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Abstract

Background: Clinical progression of colorectal cancers (CRC) may occur in parallel with distinctive signaling alterations. We
designed multidirectional analyses integrating microarray-based data with biostatistics and bioinformatics to elucidate the
signaling and metabolic alterations underlying CRC development in the adenoma-carcinoma sequence.

Methodology/Principal Findings: Studies were performed on normal mucosa, adenoma, and carcinoma samples obtained
during surgery or colonoscopy. Collections of cryostat sections prepared from the tissue samples were evaluated by a
pathologist to control the relative cell type content. The measurements were done using Affymetrix GeneChip HG-
U133plus2, and probe set data was generated using two normalization algorithms: MAS5.0 and GCRMA with least-variant
set (LVS). The data was evaluated using pair-wise comparisons and data decomposition into singular value decomposition
(SVD) modes. The method selected for the functional analysis used the Kolmogorov-Smirnov test. Expressional profiles
obtained in 105 samples of whole tissue sections were used to establish oncogenic signaling alterations in progression of
CRC, while those representing 40 microdissected specimens were used to select differences in KEGG pathways between
epithelium and mucosa. Based on a consensus of the results obtained by two normalization algorithms, and two probe set
sorting criteria, we identified 14 and 17 KEGG signaling and metabolic pathways that are significantly altered between
normal and tumor samples and between benign and malignant tumors, respectively. Several of them were also selected
from the raw microarray data of 2 recently published studies (GSE4183 and GSE8671).

Conclusion/Significance: Although the proposed strategy is computationally complex and labor–intensive, it may reduce
the number of false results.
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Introduction

Colorectal cancer (CRC) arises as a multi-step process of

successive cellular clone selection. As a result of the growth

advantage of dysplastic cells over their normal neighbors, the

morphological counterpart of molecular alterations leads to

progressive cytological and architectural derangement recogniz-

able as the adenoma-carcinoma sequence [1,2]. Recently, no more

than a dozen or so somatic ‘‘driver’’ mutations were established as

being responsible for CRC development [3,4]. However, tumors

exhibiting homogenous phenotypes share few mutated ‘‘cancer

genes’’; therefore, cancer complexity at the gene level is likely

reduced to a limited number of alterations within signaling and

metabolic pathways [5].

An individual cancer phenotype is the result of cell-specific,

developmental stage-specific, and metabolism-related changes in

gene expression selectively occurring at a time and modified by

epigenetic interactions [6]. With the introduction of high-density

DNA microarrays, an expectation of insight into the overall

molecular components of carcinogenesis has developed. Unfortu-

nately, a comparative analysis of microarray-based studies on

CRC development found rather weak overlap of the gene

expression profiles ([7] and the results section). These discrepan-

cies in the identified expression profiles may be due to technical

reasons, including the use of various microarray platforms,

different tissue collection methods, and numerous analytical

algorithms [7]. Although the rate of false assumptions might be

minimized by using an ‘‘optimal’’ analytical protocol, the selection
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of such protocol is still challenging [6]. Consequently, microarray

experiments allow for rough and mostly indirect assumptions.

Therefore, one may ask whether multidimensional and sub-

optimal microarray-based data can be applied to the study of

complex biological systems, including carcinogenesis.

To answer this question, microarray data originating from two

experimental procedures were analyzed by multiple methods

employed for identification of consensus differences in pathways

underlying CRC development through the adenoma-carcinoma

sequence. Samples of normal mucosa, adenomas, and carcinomas

obtained during surgery or colonoscopy were processed to select

differences between: (i) epithelium and mucosa in normal tissue

away from and directly adjacent to carcinoma, in adenoma and

carcinoma (using microdissected samples) and (ii) normal and

neoplastic tissues and adenomas and carcinomas (using whole

tissue sections). Finally, we addressed the potential and challenges

of translating microarray-based gene expression profiles into the

functional aspects of carcinogenesis.

Results

A total of 170 GeneChips were hybridized in this study. Twenty-

five of 130 arrays representing whole tissue section samples were

rejected from the data analyses. Twenty-four of these arrays were

rejected on the basis of poor GeneChip quality according to the

parameters established by Affymetrix and due to their internal

inconsistency with others as established by the principal component

analysis (PCA) (not shown). One microarray was rejected because of

mechanical damage. A parameter summary of 145 arrays of

suitable quality, 40 and 105 represented microdissected and whole

tissue section samples, respectively, is provided in Table S1.

From 54,675 probe sets of the Affymetrix HGU133plus2

microarray, 31,962 and 25,410 probe sets for whole tissue sections

and 29,242 and 24,002 probe sets for microdissected samples

passed the filtering procedure according to MAS5.0 and

GCRMA+ LVS algorithms, respectively. As shown in Figure S1,

the probe set signal distribution and levels extracted with the two

normalization algorithms significantly differed.

Signaling pathways distinguishing between colonic
epithelial cells and mucosa

Probe set selection from microarray data representing tissue

samples may be significantly affected by differences in the cell type

content of the normal and dysplastic mucosa (Table 1). Bearing

that in mind, we intended to define the consensus differences in

KEGG pathways which are more conserved between colonic

epithelial cells and mucosa than between normal and neoplastic

tissues. Gene expression profiles corresponding to tissue morphol-

ogy were established in pure colonic crypt epithelial cells (CEC)

and mucosa (MUC) (representing the epithelial cell layer and cell

content in lamina propria) which were captured from various parts

of the tumor consisting of invasive adenocarcinoma adjacent to

tubular adenoma with low grade dysplasia and from paired full-

thickness normal colon using the laser capture microdissection.

