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ABSTRACT In developing countries, the sweetpotato, Ipomoea batatas (L.) Lam. ð2n ¼ 6x ¼ 90Þ, is an important autopolyploid
species, both socially and economically. However, quantitative trait loci (QTL) mapping has remained limited due to its genetic
complexity. Current fixed-effect models can fit only a single QTL and are generally hard to interpret. Here, we report the use of a
random-effect model approach to map multiple QTL based on score statistics in a sweetpotato biparental population (‘Beauregard’ 3
‘Tanzania’) with 315 full-sibs. Phenotypic data were collected for eight yield component traits in six environments in Peru, and jointly
adjusted means were obtained using mixed-effect models. An integrated linkage map consisting of 30,684 markers distributed along
15 linkage groups (LGs) was used to obtain the genotype conditional probabilities of putative QTL at every centiMorgan position.
Multiple interval mapping was performed using our R package QTLPOLY and detected a total of 13 QTL, ranging from none to four QTL
per trait, which explained up to 55% of the total variance. Some regions, such as those on LGs 3 and 15, were consistently detected
among root number and yield traits, and provided a basis for candidate gene search. In addition, some QTL were found to affect
commercial and noncommercial root traits distinctly. Further best linear unbiased predictions were decomposed into additive allele
effects and were used to compute multiple QTL-based breeding values for selection. Together with quantitative genotyping and its
appropriate usage in linkage analyses, this QTL mapping methodology will facilitate the use of genomic tools in sweetpotato breeding
as well as in other autopolyploids.
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GENETIC analyses in polyploid species pose extra chal-
lenges in comparison with diploid species, in spite of the

evolutionary benefits that duplication of whole sets of
chromosomes may have brought (Comai 2005; Van de
Peer et al. 2009). When it comes to molecular markers, a
codominant, biallelic single nucleotide polymorphism
(SNP) directly informs on the genotypes of a diploid locus,
but the best it can do alone in a polyploid locus is to inform
on its allele dosage. In diploid species, molecular markers
are usually scored qualitatively, and there are several
methodologies and tools for performing linkage (e.g.,
Stam 1993; Margarido et al. 2007) and quantitative trait loci
(QTL) analyses (e.g., Broman et al. 2003; Da Costa E Silva
et al. 2012a). In allopolyploid species, such as cotton (Wu
et al. 2015) and wheat (Hulse-Kemp et al. 2015), where pref-
erential paring dictates meiotic chromosome behavior much
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like diploids, existing approaches can be readily applied.
However, despite many successful studies in diploids and
allopolyploids, QTL mapping in autopolyploids remains dif-
ficult. In fact, unlike diploid mapping populations, which can
have two to four segregating QTL genotypes (in case of in-
bred or outbred species, respectively), autopolyploid map-
ping populations can have a much wider range of possible
genotypes per locus. For example, there are up to 36, 400, or
4900 possible genotypes from crosses between two tetra-,
hexa-, or octoploid outbred parents, respectively.

Single-dose markers, segregating in a 1:1, 3:1, or 1:2:1
fashion, have limited information for building integrated
geneticmaps in autopolyploids, andgenerally result in either
separate parental maps (e.g., Shirasawa et al. 2017) or lim-
ited map integration (e.g., Balsalobre et al. 2017). In order
to make use of multiple-dose markers, the first step is to
perform dosage or quantitative SNP calling. Although most
methods were designed for tetraploid species (e.g., Voorrips
et al. 2011; Schmitz Carley et al. 2017), additional studies
have produced methods that can analyze data for higher
ploidy levels (Serang et al. 2012; Gerard et al. 2018). For
building integrated genetic maps in tetraploid species, one
can use the well-established TETRAPLOIDSNPMAP (Hackett
et al. 2016) as well as TETRAORIGIN (Zheng et al. 2016),
which also considers multivalent pairing. For higher ploidy
species, MAPPOLY (Mollinari and Garcia 2019) is a better
option than POLYMAPR (Bourke et al. 2018), because the
former has implemented a hidden Markov model (HMM)
general enough to analyze higher ploidy levels, whereas the
latter is limited to tetra- and hexaploid species, and lacks
HMM implementation to robustly map all multiple-dose
markers (see Mollinari et al. 2020). With an integrated
map, one can calculate the genotype conditional probabili-
ties of putative QTL, ideally using appropriate HMM
(Hackett et al. 2016; Mollinari and Garcia 2019). Based
on a polyploid model in Kempthorne (1955), a single-QTL
model, hereinafter referred to as fixed-effect interval map-
ping (FEIM), was proposed for autotetraploids (Hackett
et al. 2001, 2014), and later extended for autohexaploids
(van Geest et al. 2017).

For an even ploidy levelm, the FEIMmodel can be written
as

yi ¼ m9þ
Xm
j¼2

ajXij þ
X2m

j¼mþ2

ajXij þ ei (1)

where yi is the phenotypic value of individual i, m9 is the in-
tercept, aj is the additive effect of allele j, Xij is the conditional
probability of allele j in individual i, and ei is the residual
error. The constraints a1 = 0 and amþ1 ¼ 0 are naturally
imposed to satisfy the conditions

Pm
j¼1Xj ¼ m=2 andP2m

j¼mþ1Xj ¼ m=2, so that m9 is a constant that is hard to in-
terpret due to these constraints (Hackett et al. 2001, 2014).
Note that 2m22 additive allele effects need to be estimated,
i.e., tetra-, hexa-, or octoploid models will have 6, 10, or

14 main effects, respectively. In order to test whether the
additive allele effects are different from zero (the null hy-
pothesis), likelihood-ratio tests (LRT) are performed along
positions on a genetic map. Commonly, the tests are pre-
sented as “logarithm of the odds” (LOD scores), where
LOD ¼ LRT=½23 lnð10Þ�. In order to declare a QTL, empiri-
cal LOD thresholds are computed for each trait using per-
mutations (Churchill and Doerge 1994). This approach has
been used widely so far (e.g., Schumann et al. 2017; van
Geest et al. 2017;Massa et al. 2018). However, limitations in
fitting multiple-QTL models have been presented, due
mostly to the possibility of over-parameterization or the lack
of optimized algorithms for model selection (Mengist et al.
2018; Klaassen et al. 2019).

