T cells that exhibit the most pronounced responsiveness to IL-15 and play a significant 
role in inducing immunopathology in each distinct disease. Furthermore, the molecular 
mechanisms underlying IL-15-induced T cell-mediated immunopathogenesis remain poorly 
understood. Therefore, it is crucial to gain further insights into the regulatory mechanisms 
involved in IL-15-induced T-cell activation. These insights will shed light on therapeutic 
targets to alleviate immunopathology observed in various infectious diseases and chronic 
inflammatory diseases.
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