Data sets from these microdissected samples were analyzed in

the following pairs: CEC vs. MUC dissected from distant full-

thickness normal colon (NC), normal colon mucosa dissected from

tumor (NT), adenoma (AD), and carcinoma (CA). Pair-wise

comparisons were performed separately on microarray data sets

normalized by MAS5.0 and GCRMA+LVS algorithms. Probe sets

sorted according to significance of differentiation of CEC and

MUC in any pair set were used in Kolmogorov-Smirnov (K-S) test

to evaluate KEGG pathways alterations. The results of KEGG

annotations for each comparison are summarized in Table S2.

The pathways found in at least three of the four pair-wise

comparisons (Table 2) were considered to be distinguishing

between colonic epithelial cells and mucosa and were excluded

from the further selection of oncogenic signaling pathways.

Oncogenic signaling pathways
To establish oncogenic signaling distinguishing between normal

colon and neoplasms, data sets representing whole tissue sections

of normal colon, adenomas, and adenocarcinomas and normal-

ized by both MAS5.0 and GCRMA+LVS algorithms were

decomposed into major statistically independent variability modes

(supergenes) using singular value decomposition (SVD). We

assumed that SVD may establish some co-variations in gene

expression that could enable better definition of expression-based

functional alterations [8–10]. A graphic summary (Figure 1) of the

relationships between the samples revealed that the first and

strongest mode distinguished between normal colon and neoplastic

tissues, with one exception; tumors with lower malignant tissue

content (,35%) were grouped mainly with samples of normal

colon. This group of samples was discarded from the further pair-

wise comparisons. Lists of the probe sets sorted by both SVD and

gene-by-gene statistical testing are given in Table S3.

Table 1. The relative cell type content within normal and dysplastic mucosa used for laser capture microdissection (per 1 mm2 of
the area).

Cell type Tissue sample type

Normal colon Normal colon dissected from tumor Adenoma Carcinoma

Epithelial cells (percent of total) 3183 (71.4%) 3032 (63.3%) 1650 (53.4%) 2330 (81.4%)

Fibroblasts 240 880 280 133

Lymphocytes 266 420 765 164

Intraepithelial lymphocytes 80 60 24 31

Plasmocytes 594 173 133 92

Granulocytes 20 26 37 35

Histocytes 47 40 78 45

Endothelial cells 26 160 120 33

Total 4456 4791 3087 2863

doi:10.1371/journal.pone.0013091.t001

Signaling in Colon Tumors
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The probe sets selected by the first mode of SVD and those

differentially expressed between normal and neoplastic tissues

were used for the calculation of their attribution to pre-defined

KEGG signaling pathways using the KS test, as summarized in

Figure 2. The distance of distribution was considered most

significant if the corrected p-value was less than 0.01 in at least one

data set normalized by either the MAS5.0 or GCRMA+LVS

algorithm, or if it was less than 0.05 in both data sets. The results

of selected KEGG annotations are shown in Table S4. The

KEGG signaling pathways derived from both gene expression

measurements and both lists of probe sets (selected by SVD and

pair-wise comparisons) seem to represent the most reliable findings

on molecular alterations between normal and neoplastic colon

tissue (Table 3).

Next, to estimate molecular alterations underlying tumor progres-

sion to malignancy, data sets representing whole tissue sections from

colonic neoplasms were decomposed into SVD modes (Figure S2)

and analyzed by pair-wise comparisons (Table S5). Probe sets sorted

according to the first SVD mode and those differentially expressed

between adenomas and carcinomas were functionally analyzed by

annotation to the KEGG signaling pathway database (Table S6).

Again, the KEGG pathways were assumed to be the most

discriminative between benign and malignant colon tumors if they

were derived from the lists of probe sets selected by both SVD and

pair-wise comparison (Table 3). In general, they represented signaling

networks and cellular metabolism.

Testing oncogenic signaling in the colon adenoma-
carcinoma sequence by the use of the published
microarray data

Poor reproduction of microarrays by quantitative RT-PCR was

observed in this (not shown) and previously in independent studies

[11–13], likely as a consequence of the quite different methodol-

ogy used by these two techniques. Moreover, lack of proper

control analytical methods which would be considered as a ‘‘gold

standard’’ for functional analysis of microarray data unable direct

justification our assumption that the consensus pathways identified

by multiple analyses are more likely discriminative than those

identified by individual methods. Therefore, we asked a question

whether the consensus pathways can be also derived using the

proposed strategy from the readouts of the coherent studies.

We conducted normalization, summation and filtration of the

raw datasets provided by four recently published microarray-based

studies [14] (GSE8671, Sabates-Bellver et al.), [15] (GSE4183,

Galamb et al. 2008-1), [16] (GSE15960, Galamb et al. 2010), [17]

(GSE10714, Galamb et al. 2008-2), according to our processing

algorithm, independently of procedures applied by the respective

authors. Expectedly, although all four studies have analyzed colon

tumor transcriptomes using the same Affymetrix HGU133plus2

platform, there are less than 1/10 probe sets simultaneously

selected significant for all comparisons (Figure S3). Such a little

data reproducibility is a well known problem when tissue samples

Table 2. KEGG pathways found significant (KS test) in pair-
wise comparisons of pure colonic crypt epithelial cells (CEC)
and mucosa (MUC) in at least three of four sample groups:
normal colon (NC), normal tumor mucosa (NT), adenoma (AD),
and carcinoma (CA).