Variance component methods have been used for per-
forming QTL mapping in related individuals of complex
population structures or families in humans (Lippert et al.
2014), animals (Druet et al. 2008), and plants (Crepieux
et al. 2005). In common, these approaches take into ac-
count the flexibility of mixed models in dealing with the
correlated QTL genotype effects among individuals due to
shared alleles identical-by-descent (IBD) by each relative
pair at a particular location in the genome. Since a higher
ploidy level leads to a much larger number of allele com-
binations, genotypic effects may be very hard to assess
from the small population sizes usually available. In this
case, the integrated genetic map provides key information
on the inheritance of sets of chromosomal segments from
parents to progeny (Mollinari and Garcia 2019), making
up the basis for IBD-based additive relationship estima-
tion. If a locus is linked to a region underlying the variation
of a trait of interest, more shared alleles IBD for that locus
are expected among individuals with similar phenotypic
values (Almasy and Blangero 2010). Thus, the key param-
eters in this model are the variance components attribut-
able to putative QTL, which determine the presence of
linkage. Because only one parameter per QTL (the variance
component) needs to be estimated, one could try to build a
multiple-QTL model for polyploids, inspired by the corre-
sponding multiple interval mapping (MIM) for diploid map-
ping populations (Kao et al. 1999), without the risk of model
over-parameterization.

A multiple-QTL mapping approach is expected to in-
crease detection power, enable separation of linked QTL,
and provide the basis for studying QTL interaction (epis-
tasis). Thus, such a model may benefit several autopoly-
ploid horticultural (e.g., potato, blueberry, kiwifruit,
strawberry), ornamental (e.g., rose, chrysanthemum), for-
age (e.g., alfalfa, guinea grass), and field (e.g., sugarcane)
crops. The sweetpotato [Ipomoea batatas (L.) Lam.
ð2n ¼ 6x ¼ 90Þ] is a staple food in several developing
countries, with a production of 112 million tons world-
wide in 2017 (FAO 2019). Particularly, it has attracted
growing interest due to its characteristics for food and
nutrition security (Mwanga et al. 2017). In addition to
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carbohydrates, dietary fiber, vitamins, and minerals, or-
ange-fleshed sweetpotatoes provide high levels of
b-carotene to fight vitamin A deficiency in vulnerable pop-
ulations, such as those in sub-Saharan Africa (Low et al.
2017). In order to increase production and meet farmer’s
and market needs, it is imperative to make molecular-
assisted selection an effective part of sweetpotato breed-
ing programs. Toward this end, one of the first steps is to
characterize the genetic architecture of traits of interest,
such as those related to storage root yield and quality, and
resistance to biotic and abiotic stresses (Khan et al. 2016).
In spite of being considered an “orphan” crop, there have
been recent advances in building genome references from
its wild diploid relatives (Wu et al. 2018), optimizing a
genotyping-by-sequencing protocol (GBSpoly) for high-
throughput SNP genotyping (Wadl et al. 2018), and build-
ing a high-density integrated genetic map (Mollinari et al.
2020). In this paper, we introduce a random-effect multi-
ple interval mapping (REMIM) model for autopolyploids.
Using a genome-assisted, GBSpoly-based integrated ge-
netic map from a sweetpotato biparental population, we
map QTL for yield-related traits with our open-source soft-
ware, QTLPOLY.

Materials and Methods

Full-sib population

A bi-parental mapping population (named BT) comprising
315 individuals was developed by crossing an orange-fleshed
American variety, ‘Beauregard’ (CIP440132), and a nonorange-
fleshed African landrace, ‘Tanzania’ (CIP440166), as male
and female parents, respectively. The parents show con-
trasting phenotypes for several traits such as dry matter,
b-carotene and sugar content, and susceptibility to biotic
(e.g., virus disease) and abiotic (e.g., drought) stresses. ‘Beau-
regard’ is known as to have higher yield than ‘Tanzania’,
and the current QTL mapping study will focus on yield
components.

Phenotypic analyses

Field trials: In addition to the 315 full-sibs, parents (each
replicated twice) and another variety, ‘Daga’ (CIP199062.1),
were used as checks, making up a total of 320 individuals
per replication in an 80 3 4 alpha-lattice design. Virus-free
planting material derived from tissue culture was obtained
from the CIP-Peru Genebank in La Molina. The clones were
grown in a screen house in CIP substation San Ramon, and
the planting material multiplied under low-disease pressure
field conditions in Satipo, where cuttings for the six exper-
iments were obtained. Four experiments were conducted in
Ica (14�019 S and 75�449W, 420 m), with two independent
trials over two seasons, and one experiment each was con-
ducted in San Ramon (11�079 S and 75�219 W, 828 m) and
Pucallpa (8�239 S and 74�319 W, 154 m). The number of
replications were two at Ica and three at San Ramon and

Pucallpa. In all trials, 1 m and 0.3 m of inter- and intra-row
spacing was used, respectively. In the first season at Ica
(from 25 February to 29 June 2016), the plot size was
6 m2 of 16 plants arranged in four rows (4 plants per row)
with one empty row between plots. In the second season at
Ica (from 15 November 2016 to 17 March 2017), the plot
size was 4.8 m2 of 16 plants arranged in two rows (8 plants
per row) with no empty row between plots. In San Ramon
(from 14 May to 15 September 2016) and Pucallpa (from
1 July to 4 November 2016), the plot size was 9 m2 of
30 plants arranged in three rows (10 plants per row) with
no empty row between plots.

Phenotypic data: Eight yield-relatedphenotypes (seeFileS1)
were collected per plot at harvest, �120 days after trans-
planting. For analysis purposes, foliage and root yield data
were standardized by plot size (relative to the largest) and
converted to tons per hectare (t ha21) to allow comparisons
across trials. Number of roots was divided by the number of
plants in the plot. The total number of storage roots per plant
(TNR) and total root yield (RYTHA) considered all storage
roots from the whole plot regardless of their individual
weight. Number of commercial roots per plant (NOCR) and
commercial root yield (CYTHA) considered only storage
roots of marketable size ($100 g for African market). Num-
ber of noncommercial roots per plant (NONC) and noncom-
mercial root weight (NCYTHA) were obtained from the
difference between total and commercial roots. Foliage yield
(FYTHA) was measured by weighing all above-ground bio-
mass per plot. Finally, commercial index (CI) was calculated
as the ratio between CYTHA and total biomass (i.e., the sum
of RYTHA and FYTHA).

Multi-environment phenotypic model: We considered each
one of the six field trials as an environment. Jointly adjusted
means for each individual were obtained by using the follow-
ing mixed-effect model

yijkl ¼ mþ el þ rkðlÞ þ bjðklÞ þ gi þ geil þ eijkl (2)

where yijkl is the phenotypic observation of the ith genotype
in the jth block within the kth replicate at the lth environ-
ment, m is the overall mean, el is the random effect of the lth

environment (l ¼ 1; . . . ; L; L ¼ 6) with el � Nð0;s2
e Þ, rkðlÞ is

the random effect of the kth replicate (k ¼ 1; . . . ;K;
K ¼ 2 or 3 depending on the environment) at the lth en-
vironment with rkðlÞ � N ð0;s2

r Þ, bjðklÞ is the random effect
of the jth block (j ¼ 1; . . . ; J; J ¼ 80) within the kth replicate
at the lth environment with bjðklÞ � N ð0;s2

bÞ, gi is the fixed
effect of the ith genotype (i ¼ 1; . . . ; I; I ¼ 318), geil is the
random effect of genotype-by-environment (G 3 E) inter-
action with geil � Nð0;s2

geÞ, and eijkl is the random residual
error with eijkl � Nð0;s2

l Þ (i.e., environment specific
variances). Variance components were estimated by re-
stricted maximum likelihood (REML) using ASREML-R
(v4.1; https://www.vsni.co.uk/software/asreml-r).
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Mean-basis broad-sense heritabilities (H2) were approxi-
mate as the ratio between genotypic and phenotypic vari-
ances as

H2 ¼ s2
g

s2
g þ

s2
ge
L þ s2

e
�KL

where s2
g is the variance component associated with the gi

term from Equation 2 when treated as a random effect, i.e.,
gi � Nð0;s2

gÞ, s2
e is the variance component associated with

the residual error but with a common variance for all envi-
ronments, i.e., eijkl � Nð0;s2

e Þ, and �K ¼ 2:25 is the harmonic
mean of the number of replicates across environments.

Finally, Pearson’s correlations (significance *P , 0.05,
**P , 0.01 and ***P , 0.001) were computed among the
individual adjusted means.

Genotypic analyses

GBSpoly and dosage calling: AmodifiedGBS protocol called
GBSpoly was carried out according to Wadl et al. (2018) and
described in detail for the BT population by Mollinari et al.
(2020). In brief, total DNA was extracted and double
restricted using a CviAII-TseI enzyme combination for all
full-sibs and parents (each parent replicated 10 times). Re-
striction fragments were ligated to adapters, size selected,
and amplified. Adapters contained an 8-bp buffer sequence
in addition to sample-specific variable length barcodes (6–
9 bp). Each 64-plex library was sequenced using eight lanes
of an Illumina HiSeq 2500 system in order to ensure optimal
read depth for dosage calling. We trimmed the 8-bp buffer
sequence from the reads using the FASTX-TOOLKIT (available
at hannonlab.cshl.edu/fastx_toolkit/). A modified version of
TASSEL-GBS pipeline (v4.3.8), called TASSEL4-POLY (Pereira
et al. 2018, available at https://github.com/gramarga/tassel4-
poly) was used to demultiplex and to count and store the
actual read depth for all loci in variant call format (VCF) files.
We used BOWTIE2 (Langmead and Salzberg 2012) to align
64-bp tags against the I. trifida and I. triloba genomes, two
sweetpotato wild relative diploid species (Wu et al. 2018,
available at http://sweetpotato.plantbiology.msu.edu). Fi-
nally, the software SUPERMASSA (Serang et al. 2012, available
at https://bitbucket.org/orserang/supermassa) was used to
performmulti-threading dosage call through a wrapper func-
tion named VCF2SM (Pereira et al. 2018, available at https://
github.com/gramarga/vcf2sm).

Linkage mapping: A linkage map was constructed by
Mollinari et al. (2020) using the R package MAPPOLY

(Mollinari and Garcia 2019, available at https://github.
com/mmollina/mappoly; see File S2). In brief, we com-
puted two-point recombination fractions between all
38,701 nonredundant, high quality GBSpoly-basedmarkers,
and sorted the most likely linkage phase between each
marker pair. Markers were then grouped into 15 linkage
groups (LGs) by using the Unweighted Pair Group Method

with Arithmetic Mean (UPGMA) hierarchical clustering
method. For each LG, large-scale ordering was obtained
using multidimensional scaling as implemented in the R
package MDSMAP (Preedy and Hackett 2016), and then
small-scale ordering was refined based on the reference ge-
nomes (see details in Mollinari et al. 2020). Map distances,
computed using Haldane’s map function, were re-estimated
based on the individual posterior probabilities from SUPER-
MASSA dosage calls. The final integrated, completely phased
map was composed of 30,684 markers distributed along
15 LGs with a total length of 2708.3 centiMorgans (cM)
and no major gaps between markers (11.3 markers every
cM, on average). Multi-point genotype conditional proba-
bilities of putative QTL were estimated for every individual
given the final map using an HMM algorithm (Lander and
Green 1987; Jiang and Zeng 1997) adapted for polyploids
(Mollinari et al. 2020) as implemented in MAPPOLY. Since
17 full-sibs were filtered out along the map construction
(Mollinari et al. 2020), only the remaining 298 individuals
were ultimately used for QTL mapping.

QTL mapping analyses

Under random bivalent pairing, an autopolyploid individual

of a species with an even ploidy levelm can produce
�

m
m=2

�
,

or “m choose m=2”, different gametes with the same proba-
bility, and a cross between two individuals can generate

p ¼
�

m
m=2

�2

different genotypes. As an example, consider

two contrasting parents, A and B, of a hexaploid species (such
as sweetpotato) and their respective genotypes for a QTL as
abcdef and ghijkl, each one with potentially six different al-
leles. As each parent can produce 20 different gametes, the
cross A3 B would generate p ¼ 202 ¼ 400 possible different
genotypes. The model detailed next can be adapted easily to
any polyploid species with an even ploidy level by simply
changing p accordingly, e.g., p ¼ 62 ¼ 36 for autotetraploid
and p ¼ 702 ¼ 4,900 for autooctoploid full-sib families.

REMIM model and hypothesis testing: Taking a full-sib
population with n individuals derived from a cross between
two hexaploid parents, A and B, the multiple-QTL mapping
model is expressed by

y ¼ 1mþ
XQ
q¼1

Zquq þ e (3)

where y is the n31 vector of phenotypic values (in our case,
the jointly adjustedmeans from the phenotypic analysis),m is
the fixed effect of population mean, uq is the p31 random
vector of additive genetic values of QTL q ðq ¼ 1; . . . ;QÞwith
uq � Nð0;Ps2

qÞ, and e is the n31 random vector of residual
error with e � Nð0; Is2Þ. 1 and I are an n31 vector of 1’s and
an n3n identity matrix, respectively, Zq is the n3p incidence
matrix of genotype conditional probabilities of QTL q, andP

is a p3p additive relationship matrix between the p possible
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QTL genotypes. This matrix is fixed for a given ploidy level,
and, for a hexaploid species,P cells assume one out of seven
different values (Pjj9¼ f0=6; 1=6; 2=6; 3=6; 4=6; 5=6; 6=6g
with j; j9 ¼ f1; . . . ; pg), depending on how many alleles IBD
are shared between two genotypes. For example, the geno-
type pair abcghi-defjkl shares 0 out of 6 alleles, hence
Pjj9¼ 0=6, whereas abcghi-abcghi shares 6 out of 6 alleles,
hence Pjj9¼ 6=6.