KEGG term NC NT AD CA

Cell adhesion molecules (CAMs) + + + +

ECM-receptor interaction + + + +

Focal adhesion + + + +

Allograft rejection + + + +

Autoimmune thyroid disease + + + +

Complement and coagulation cascades + + + +

Asthma + + + +

Graft-versus-host disease + + + +

Type I diabetes mellitus + + + +

Leukocyte transendothelial migration + + + +

Hematopoietic cell lineage + + + +

Systemic lupus erythematosus + + + +

Cytokine-cytokine receptor interaction + + + 2

Neuroactive ligand-receptor interaction + + + 2

Oxidative phosphorylation + + 2 +

Pathogenic Escherichia coli infection – EHEC + + 2 +

Antigen processing and presentation + + 2 +

doi:10.1371/journal.pone.0013091.t002

Figure 1. Diagrams of the first statistically independent variability modes extracted from the original normalized with MAS5.0 (left
panels) and GCRMA+LVS (right panels) algorithms using SVD, uncovering the microarray data of the whole tissue section samples.
doi:10.1371/journal.pone.0013091.g001
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Figure 2. Flow chart of the steps applied to identify oncogenic signaling distinguishing between normal colon and neoplasms. To
select the alternated KEGG signaling pathways, two probe-level processing procedures (MAS5.0 and GCRMA+LVS) in connection with two probe set
selection and sorting criterions (pair-wise comparison and SVD decomposition) were utilized. Selection of the KEGG signaling pathways was done
using the one-sided Kolmogorov-Smirnov test. To obtain the final results, KEGG intersection distinguishing between colonic epithelial cells and
mucosa (Table 2) was subtracted from intersection of KEGG annotation results for whole tissue section settings computed for the both comparisons.
doi:10.1371/journal.pone.0013091.g002

Table 3. KEGG terms corresponding to genes differentially expressed between normal colon samples with colonic neoplasms and
between adenomas and carcinomas.

Normal colon vs. colonic neoplasms Adenomas vs. adenocarcinomas

p53 signaling pathway p53 signaling pathway

Biosynthesis of unsaturated fatty acids Biosynthesis of unsaturated fatty acids

Proteasome Proteasome

Cell cycle Adherens junction

DNA replication TGF-beta signaling pathway

Purine metabolism PPAR signaling pathway

Pyrimidine metabolism Wnt signaling pathway

RNA polymerase Calcium signaling pathway

Aminoacyl-tRNA biosynthesis Colorectal cancer

Nucleotide excision repair Pancreatic cancer

Mismatch repair Bladder cancer

Base excision repair Valine, leucine, and isoleucine degradation

Homologous recombination Fatty acid metabolism

Folate biosynthesis Tryptophan metabolism

Sphingolipid metabolism

Arachidonic acid metabolism

Axon guidance

doi:10.1371/journal.pone.0013091.t003
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are either prepared or processed in different laboratories or under

various conditions.

Next, to test the potential of the proposed analytical procedure

in identification of consensus signaling alterations, we employed

the microarray data provided by Galamb et al. (GSE4183) [15]

and Sabates-Bellver et al. (GSE8671) [14]. Samples in those

studies were handled in similar way as in our experiment with the

whole tissue sections. As shown in Table 4 (and Table S7), the

multidirectional computations selected 11 out of 14 consensus

KEGG pathways, which distinguished normal colon and neo-

plasms in our data sets, also from the GSE4183 data set. Similar

KEGG pathways selection was obtained by multiple analyses

performed on the GSE8671 data set which established transcrip-

tomes of normal colon and adenomas. This time, 3 of 4

procedures used for data normalization and probe set sorting

allowed identifying 11 consensus signaling pathways consistent

with those selected in our studies (Table 4), although none

common signaling pathways were found when the GSE8671 data

set was normalized with the GCRMA+LVS algorithm and probe

sets were sorted by the statistic of pair-wise comparison.

KEGG signaling pathways related to cell cycle, DNA

replication, purine metabolism, pyrimidine metabolism, RNA

polymerase, proteasome, aminoacyl-tRNA biosynthesis, mismatch

repair and nucleotide excision repair were selected in both our and

two recently published microarray-based studies.

In contrast to nearly full agreement described above, only one

out of 17 KEGG pathways, Axon guidance, discriminating between

adenomas and adenocarcinomas (Table 5), has been found

significant for the GSE4183 data set (Table S7). On the other

hand, several pathways extracted by our procedure from the

GSE4183 data set were common with the KEGG pathways

distinguishing between colonic epithelial cells and mucosa in our

data sets (Table 5, and Table S7).

Gene expression diagnostic for the progression to CRC
Gene expression signature that can be employed for diagnostic

purposes should consist of probe sets with signal progressively

increased or decreased over the normal tissue-adenoma-carcinoma

sequence. To select CRC progression markers, the procedure was

consistently applied to analyze data sets obtained by two tissue

handling procedures. Probe sets with gradually increasing or

decreasing expression (p,0.01, FDR adjusted) throughout CRC

progression that were found in all three sample sets (whole tissue

sections, microdissected epithelial cells, and microdissected

mucosa) are presented in Table 6 and 7, respectively. Of these

probe sets, a few were representative for data sets normalized with

both algorithms.

The level of these probe sets appeared to be significantly altered

also in other microarray studies [14–16] (Table S7). Nine, 14 and

15 of them were found to significantly differentiate NC and AD or

NC and CA (FDR,0.01 and FC.1.5) in two studies conducted

by Galamb et al. [16] [15] and Sabates-Bellver et al. [14],

respectively.

Discussion

Carcinogenesis is a microevolutionary process that results from

a series of genetic and epigenetic alterations. As a consequence of

the successive rounds of mutation and selection of cell clones,

molecular alterations affect the fundamental processes of a normal

cell, such as proliferation, differentiation, and apoptosis [1].

Though multiple proto-oncogenes and tumor suppressor genes

play an essential role in neoplastic growth, no more than 15

somatic ‘‘driver’’ mutations are thought to be responsible for

individual cancer initiation, progression, and maintenance.