Assuming that the random-effect QTL are uncorrelated,
each with expectation zero, the expectation of the vector of
phenotypic values y is

EðyÞ ¼ 1m

and its variance-covariance matrix is

VarðyÞ ¼ V ¼
XQ
q¼1

Gqs
2
q þ Is2

where Gq ¼ ZqPZq9 is the n3n additive relationship matrix
between the n individuals on the putative QTL q, and s2

q and
s2 are the respective variance components associated with
QTL q and the residual error. In other words, eachGq cellGii9ðqÞ
ranges from 0 to 1, as the result of the sum over the prod-
ucts of QTL genotype probabilities, ZijðqÞ ¼ PrðGijðqÞjmapÞ
and Zi9j9ðqÞ ¼ PrðGi9j9ðqÞjmapÞ, from Zq of a sib-pair i and
i9 ði; i9 ¼ f1; . . . ; ngÞ, weighted by the proportion of shared
alleles IBD Pjj9 from P between each pair of possible geno-
types j and j9 ðj; j9 ¼ f1; . . . ; pgÞ, i.e.

Gii9ðqÞ ¼
Xp
j;j9¼1

Pr
�
GijðqÞ

��map
�
Pr
�
Gi9j9ðqÞ

��map
�
Pjj9

¼
Xp
j;j9¼1

ZijðqÞZi9j9ðqÞPjj9

If the respective genotypes j and j9 of two sibs i and i9,
GijðqÞ and Gi9j9ðqÞ, are observed with certainty, computing
pairwise additive relationship is straightforward, e.g.,
PrðGi1ðqÞ ¼ abcghijmapÞ ¼ 1 and PrðGi92ðqÞ ¼ abcghjjmapÞ ¼
1, hence Gii9ðqÞ ¼ 5=6. However, if the probability of the ge-
notype of i is split in two, e.g., PrðGi1ðqÞ ¼ abcghijmapÞ ¼ 1=2
and PrðGi2ðqÞ ¼ abcghjjmapÞ ¼ 1=2, then Gii9ðqÞ ¼ 1=2 � 1�
5=6þ 1=2 � 1 � 6=6 ¼ 5:5=6. It is interesting to note that, if
Gq is averaged out for all map positions, Gii9 � 1  "  i ¼ i9 (an
individual with itself), and Gii9 � 1=2  "  i 6¼ i9 (any sib pair),
consisting of the realized additive relationship matrix.

Here, our interest is in testing

H0 : s2
q ¼ 0  vs: Ha : s2

q .0

i.e., whether QTL q contributes to the variation in y or not, so
that several tests have to be performed along the genome. As
part of the algorithm described next, we test for the presence
of multiple QTL in consecutive rounds. In practice, we com-
pute and store a Gq matrix for every putative QTL q,

representing genomic positions at a certain step size (e.g.,
every 1 cM). In this case, Equation 3 can be rewritten as

y ¼ 1mþ
XQ
q¼1

gq þ e (4)

where gq is an n31 random vector of the individual breeding
values on the QTL qwith gq � Nð0;Gqs

2
qÞ. Notice how Equa-

tion 3 and 4 are closely connected. At the QTL peak q, uq
(Equation 3) are the best linear unbiased prediction (BLUP)
values of the pQTL genotype effects, whereas gq (Equation 4)
are the BLUP values for the n full-sibs, i.e., the individual
breeding values based on the additive allele effects. There-
fore, the QTL-based breeding values ĝq are equivalent to
those from Zqûq. These alternatives forms are conveniently
used in different contexts of QTL detection and characteriza-
tion, as described next. While Equation 4 is preferred in order
tomake themultiple-QTLmodel selection less computational
intensive because the storedGq can be used recursively, Equa-
tion 3 is used to describe the QTL genotype effects, which are
ultimately used to compute additive allele effects.

We computed linear score statistics according to Qu et al.
(2013) at every position and compared its P-value with a
prescribed critical value, as part of the algorithm used to de-
clare QTL as described in the next section. In order to com-
pute the test statistics, we assume that y has normal
distribution, i.e., y � Nð1m;VðtÞs2Þ, with the variance com-
ponents of QTL q rescaled in relation to s2 as s2

q ¼ s2tq, so
that

VðtÞ ¼ Grtr þ
X
q6¼r

Gqtq þ I

where r is the putative QTL being tested in a model with
q ¼ 1; . . . ; r; . . . ;QQTL and t ¼ ðtr; tðQ21ÞÞ9. Using this form,
the hypothesis testing becomes H0 : tr ¼ 0  vs: Ha : tr . 0,
and tðQ21Þ components are regarded as nuisance parameters.
The other nuisance parameters m and s2 are removed when
writing the log REML profiled function

ℓðtÞ} 2
1
2

n
~nlog

h
~y9~VðtÞ21~y

i
þlog

h���~VðtÞ���io

from the restricted parameterization of ~y ¼ Ay, in which A
is an ~n3 n matrix ð~n ¼ n2 1Þ, such that A1 = 0 and
AA9 ¼ I~n (Qu et al. 2013). Accordingly, it follows that
~y � Nð0; ~VðtÞs2Þ, with ~VðtÞ ¼ ~Grtr þ

P
q 6¼r

~Gqtq þ I~n and
~Gq ¼ AGqA9. Based on ℓðtÞ, the score function of tr is given
by SrðtÞ ¼ @ℓ=@tr, i.e.

SrðtÞ[
~n
2
~y9~VðtÞ21~Gr~VðtÞ21~y

~y9~VðtÞ21~y
2

1
2
tr
h
~VðtÞ21~Gr

i

(Qu et al. 2013).
On the one hand, when there is only one QTL ðr ¼ Q ¼ 1Þ,

i.e., t̂0 ¼ t̂r ¼ 0 underH0, Sr (0) is the exact (nonasymptotic)
test statistic. On the other hand, amoment-based approximation
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to the null distribution is used when two or more QTL are
present in the model (Q. 1), i.e., t̂0 ¼ ð0; t̂ðQ21ÞÞ9 under H0

(Qu et al. 2013). The validity of the moment-based approx-
imation was assessed through simulations, as suggested by
Qu et al. (2013). In any case, large score value indicates de-
parture from H0. The P-values associated with the linear
score test are continuous over the unit interval as a result
of weighted sums of the scores from the profiled likeli-
hood. Herein, we conveniently take the “logarithm of P” as
LOP ¼ 2 log10ðPÞ for graphic representation and supporting
interval calculation purposes. Support intervals are defined
as the QTL peak neighboring region with LOP greater than, or
equal to, LOP2d, where d is a constant that subtracts the
highest LOP (thus from the QTL peak) in that region, as
similarly proposed for the LOD score statistics (Lander and
Green 1987).

QTL detection and characterization: In order to select QTL,
we adapted the MIM methodology described by Kao et al.
(1999) to a random-effect model framework as follows:

1. Forward search adds one QTL at a time to the model at the
position with the highest score statistic if the P-value is
smaller than a genome-wide significance threshold level
(e.g., a=0.20), and fits it into the model. Consecutive
rounds of search for a new QTL are carried out condition-
ing to the one(s) in the model until no more QTL positions
can reach the threshold. A window size (e.g., of 20 cM) is
avoided on either side of QTL already in the model when
searching for a new QTL;

2. Model optimization follows rounds of position refinement
and backward elimination when no more QTL can be
added in the forward search step. In turn, a QTL position
is updated conditional to all the other QTL in the model,
and its score statistic is re-evaluated at a more stringent
significance threshold level (e.g., a=0.05), when the QTL
may be dropped. The final set of QTL is defined when all
selected positions are significant, and, thus, no more po-
sitions change or QTL are dropped;

3. Forward search (now with a threshold value as stringent
as the one used for backward elimination, e.g., a=0.05) as
well as model optimization procedures are repeated until
no more QTL are added (via forward search) or dropped
(via backward elimination). Finally, QTL profiling is per-
formed with the remaining significant QTL after the last
round of model optimization has been carried out. The
score statistics and their associated P-values are computed
for all genomic positions conditional to the final set of
QTL.

Notice that, as part of the strategy for selecting QTL, we
were less stringent during the first step of forward search, so
that we were able to allow more positions to be tested again
during model optimization. In fact, power for detecting sig-
nificant positions is expected to increase when conditioning
the forward search as well as the backward elimination to
other QTL already in the model (Da Costa E Silva et al.

2012a). For the forward search performed after the first back-
ward elimination, we used the last threshold set from the
backward elimination in order to avoid false positives. Here,
we adopted the score-based resampling method to assess the
genome-wide significance level proposed by Zou et al.
(2004). In brief, n independent samples from a standard
normal distribution were used to obtain the score statistic
for every map position under evaluation (e.g., every 1 cM)
and the P-value of the highest score was stored. After repeat-
ing thisN=1000 times (resampling), the score-based thresh-
old for a significance a level was then defined from the
100(12a) percentile of ascending ordered P-values from
the N samples.

Once theQTLwere selected,wewere able to estimate their
variance components and compute QTL heritabilities, h2q , as
the ratio between the QTL variance component and total
variance. Given the parameter estimates, QTL-based breed-
ing values are directly obtained as the BLUPs of the QTL
genotypes (i.e., the vector ûq) from Equation 3. BLUPs of
the p = 400 possible genotypes were further decomposed
in order to compute the additive effects as the average of
ûq (BLUPs) containing the respective alleles. Note that, in
an F1 population, the allele substitution effects (the very def-
inition of additive effects) can be assessed only among alleles
within each parent. Due to the model assumptions of zero
mean for random effects, additive allele effects sum up to
zero. These effects should be interpreted as the heritable
contributions from parent to offspring, hence providing
straightforward estimation of QTL-based breeding values to
be used for selection.

Simulations

We conducted the following simulation study to examine the
performance of REMIM (Equation 4) and compare it with
FEIM (Equation 1). We simulated quantitative traits with
three QTL each (q ¼ 1; . . . ;Q; Q ¼ 3) positioned along the
BT linkage map (Mollinari et al. 2020, n = 298; see File S2)
according to three scenarios (1000 simulations each): (i) un-
linked, where all QTL were positioned in different LGs each;
(ii) random, where each QTL was positioned randomly, but
no closer than 20 cM from each other in case of being
assigned to the same LG; and (iii) linked, where at least
two QTL were positioned in the same LG, but no closer than
50 cM from each other. The QTL heritabilities were simulated
as h2q ¼ f0:3; 0:2; 0:1g following their respective QTL ge-
notype effect distributions as gq � Nð0;Gqs

2
qÞ, where

s2
q ¼ f0:75; 0:50; 0:25g. The environmental error was simu-

lated from a standard normal distribution ðs2 ¼ 1Þ, while the
population mean was simulated as zero ðm ¼ 0Þ.

One round of forward search followed by model optimiza-
tion (steps 1 and 2 from the algorithm described above) was
carried out for each simulated trait using different genome-
wide significance forward ða ¼ 0:20Þ and backward
ða ¼ f0:15; 0:10; 0:05; 0:01gÞ P-value thresholds based on
the score-based resampling method (Zou et al. 2004). For
comparison, we ran FEIM (Equation 1) with the same
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simulated traits using different genome-wide significance
LOD thresholds ða ¼ f0:20; 0:15; 0:10; 0:05; 0:01gÞ based
on 1000 permutations (Churchill and Doerge 1994). We also
stored the error vectors used to add noise to each simulated
phenotype, and ran FEIM and REMIM models again, now
using the respective error vectors as offset variables, which
simply subtract the error from its respective phenotype. In
this case, we expected that both FEIM and REMIM models
would perform similarly, since all the noise had been con-
trolled, so that the only variation left was thus due to the
QTL. We used the same step size of 2 cM as well as the same
window size of 20 cM for both models. LOP2d (from
REMIM) and LOD2d (from FEIM) support intervals were
calculated for three different d values ðd ¼ f1:0; 1:5; 2:0gÞ.

Following the definitions and summary statistics from Da
Costa E Silva et al. (2012b), all QTL kept after model optimi-
zation were considered “mapped.” A mapped QTL was con-
sidered “paired” if ,20 cM apart from the simulated
position, and a paired QTL was considered “matched” (true
QTL) if its support interval included a simulated QTL. Finally,
a mapped QTL was considered “mismatched” (false QTL) if it
was not matched. We summarized detection power and em-
pirical false discovery rate (FDR) for each support interval.
Power was calculated as the ratio between the number of
matched QTL over the total number of simulated QTL. FDR
was estimated as the ratio between the number of mis-
matched QTL over the total number of mapped QTL. The
absolute distance differences between simulated and mapped
positions of paired QTL (precision) were averaged out. The
proportion of matched QTL over the total number of paired
QTL as an approximation of support intervals (coverage) was
provided for each d value.

Software implementation

We implemented the algorithm for detection and character-
ization of multiple QTL based on the REMIM model in an R
package called QTLPOLY (available at https://github.com/guil-
herme-pereira/qtlpoly). We integrated functions from the R
package VARCOMP (v0.2-0; Qu et al. 2013) to compute the score
statistics. The rounds of QTL search and model optimization
use the variance components estimated in the previous round,
so that the new estimates iterate faster. In addition, calcula-
tions for different genomic positions were paralleled in order
to speed up the process by using the R base package PARALLEL

(v3.5.2; R Core Team 2019). Final models were fitted using
the R package SOMMER (v3.6; Covarrubias-Pazaran 2016), from
which BLUPs were extracted and used for the computation of
additive allele effects and QTL-based breeding values. Both
VARCOMP and SOMMER packages use REML estimation to com-
pute the variance components from the random-effect QTL
model. Functions for plotting QTL profiles, effects and support
intervals were based on GGPLOT2 (v3.1.0; Wickham 2016). Ad-
ditional functions for running FEIMmodel andmulti-threaded
permutations were included in QTLPOLY andwere based on the
lm() function from R base package STATS (v3.5.2; R Core Team
2019).