However, among a group of clinically homogenous tumors, only

a few mutated ‘‘cancer genes’’ are shared [3,4]. These highly

variable patterns of somatic mutations in cancer genomes are

likely responsible for biological differences among cancers. On the

Table 4. Comparison of KEGG pathways distinguishing
between normal colon samples and colonic neoplasms
selected from our and two published microarray data.

This study
GSE4183 NC
vs. AD+CA

GSE8671
NC vs. AD

Cell cycle + +

DNA replication + +

Purine metabolism + +

Pyrimidine metabolism + +

RNA polymerase + +

p53 signaling pathway +/2* +

Proteasome + +

Aminoacyl-tRNA biosynthesis + +

Mismatch repair + +

Nucleotide excision repair + +

Base excision repair + +/2*

Homologous recombination + -

Folate biosynthesis - +

Biosynthesis of unsaturated fatty acids - -

*KEGG terms selected only from data sets normalized with MAS5.0.
doi:10.1371/journal.pone.0013091.t004

Table 5. KEGG terms corresponding to genes differentially
expressed between adenomas and carcinomas.

Whole tissue sections

Adherens junction

p53 signaling pathway

PPAR signaling pathway

Wnt signaling pathway

Calcium signaling pathway

TGF-beta signaling pathway

Axon guidance

Colorectal cancer

Pancreatic cancer

Bladder cancer

Proteasome

Valine, leucine, and isoleucine degradation

Fatty acid metabolism

Tryptophan metabolism

Sphingolipid metabolism

Biosynthesis of unsaturated fatty acids

Arachidonic acid metabolism

doi:10.1371/journal.pone.0013091.t005
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other hand, cancers share, at least in part, common phenotypes

that lead to standard treatment algorithms.

Most CRCs arise in a progression through adenoma to

carcinoma phenotypes as a consequence of altered genetic

information. Because genetic information is utilized by macro-

molecules (RNA and proteins) and metabolites representing short-

term storage, selectively provided at the time and grouped into

signaling and metabolic pathways, cancer complexity at the gene

level is likely reduced to a limited number of altered pathways.

Thus, the clinical progression of colon tumor phenotypes may

occur in parallel to distinctive signaling alterations [5].

Several microarray-based studies in CRC have been performed

[18,19], most to identify discriminative gene expression profiles for

diagnostic and prognostic purposes [17,20–29]. Some other

studies were performed to identify molecular processes underlying

tumorigenesis and metastasis [30–35]. However, a comparative

analysis of the above mentioned studies revealed rather weak

overlap of catalogued gene expression profiles [7], which is mostly

a consequence of microarray experiments generating large sets of

data that are not directly interpretable. As a result, significant data

pre-processing is required to convert raw data (images of the

scanned chips) into meaningful biological knowledge. The analysis

of a typical microarray experiment involves the following steps: 1)

image processing, 2) probe-level processing aimed at the

generation of gene-expression summaries and minimizing techni-

cal variability introduced during sample preparation and mea-

surement, 3) statistical analysis that, depending on the scientific

goal of the experiment, may be focused on grouping genes with

similar expression, identifying genes differentially expressed

between two or more experimental conditions, or discovering

unknown subclasses of samples correlating with the phenotype or

clinical course, and 4) higher level (functional) analysis, which

allows for biological interpretation of the results. Notably, no fully

acceptable protocol exists for microarray data processing, and the

different methods used for subsequent stages of the analysis

pipeline may result in substantially different results. Therefore, the

Table 6. Genes with gradually increasing expression (p,0.01, FDR adjusted) through CRC progression in all three sample sets.

Up-regulated

GCRMA_LVS MAS5.0

227140_at 227140_at

Tribbles homolog 3 (Drosophila) Tribbles homolog 3 (Drosophila)

Collagen, type XII, alpha 1 Collagen, type XII, alpha 1

Solute carrier family 39 (zinc transporter), member 10 Solute carrier family 39 (zinc transporter), member 10

Diaphanous homolog 3 (Drosophila) Diaphanous homolog 3 (Drosophila)

Jub, ajuba homolog (Xenopus laevis) Jub, ajuba homolog (Xenopus laevis)

Stearoyl-CoA desaturase (delta-9-desaturase) Stearoyl-CoA desaturase (delta-9-desaturase)

p53 and DNA damage-regulated 1 p53 and DNA damage-regulated 1

Collagen, type IV, alpha 1 Aminopeptidase-like 1

Collagen, type I, alpha 2

Hypothetical LOC541471

General transcription factor IIIA

Nnicotinamide N-methyltransferase

Phosphoprotein enriched in astrocytes 15

Solute carrier family 7 (cationic amino acid transporter, y+ system), member 5

Chromosome 13 open reading frame 3

Core-binding factor, beta subunit

Regulator of chromosome condensation (RCC1) and BTB (POZ) domain containing protein 1

RecQ protein-like (DNA helicase Q1-like)

Glucosamine-6-phosphate deaminase 1

Proteasome maturation protein

Breast cancer 2, early onset

Ubiquitin D

Nuclear factor (erythroid-derived 2)-like 3

Phosphoglucomutase 3

Tryptophanyl-tRNA synthetase

CCAAT/enhancer binding protein (C/EBP), beta

Hypothetical protein MGC15523

Calumenin

Transmembrane protease, serine 3

Chemokine (C-X-C motif) ligand 11

Probe set names are given where no gene name is available.
doi:10.1371/journal.pone.0013091.t006
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final result of microarray studies is a function of not only the

biological information in the samples, but of the choices made

during data processing. The problem of an extensive data

transformation results in a situation in which we cannot always

justify the biological meaning of a particular readout, and

adjustment of the final results to the working hypothesis may

introduce systemic bias and, in the end, manipulate the results.

We aimed to identify the essential oncogenic signaling in CRC.