Gene expression profiling

A developmental time-course gene expression profiling data
of ‘Beauregard’ (NCBI BioProject PRJNA491292) was report-
ed previously (Wu et al. 2018), and a parallel time-series of
development with ‘Tanzania’ (NCBI BioProject PRJNA549660)
roots was recently analyzed, including identification of dif-
ferentially expressed genes (Gemenet et al. 2020). In brief,
‘Beauregard’ and ‘Tanzania’ roots were harvested from four
biological replicates at 10, 20, 30, 40, and 50 days after trans-
planting (DAT), and 30, 40, and 50 DAT roots were classified
into fibrous and storage roots based on diameter as described
by Wu et al. (2018). RNA-sequencing (RNA-seq) datasets
from both genotypes were generated and processed as de-
scribed previously (Lau et al. 2018), with the one exception
that the ‘Tanzania’ 30 DAT storage root sample was sub-
sampled for 30 million reads. Differentially expressed genes
were determined as described in Gemenet et al. (2020) using
DESEQ2 (v1.22.2; Love et al. 2014) with a log2 fold-change
(lfc) threshold of 2 and an adjusted P-value cutoff of 0.01,
based on the fragments per kilobase exon model per million
mapped reads (FPKM). To provide a comparison of expres-
sion abundances in the roots to leaves, ‘Beauregard’ and ‘Tan-
zania’ plants were grown as described in Lau et al. (2018) for
control conditions and RNA-seq libraries from leaves pro-
cessed as described above.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fullywithin
the article. Raw RNA-seq reads are available at NCBI under
BioProject numbers PRJNA491292 and PRJNA549660. Raw
GBSpoly reads and VCF files are available via Mollinari et al.
(2020). File S1 contains phenotypic data. File S2 contains ge-
netic map information used in this study (also available via
Mollinari et al. 2020). File S3 is the raw expression abundance
matrix (also available via Gemenet et al. 2020). File S4 is the
log2 FPKM expression matrix (also available via Gemenet et al.
2020). File S5 contains the differentially expressed genes asso-
ciated with this study. MAPPOLY software used for linkage
mapping analyses is available at GitHub (https://github.
com/mmollina/mappoly). QTLPOLY software used for QTL
mapping analyses and simulations is available at GitHub
(https://github.com/guilherme-pereira/qtlpoly). Supple-
mental material available at figshare: https://doi.org/
10.25386/genetics.12246134.

Results

Trait heritabilities and correlations

Each one of the eight yield-related traits from six environ-
ments were analyzed using amulti-environmentmixed-effect
model, from which we were able to obtain jointly predicted
means for each full-sib and variance component estimates
(Table 1). Parents showed contrasting means for all traits,
with ‘Beauregard’ presenting higher means for number of
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roots and root yield (both commercial and noncommercial)
and commercial index when compared to ‘Tanzania’, which
surpassed ‘Beauregard’ only for foliage yield. Interestingly,
transgressive segregation was observed among the full-sibs
for all traits, with emphasis on several individuals, with
CYTHA higher than the most productive parent. Broad-sense
heritabilities (H2) were generally high, ranging from 70.39%
(NCYTHA) to 88.42% (CI). Correlations between the pre-
dicted means were also estimated (Figure 1). Low to non-
significant correlations (from 20.04 to 0.16**) were
observed between FYTHA and root yield traits. The highest
correlation (0.99***) was between CYTHA and RYTHA,
which was expected, since most RYTHA is derived from
CYTHA. Among the traits used for CI calculation, CYTHA also
had the highest correlation with CI (0.78***), likely because
it is its main component. TNR components were also highly
correlated with TNR, namely NOCR (0.89***) and NONC
(0.86***). Finally, NOCR and NONC turned out to be highly
correlated with CYTHA (0.81***) and NCYTHA (0.86***),
respectively.

Mapping QTL in the BT population

Simulations: The BT linkage map based on 298 F1 progenies
was used to simulate 1000 quantitative traits with three QTL
each.We ran FEIM (Equation 1) and REMIM (Equation 4) for
each simulated trait in order to assess their power and em-
pirical FDR in three increasingly difficult scenarios.We notice
that the proportions of mapped QTL paired to the simulated
positions with the highest heritability ðh21 ¼ 0:3Þwere similar
regardless of the method and criterion. However, higher pro-
portions of simulated QTL with low heritability ðh23 ¼ 0:1Þ
were consistently mapped under the multiple-QTL mapping
approach (see Supplemental Material, Table S1). In general,
the average absolute difference between the simulated and
mapped QTL peak location did not differ whatsoever when
comparing models or thresholds. For REMIM, different ge-
nome-wide a level forward thresholds did not impact power
or FDR (results not shown), but varying a level backward
thresholds was critical. From testing different d values for
LOD2d and LOP2d, we learned that d = 1.5 was a good
approximation of 95% support interval for both FEIM and

REMIM (see Table S2). Based on results for such a support
interval, Figure 2 compares different threshold criteria for
declaring a QTL during FEIM and REMIM (for forward
a=0.20 threshold). On the one hand, both FEIM and REMIM
have shown a relative control of FDR, with ,15% of false
discoveries for most a levels, regardless of scenario. On the
other hand, power differed in up to �18% when comparing
different a levels that delivered ,10% FDR. Such a drop in
detection power is more noticeable when FEIM is dealing
with linked QTL, whereas power barely changes for REMIM
across scenarios. Interestingly, even with the most stringent
criteria of a=0.01 backward threshold for REMIM, we were
able to map as many QTL as using a=0.20 for FEIM, but with
better FDR control (�7% for REMIM in comparison to.15%
for FEIM). By fitting the model without the simulated resid-
ual error in the “unlinked” scenario, we observed �92%
power for FEIM. The small difference in comparison to
�100% power for REMIM is likely due to the fact that the
QTL genotype effects were simulated based on the REMIM
additive relationshipmodel (Equation 4). Despite the relative
bias, FEIM failure in separating linked QTL became more
evident in the “random” and “linked” scenarios. As a conse-
quence, detection power plateaus �87% and 66% were ob-
served, while REMIM exhibited �100% power (Figure 2).