Because there is no method that allows the direct estimation of

changes in cellular signaling on the genomic scale, we applied an

integrative genomics approach that may connect gene expression

profiles with molecular pathway alterations. The assessments were

directed to minimize the number of prior assumptions and

arbitrary choices made during data processing, particularly in the

two steps known to have the most severe impact on the results of

the analysis: probe-level processing and selection of differentially

expressed genes.

Several probe-level processing methods have been proposed,

including MAS5.0 [36], MBEI [37], RMA [38], and GCGMA

[39]. Although this stage of the analysis pipeline is often simply

referred to as normalization, it usually involves three separate

steps: background adjustment, normalization, and summarization.

Background adjustment is aimed at removing the influence of the

optical noise, autofluorescence of the chip surface, non-specific

binding, and cross-hybridization from the measured signal. Next,

probe intensities are normalized in order to allow direct

comparisons between chips and minimize the technical variation

that results from possible differences in total mRNA quantities or

unequal efficiencies in labeling and hybridization. Finally, in the

summarization step, the adjusted and normalized intensities in

each probe set are combined into a single numerical value that

represents the relative abundance of a transcript in the sample.

The reliable evaluation of the performance of low-level

processing methods is not an easy task because it requires prior

knowledge of the data properties, especially which genes are truly

differentially expressed. Consequently, most of the published

comparisons of low-level processing algorithms rely on an RNA

spike-in or dilution datasets [40–43]. Because the true expression

ratios are known in such datasets, they can easily be used to study

the bias (accuracy) and variance (precision) of the gene expression

estimations derived by different methods. However, though

artificially generated datasets are potentially useful validation

tools, there might be some doubt as to whether they actually

represent the characteristics of the data from typical microarray

experiments in terms of the fraction of differentially expressed

genes or RNA quality. Furthermore, the spike-in and dilution data

consist of technical replicates, and thus do not reflect the true

biological variability between samples from typical data sets.

Despite numerous efforts [44], there are still no widely accepted

methods for assessing the effectiveness of low-level processing for a

particular real-world dataset.

To avoid the arbitrary choices in expression summary

generation and data normalization, all presented analyses have

been carried out using two algorithms: MAS5.0 and GCRMA

combined with LVS normalization [45]. MAS5.0 is a relatively

simple algorithm that processes a single chip at a time, utilizing

probe position on the chip and mismatch (MM) probes to correct

the perfect match (PM) probe signal readout. Normalization is

performed after the summarization step by global scaling so that

the trimmed mean intensities of the arrays to be compared are

identical. GCRMA takes into the account the GC content of the

probe and conducts normalization on a full set of microarrays.

GCRMA does not utilize the MM probe signal. The LVS

algorithm normalizes the data set based on the least variant probe

sets and replaces the quantile normalization implemented in

GCRMA.

As expected, the use of two different algorithms resulted in data

sets with considerably different distributions of normalized relative

expression values. Therefore, to maximize reliability, both data

sets were used in further analyses. In addition, we filtered out low-

expression probe sets that, due to unfavorable signal-to-noise ratio,

were likely to be a source of false positives.

Another factor strongly affecting the final results of microarray

data analysis is the method used to define differentially expressed

Table 7. Genes with gradually decreasing expression (p,0.01, FDR adjusted) through CRC progression in all three sample sets.

Down-regulated

GCRMA_LVS MAS5.0

Hypothetical protein FLJ21511 (220724_at; 220723_s_at) Hypothetical protein FLJ21511 (220724_at; 220723_s_at)

Protein kinase, cAMP-dependent, catalytic, beta Protein kinase, cAMP-dependent, catalytic, beta

Hypothetical protein LOC253012 Hypothetical protein LOC253012

protein kinase, cAMP-dependent, catalytic, beta Protein kinase, cAMP-dependent, catalytic, beta

UDP glucuronosyltransferase 1 family, polypeptide A1 UDP glucuronosyltransferase 1 family,polypeptide A1

Ring finger protein 125 Ring finger protein 125

UDP glucuronosyltransferase 1 family, polypeptide A6 UDP glucuronosyltransferase 1 family, polypeptide A6

B-cell CLL/lymphoma 2 B-cell CLL/lymphoma 2

Zinc finger and BTB domain containing 7C 227630_at

Hypothetical protein LOC92482 Nuclear receptor subfamily 3, group C, member 2

CAS1 domain containing 1 Sterile alpha motif domain containing 13

Somatostatin receptor 1 Similar to all-trans-13,14-dihydroretinol saturase

Abhydrolase domain containing 3 Programmed cell death 4 (neoplastic transformation inhibitor)

Bestrophin 2 N-acetylglucosamine-1-phosphate transferase, alpha and beta subunits

UDP glucuronosyltransferase 1 family, polypeptide A9

Probe set names are given where no gene name is available.
doi:10.1371/journal.pone.0013091.t007
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genes. A multitude of strategies have been proposed for this task,

ranging from simple methods using only the fold change criterion

to more sophisticated approaches using permutation-based

statistical testing [46] or a Bayesian probabilistic framework

[47]. However, with most of the methods it is necessary to specify

strict criteria a gene must meet to be considered differentially

expressed, for example, FDR thresholds and/or fold change.

Various criteria produce substantially different lists of genes as the

basis of further biological conclusions. Furthermore, such methods

assume an unambiguous assignment of the samples to the classes

representing experimental conditions, which is not always the case.

The existence of subclasses with different expression profiles (e.g.,

a tumor with low amount of carcinoma) may alter the feature

selection process and mislead further functional analyses of

differentially expressed genes.

In order to overcome the mentioned limitations of typical

feature selection procedures, we used an approach that combines

supervised statistical testing with an unsupervised method, which

does not require prior knowledge of sample attribution.

The method selected for the functional analysis used the K-S

test. In contrast to common over-representation methods, the test

does not require arbitrary cut-off criterion for studied probe sets.

The significance of gene sets is determined based on their position

on a sorted list of all genes present in the assay. Here, sorting was

based on either the p-values of a statistical test in a pair-wise

comparison (supervised method) or the contribution to a selected

SVD component (unsupervised method). Such methodology

requires only one arbitrary cut-off: the adjusted p-value designat-

ing the significance of a given gene set.

The gene set dictionary selected for analysis was KEGG. Each

set consists of the genes involved in a physiological process. Most

of the KEGG subsets contain genes that interact with each other;

thus, the structure of the database, in contrast to Gene Ontology

(GO), is ‘‘flat’’. No relationship between the specified pathways

simplifies the correction for multiple hypothesis testing. The

number of categories in the KEGG database is a factor of 100 less

than GO (,200 vs. ,30,000). Therefore, the chance of a false

positive result is significantly less when the KEGG database is used

and less strict correction for multiple hypothesis testing is required.

In this study, pathways were selected as significant based on a

consensus of the results obtained with two normalization

algorithms, and two probe set sorting criterions. In whole tissue

sections we identified 14 and 17 KEGG signaling and metabolic

pathways significantly altered between normal colon and colon

tumors and between benign and malignant tumors, respectively.

Altogether, cell proliferation and differentiation, the regulation of

gene expression, DNA repair, cell growth and survival, the

signaling (TGF-beta, Wnt, PPAR, Calcium) pathways, aminoacids

and lipids metabolism may be considered the predominant

alterations, appearing on different levels of molecular interaction

and reaction networks of oncogenic signaling in the colon.

Using microdissected tissues, a considerable set of pathways

have been selected which differentiate between epithelia and

mucosa, regardless of the disease stage. Of these pathways, a wide

array of biological processes, including antigen processing and

presentation, immune response, and adaptive inflammatory host

defenses, cell migration, cell-cell and cell-matrix adhesion, clearly

differentiated functions attributed to cells forming the epithelial

layers from those of the resident immune cells infiltrating the

lamina propria. Several KEGG pathways distinguishing between

microdissected colonic epithelial cells and mucosa were also

selected from comparisons between whole tissue sections of

adenomas and adenocarcinomas (Table S6).

Results of NC - AD/CA comparisons in our dataset are, in

general, in good concordance with such comparisons performed

on datasets provided by Galamb et al. (GSE4183) [15] and

Sabates-Bellver et al. (GSE8671) [14]. On the other hand, there is

little overlap between the former of those studies and our dataset

for AD - CA comparison. Notably, several pathways found as

relevant in GSE4183 dataset were found to be differentiating

epithelia and mucosa (Table 5) in our study. However, paper by

Galamb et al. does not provide details on sample cellular

composition and without an access to the histological assessment

of tissues enrolled to microarray studies further result comparison

between different studies may be possible only to some extent.

There are over 80 KEGG pathways found significant when all

comparisons from publicly available data are taken into account.

This, and the fact that there are no "standard" protocols for

functional analysis of microarray experiments could lead to tuning

the analysis procedure to fit the expected results. We regard that

such pitfall could be avoided by selecting the intersection of results

acquired with multiple protocols as proposed in this study.

To date, a variety of methods have been used to dissect the

tissue of interest, as well as RNA extraction and amplification

protocols and algorithms for data normalization and significant

features selection. Thus, any variation in the procedure introduces

difficulties in the direct comparison of the results. Consistent with

this idea, probe sets with the same signal level alterations,

regardless of the sample handling protocol applied, are of

particular interest. Genes found to be differentially expressed

between normal colon, adenoma, and carcinoma can be used as

markers of the progression process. If the differences are

progressive, the interpretation of the results is straightforward;

the higher the difference detected, the more advanced the

carcinogenesis.

We found 17 probe sets with both attributes: significant

(FDR,0.01) progressive signal level changes in the NC R AD

R CA sequence for microdissection and whole tissue section

collected samples, and for MAS5.0 and GCRMA+LVS normal-

ization (Table 6 and 7). Eight of the probe sets were progressively

up-regulated (Table 6) and nine were down-regulated (Table 7).

Expression of most of these probe sets were also found to be

changed in other microarray studies [14–16].

In summary, microarray-based gene expression profiles were

applied to describe gene regulatory networks appearing on

different levels of molecular interaction and reaction networks

forming oncogenic signaling in the colon. Although some of the

KEGG pathways selected in our analyses may result from

differences in the proportion of epithelial and stromal cells excised

from adenomas and carcinomas, these studies highlighted

significant differences in the molecular makeup of adenomas and

adenocarcinomas related to oncogenic signaling. However, though

the changes in patterns of individual probe sets annotated to

defined KEGG signaling pathways intuitively fit predictions, the

microarray data could be translated into the functional aspects of

carcinogenesis only as indirect annotations.

The lack of independent methods of verification of functional

annotations to expression profiles makes the final conclusions from

microarray readouts prone to the subjective selection of biostatis-

tical tools. We proposed to tackle this problem by using a wide

range of computational methods. Although this strategy is

computationally complex and labor–intensive, it reduces the

fraction of false results. Herein, we provided an example of such

a multidirectional algorithm directed for maximizing the reliability

of microarray data results. On the other hand, with such strict

conditions, only highly reliable biological processes are selected.
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Although many pathways may be missed this way, the low

concordance of published results justifies the applied conditions.

The main disadvantage of the proposed functional analysis

relates to the assumption that the number of affected genes within

a single pathway determines the degree of its alteration. This

assumption may be correct for most metabolic pathways that rely

on the mass-action law [48] but may not hold true for signaling

pathways. In fact, the universal number of genes altered in a single

pathway to consider the pathway as affected remains unknown.