Yield-related traits: We adopted genome-wide a levels of
0.20 and 0.05 as the respective forward and backward
thresholds for detecting QTL in eight yield-related traits in
the BT population using REMIM (Equation 4), such that re-
spective resampling-based P-value thresholds were defined
as 5.8331024 and 1.4231024. In total, 13 QTL were identi-
fied (Figure 3), with P-values ranging from 1.4231027 (QTL
2 for TNR) to 1.3731024 (QTL 2 for NOCR) (Table 2). The
number of QTL per trait ranged from one (CYTHA, RYTHA
and FYTHA) to four (NONC and TNR); NOCR had two QTL,
and no QTL were found for NCYTHA and CI. Four LG har-
bored QTL regions: LGs 1, 3, and 10 harbored three QTL
each, and LG 15 harbored four QTL. Approximate 95% sup-
port intervals computed as LOP21.5 (see Figure S1) showed
that QTL were colocalized mostly within each LG. QTL peaks
for NOCR, NONC, and TNR can be found from 137.60 to

Table 1 Phenotypic analysis summary of eight yield-related traits from ‘Beauregard’ 3 ‘Tanzania’ (BT) full-sib family

NOCR NONC TNR CYTHA NCYTHA RYTHA FYTHA CI

�B 2.881 1.934 4.834 12.567 2.208 15.318 15.521 0.472
�T 0.990 0.763 1.598 4.793 0.869 5.730 41.144 0.107
�F1 2.840 1.971 4.795 17.739 2.247 19.980 22.994 0.420
min(F1) 1.388 0.513 1.822 6.000 0.572 6.658 13.801 0.140
max(F1) 4.494 4.184 7.947 34.226 4.817 37.106 36.880 0.605
s2
g 0.386 0.277 1.117 27.611 0.313 31.568 23.677 5.8831023

s2
ge 0.272 0.213 0.571 17.028 0.310 18.538 34.451 2.3031023

s2 0.686 0.559 1.462 32.271 1.082 35.098 50.836 5.2331023

H2 (%) 80.07 78.31 84.59 84.08 70.39 84.73 71.35 88.42

Parental (�B and �T) and progeny ð�F1Þ means, minimum, and maximum F1 means, and genetic ðs2
gÞ, genotype-by-environment interaction ðs2

geÞ and residual ðs2Þ variance
components and heritability (H2) estimates are shown for eight traits: number of commercial (NOCR), noncommercial (NONC) and total (TNR) roots per plant, commercial
(CYTHA), noncommercial (NCYTHA) and total (RYTHA) root yield in t ha21, foliage yield (FYTHA) in t ha21, and commercial index (CI)
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142.07 cM on LG 1, and from 13.11 to 20.18 on LG 3. On LG
15, QTL peaks were localized either at 67.20 and 78.04 cM
for NONC and TNR, respectively, or at 5.34 cM for both
CYTHA and RYTHA. QTL variance ðs2

qÞ and heritability ðh2qÞ
estimates from Equation 3 are shown in Table 2, where the
subscript q denotes the QTL number for a specific trait. QTL
heritabilities ranged from 8.99 (QTL 3 for TNR) to 22.04%
(QTL 2 for TNR), representing the proportion of the total
variance explained by that QTL, conditional to all the other
QTL in the model. Out of 13 QTL, 4 were considered major
QTL ðh2q . 15%Þ, which happened as pairs of colocalized QTL
at the beginning of LGs 3 for NOCR/TNR and 15 for RYTHA/
CYTHA (see Figure S2). Altogether, multiple QTL explained
as much as 35.63%, 49.19%, and 55.06% of the total vari-
ance for NOCR, NONC, and TNR, respectively. In order to
compare these QTL detection results with FEIM, we adopted
an a=0.05, so that permutation-based LOD score thresholds
ranged from 7.63 to 7.85, depending on the trait (see Figure
S4). A total of 12 QTL were mapped (see Table S3): one for
each CYTHA, RYTHA, and FYTHA; two for NOCR; three for
TNR; and four for NONC. No QTL were found for NCYTHA
and CI either. The same four LGs harbored QTL: LGs 1 and
10 had twoQTL each, LG 3 had three and LG 15 had five QTL,

with the most significant QTL (adjusted R2 . 11) found on
LGs 1, 3, and 15. In comparison with REMIM, FEIM did not
detect QTL for NONC or TNR on LGs 1 and 10, respectively.
Instead, it allowed twoQTL on LG 15 for NONC (one at 56.86
cM and another at 119.08 cM).

From REMIM, additive allele effects (see Table S4) were
derived from the QTL genotype BLUPs (Equation 3). In gen-
eral, although both parents have shown allele contributing to
either decreasing or increasing the trait means, ‘Beauregard’
seemed to contribute more, increasing the number of roots,
while ‘Tanzania’ exhibited major alleles increasing root yield.
These effects represent the parental contributions to the pop-
ulation mean, i.e., how much one adds to, or subtracts from,
the mean, given 1 of the 400 possible genotypes. For in-
stance, Figure 4 shows the additive allele effects of QTL
1 for CYTHA. Inferences on which alleles contribute more
to the mean as well as which ought to be selected for breed-
ing purposes are straightforward. For example, individuals
with the haplotypes b from ‘Beauregard’ and i from ‘Tanza-
nia’, and without the haplotypes c and j through l from the
respective parents will have the highest QTL-based breeding
value estimates for CYTHA. By computing QTL-based breed-
ing values, we could hypothesize on the genetic basis of

Figure 1 Pearson’s correlations
(**P , 0.01, ***P , 0.001) among
predicted means of eight yield-re-
lated traits from ‘Beauregard’ 3
‘Tanzania’ (BT) full-sib family. Trait
abbreviations: number of commer-
cial (NOCR), noncommercial (NONC)
and total (TNR) roots per plant, com-
mercial (CYTHA), noncommercial
(NCYTHA), and total (RYTHA) root
yield in t ha21, foliage yield (FYTHA)
in t ha21, and commercial index (CI).
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trait correlation (see Figure S3). For instance, NOCR and
NONC were highly correlated (0.51***) given a couple of
colocalized QTL. While TNR is significantly correlated to
NOCR/NONC (.0.76***), smaller correlation was ob-
served between TNR and CYTHA/RYTHA (,0.15*). Inter-
estingly, QTL-based breeding values for FYTHA did not
seem to correlate to any other root-related trait. Finally,
the absolute positive correlation of 1.00*** between pre-
dicted means from CYTHA and RYTHA (Figure 1) could
be explained by a single colocalized QTL, since the correla-
tion between QTL-based breeding values was also very high
(0.99***).

Candidate genes underlying major QTL

We elected to examine putative candidate genes under two
QTL with the highest heritabilities: the QTL for TNR on LG
3 (colocalized for NOCR and NONC) and the QTL for
CYTHA on LG 15 (colocalized for RYTHA). The QTL peak
on LG 3was positioned at 1,591,872 bp relative to I. trifida
genome (see Table S5), and 75 genes were found within a
�500-kb window around this peak. Examination of func-
tional annotation of these genes, coupled with expression
profiles in leaves, as well as a time course of developing
roots in both ‘Beauregard’ and ‘Tanzania’ (Gemenet et al.
2020) (see File S3, File S4), revealed three candidate
genes of interest (see Figure S5). The first I. trifida gene,
itf03g02930, encodes a homolog of SKU5, a glycosyl phos-
phatidylinositol modified protein in Arabidopsis thaliana;
the second candidate gene, itf03g03280, encodes a protein
with sequence similarity to annexin (ANN1 and ANN2); and
the last candidate gene, itf03g03460, encodes a protein

similar to theWUSCHELhomeobox family protein (AtWOX13).
In general, these genes were expressed at a low level in
leaves, but highly in roots. Six additional genes were found
to be differentially expressed in ‘Beauregard’ storage roots
relative to fibrous roots across the time course, while only a
single gene was differentially expressed in ‘Tanzania’ (see
File S5).