Consequently, the lack of knowledge about the compensation

effect and its extent makes such analyses incomplete. If so, the full

discovery and understanding of biological processes underlying

CRC on a genomic scale would be possible only with a more

stringent approach, which requires an extensive knowledge of

signaling mechanisms in all biological processes considered. This

approach is not feasible with the currently available bioinformatics

tools.

Materials and Methods

Ethics Statement
Patients were prospectively selected for the study between

January and December 2006 at the Department of Gastroenter-

ology and Hepatology and the Department of Colorectal Cancer,

Cancer Center-Institute, Warsaw. The study protocol was

approved by the Cancer Center Bioethics Committee, and all

patients signed informed consent before inclusion.

Sporadic colonic carcinomas were obtained by surgical

resection through laparotomy, and one to four tumor fragments,

depending on the tumor’s size, and two fragments of paired full-

thickness normal colon were cut. Colonic adenomas were obtained

during colonoscopic polypectomy, and one to three adenoma

fragments, depending on the polyp’s size (0.8–3.0 cm), were cut

from the tip of each polyp immediately after removal. The amount

of removed polyp did not interfere with the histological diagnosis.

All carcinoma and polyp tissue specimens were collected by

pathologists using the same procedure. In addition, three biopsies

were taken from the normal colonic mucosa of 7 healthy subjects

who underwent screening colonoscopy using large biopsy forceps.

All tissue specimens were snap frozen in liquid nitrogen within 10–

30 min of harvesting and stored at 272uC until use.

The clinical characteristics of patients and histopathology of

analyzed tissue samples are presented in Table S8.

Microdissected samples
Frozen tissue specimens were cut as a series of 6-mm thick

cryosections and mounted on a polyethylene naphthalate (PEN)

membrane slide and dehydrated for 2 min in 70% ethanol and

5 min in 100% ethanol. Subsequently, tissue sections were stained

in 5% (w/v) alcoholic solution of cresyl violet, rinsed in 100%

ethanol, and the slides air-dried for 15 min. The interested areas

were independently isolated from the slides using the PALM laser

microdissection and pressure catapulting (LMPC) system (PALM

MicroBeam with PALM RoboMover module and PALM

RoboSoftware; Carl Zeiss MicroImaging GmbH, Germany).

Microdissected samples from different parts of the tumor and

normal colon were pooled in separate microtubes, immediately

lysed with 100 ml RTL buffer (Qiagen GmbH, Hilden, Germany)

containing 1% b-mercaptoethanol, and stored at 272uC.

To obtain suitable reproducibility and reliability of the

estimations, tissue samples were dissected by LCM of five

replicates for each type of epithelial cell and mucosa from one

colon tumor and the paired full-thickness normal colon.

Independent microdissections of epithelial cell layers yielded an

average of 2.8 mm2 of total captured area (range 2.1–3.5 mm2),

whereas captured mucosa that represented a normal or neoplastic

epithelial layer with an absent lamina propria of the muscularis

mucosae yielded an average 13 mm2 of total area (range 10–

15 mm2). The relative cell type content within normal and

dysplastic mucosa estimated per 1 mm2 is presented in Table 1.

Whole tissue sections
Several series of cryostat sections were prepared from different

parts of each specimen using a Microm HM 505E (Zeiss,

Germany). Upper and lower sections from each cryosection

collection were evaluated by the pathologist to control the relative

cell type content. RNA was isolated from those cryostat sections

representing a given tissue specimen which contained the highest

percentage of epithelial cells.

Histological evaluation of the examined tissues revealed a

median relative content of 60% (range 18–98%) normal mucosa in

surgically obtained normal colon specimens and 90% (28–99%)

and 55% (15–98%) dysplastic mucosa in specimens representing

benign and malignant colon tumors, respectively (Table S8).

Endoscopic biopsies from the normal colons represented mostly

mucosa. Thirty-one polyps were identified as tubular adenomas,

and 14 as tubulo-villous adenomas; 42 and 3 adenomas exhibited

low-grade and high-grade dysplasia, respectively. Altogether, the

whole tissue section samples represented 45 colon adenomas, 36

adenocarcinomas, and 24 normal colon samples, of which 7 were

obtained during screening colonoscopies, 14 were taken from the

full-thickness normal colon at least 5 cm distant from adenocar-

cinoma, and 3 represented normal mucosa directly adjacent to the

neoplastic tissues.

RNA extraction and amplification
Total RNA was isolated from whole tissue sections and

microdissected tissue samples using the RNeasy Plus Mini Kit

and QIAshredder columns and the RNeasy Plus Micro Kit

(Qiagen GmbH, Hilden, Germany), respectively. RNA samples

were checked for quality on the Agilent 2100 Bioanalyzer. Each

sample used for further microarray analysis presented distinct

peaks corresponding to intact 28S and 18S ribosomal RNA.

Five micrograms of total RNA isolated from each whole tissue

section sample and 10–50 ng of total RNA isolated from

microdissected samples were used as starting material for the

synthesis of biotin-labeled cRNA with one and two rounds of

amplification using One-cycle and Two-cycle Target Labeling and

Control Reagents (Affymetrix), respectively, the latter with the

MEGAscript High Yield Transcription Kit (Ambion Inc, Austin

USA). The biotin-labeled cRNA was purified using RNeasy spin

columns, fragmented, and hybridized on Affymetrix oligonucleo-

tide microarrays (GeneChip HG-U133plus2).

Gene expression microarray analysis
To measure gene expression, probe set data (cell intensity files)

were generated using two standard normalization algorithms:

Affymetrix Microarray Suite v.5 (MAS5.0) and GCRMA with

least-variant set (LVS) probe sets. The calculations were performed

using R/BioConductor (version 2.8.1) packages affy (version

1.20.2), gcrma (version 2.14.1), and FLUSH.LVS.bundle (version

1.2.1, proportion = 0.6). For data filtration, we selected the probe

sets with signal intensity above the threshold limit in at least 5% of

samples. The threshold was established at the 98th percentile of the

expression levels from Y-chromosome–linked probe set signals

detectable in female samples. In addition, the probe sets with signal

FC higher than 1.5 (in relation to median) in less than 6 samples

were removed from whole tissue sections dataset.
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To establish differences in gene expression between tissue

groups, both gene-by-gene statistical testing using the permutation

test with t statistics and singular value decomposition (SVD) of the

data matrix were employed. Because experimental variability is

common among microarray data sets, the p-values were adjusted

for multiple hypothesis testing using the Benjamini-Hochberg

procedure [49] to control the false discovery rate (FDR). Probe sets

sorted according to either the adjusted p-values of the t-test or the

contribution of a selected SVD mode were assigned to Kyoto

Encyclopedia of Genes and Genomes (KEGG) Pathways.

The one-sided Kolmogorov-Smirnoff test (KS test) was used to

calculate whether probe sets attributed to a particular signaling

pathway located closer to the top of the lists than expected by

chance. Next, the resulting p-values were corrected for testing

multiple hypotheses. We considered the alterations in KEGG

pathways as most significant if the adjusted KS test p-values

derived from both orderings (by the pair wise test statistic and

SVD) were less than 0.01 in at least one data set normalized by

either the MAS5.0 or GCRMA+LVS algorithm, or if the adjusted

p-value was less than 0.05 in both data sets.

Statistical and functional analyses were performed using

proprietary software working in MATLAB (R2009a, MathWorks)

and R/Bioconductor environments.

The same workflow was applied for external datasets: GSE4183

and GSE8671. The threshold for data filtration was established on

the same level as for our ‘‘whole tissue section’’ dataset. Probe sets

with signal level higher that threshold in less than 5 and 6 samples

(GSE4183, GSE8671 respectively) were filtered out.

Supplementary data
Supplementary data and all MIAME compliment microarray

data are available at Gene Expression Omnibus (GSE20916).

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=bhervmw

uqemiyra&acc=GSE20916

Supporting Information

Figure S1 Distribution of probe set signals. (A,B) Histograms

of signals extracted from microdissected samples using MAS5.0

and GCRMA+LVS, respectively. (C,D) Histograms of signals

extracted from macrodissected samples using MAS5.0 and

GCRMA+LVS, respectively.

Found at: doi:10.1371/journal.pone.0013091.s001 (0.18 MB

PDF)

Figure S2 Diagrams of the first SVD modes representing

macrodissected adenomas (red) and carcinomas (blue); data

normalized by MAS5.0 (left panels) and GCRMA+LVS (right).

Found at: doi:10.1371/journal.pone.0013091.s002 (0.05 MB

PDF)

Figure S3 Venn diagram presenting numbers of probe sets

differentiating normal colon (NC) mucosa and adenoma (AD) (left

panel) or normal colon and colorectal cancer (CRC) (right panel)

in a given studies. Data was normalized with GCRMA+LVS.

Difference was considered significant if FDR in permutation test

was less than 0.05.

Found at: doi:10.1371/journal.pone.0013091.s003 (0.06 MB

PDF)

Table S1 Summary of the quality parameters of individual

arrays. Analyzed parameters were established by Affymetrix for

GeneChip hybridization with cRNA synthesized by one- or two-

cycle amplification procedures.

Found at: doi:10.1371/journal.pone.0013091.s004 (0.28 MB

DOC)

Table S2 Significant KEGG terms selected by K-S test

according to lists of probe sets sorted by p-value in pair-wise

comparisons of pure colonic crypt epithelial cells (CEC) and

mucosa (MUC) dissected from normal colon (NC), normal mucosa

adjusted to neoplastic tissue (NT), adenoma (AD) and carcinoma

(CA).

Found at: doi:10.1371/journal.pone.0013091.s005 (0.06 MB

DOC)

Table S3 Lists of the probe sets sorted either by contribution to

a selected SVD component or p-value in pair-wise comparisons for

the whole tissue section samples. Provided as zipped excel file.

Found at: doi:10.1371/journal.pone.0013091.s006 (3.46 MB ZIP)

Table S4 The summary of the significance of differential

representation of KEGG terms according to lists sorted by

contribution to a selected SVD component or p-value in pair-

wise comparisons of microarray data of whole tissue section

samples.

Found at: doi:10.1371/journal.pone.0013091.s007 (0.07 MB

DOC)

Table S5 Probe sets sorted according to the p-value in pair-wise

comparisons between benign and malignant whole tissue sections

of colonic neoplasms.

Found at: doi:10.1371/journal.pone.0013091.s008 (3.59 MB

XLS)

Table S6 Summary of the significance of the differential

representation of KEGG pathways selected by the K-S test from

probe sets lists sorted either by contribution to a selected SVD

component or p-value in pair-wise comparison of whole tissue

sections of adenoma (AD) and carcinoma (CA) samples.

Found at: doi:10.1371/journal.pone.0013091.s009 (0.07 MB

DOC)

Table S7 Significant KEGG pathways for comparing normal

colon samples with colonic neoplasms and adenomas with

adenocarcinomas in GSE4183 and GSE8671 datasets.

Found at: doi:10.1371/journal.pone.0013091.s010 (0.03 MB

XLS)

Table S8 Patient clinical characteristics and histopathology of

analyzed tissue samples.

Found at: doi:10.1371/journal.pone.0013091.s011 (0.18 MB

DOC)
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