On LG 15, a major QTL for CYTHA, with the peak at
477,772 bp, spanned positions from 21,822 to 1,915,814 bp
(see Table S5) and over 300 genes. As this was too large a
distance tomanually curate candidategenes responsible for the
trait, we restricted our manual review to 25 genes distal and
proximal to themost significantmarker.Within this region, two
genes encoded functions that may be associated with storage
root development and had expression profiles that supported a
role in storage root development (see Figure S5, File S3, File
S4).Thehormoneethylenehasdiverseroles incellproliferation
and elongation, and the itf15g01020 gene encodes a protein
with similarity to the A. thaliana CONSTITUTIVE TRIPLE RE-
SPONSE 1 gene (CTR1) with functions in the ethylene signal-
ing pathway. This gene was expressed in leaves but expressed
at twice the levels in developing roots. Storage roots are grown
for their high starch content, and itf15g01120 encodes a pro-
tein with similarity to starch branching enzyme 2.2. This gene
was expressed in leaves and roots with the highest expression
levels detected in storage, not fibrous nor developing roots.
Analysis of differentially expressed genes in storage vs. fibrous
roots of ‘Beauregard’ and ‘Tanzania’ within this QTL region
revealed 39 unique differentially expressed genes in ‘Beaure-
gard’ across the time course, and 12 unique differentially
expressed genes in ‘Tanzania’ (see File S5).

Figure 2 Detection power (in percentage) vs. empirical false discovery rate (FDR, in percentage) from QTL mapping analyses of simulated traits in
‘Beauregard’ 3 ‘Tanzania’ (BT) full-sib family. Each trait was simulated with three QTL ðq ¼ f1; 2;3gÞ with different heritabilities ðh2q ¼ f0:3;0:2;0:1gÞ
positioned along the BT linkage map (n = 298). At least two out of three QTL were linked or not depending on three scenarios (linked, random, and
unlinked), with 1000 simulations each scenario. Fixed-effect interval mapping (FEIM, red) and random-effect multiple interval mapping (REMIM, blue)
were carried out with (solid lines) and without (dotted lines) the simulated error. FEIM and REMIM used different genome-wide significance thresholds
(a ¼ f0:20;0:15; 0:10;0:05; 0:01g, symbols) based on permutation tests or resampling method, respectively. For a �95% support interval coverage,
power was computed as the proportion of true QTL over the total number of simulated QTL, and FDR as the proportion of false QTL over the total
number of mapped QTL.
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Figure 3 Logarithm of P-value (LOP) profiles
from random-effect multiple interval mapping
(REMIM) of eight yield-related traits from
‘Beauregard’ 3 ‘Tanzania’ (BT) full-sib family.
Triangles show the QTL peak location. Trait ab-
breviations: number of commercial (NOCR),
noncommercial (NONC), and total (TNR) roots
per plant, commercial (CYTHA), noncommer-
cial (NCYTHA) and total (RYTHA) root yield in
t ha21, foliage yield (FYTHA) in t ha21, and
commercial index (CI).
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Discussion

Polyploid single- vs. multiple-QTL models

QTL mapping in autopolyploid species has been limited to a
fixed-effect interval mapping (FEIM) model proposed for
tetraploids (Hackett et al. 2001, 2014) and also expanded
for hexaploids (van Geest et al. 2017). Consisting of a sin-
gle-QTL model, 2m22 main effects are fitted (m is the ploidy
level), and this model is compared to a null model (with no
QTL) using LRT, ultimately expressed as LOD scores. Permu-
tation-based genome-wide significance LOD thresholds are
then used to declare a QTL. Trying to fit additional QTL into
FEIM model could rapidly lead it to over-parameterization,
since each QTL requires asmany as 6 (for tetraploids), 10 (for
hexaploids), or 14 (for octoploids) main effects to be tested
and estimated in such a fixed-effect multiple-QTL model.
Furthermore, new rounds of permutation tests, based on a
model with QTL, would need to be carried out in order to
provide an updated LOD score threshold (Klaassen et al.
2019). In contrast, the random-effect multiple interval map-
ping (REMIM)model presented here is designed tofit multiple
random-effect QTL by estimating only one single parameter
ðs2

qÞ per QTL. Score statistic tests are performed in order to
assess whether a QTL variance component is zero or not, con-
ditional to other QTL in the model. These tests provide an
approach for comparing two nested models with the reduced
model having a random effect excluded, similar to what re-
stricted LRT (RLRT) would do. However, (R)LRT is more
prone to numerical errors because the null hypothesis
ðH0 : s2

q ¼ 0Þ falls on the boundary of the parameter space,
whereas score-based methods can be robust to eventual mis-
specification of the distribution of random effects (Verbeke
and Molenberghs 2003). A score-based resampling method
(Zou et al. 2004) was used for setting genome-wide signifi-
cance thresholds, which facilitates a forward–backward search
to identify an optimalmultipleQTL-model in a computationally
tractable manner.

Here, we used the BT population genetic map to simulate
quantitative traits based on multiple QTL with different her-
itabilities each, in order to compare FEIM and REMIM per-
formances under three increasingly difficult scenarios (Figure
2). Both approaches would potentially detect similar number
of QTL in case they were all unlinked. However, despite the
small bias created by the way QTL were simulated (based on
REMIM model), FEIM showed a relative loss of power. Mul-
tiple-QTL model approaches have proven to provide greater
power and better FDR control than single-QTL models for
both univariate (Zeng et al. 1999; Laurie et al. 2014) and
multivariate (Da Costa E Silva et al. 2012b) models, due
mostly to the differences in detecting QTL with smaller ef-
fects. In fact, this is rather expected as a multiple-QTL model
has a smaller residual variance, which helps to detect addi-
tional QTL. Multiple-QTL models are also supposed to im-
prove detection of more than one QTL on the same LG
(Mayer 2005), as they are usually hard to separate from each
other due to the large extension of linkage disequilibrium in
mapping populations. For polyploids, a nonoptimized ap-
proach of using residuals from a fitted single-QTL model as
phenotypic data to find a second linked QTL has been pro-
posed (Mengist et al. 2018), as it requires additional manual
steps. In contrast, the forward–backward search employed
here has been shown to be optimized to detect linked QTL.
The consistently superior results in comparison to FEIM
pointed out that the linear score statistics behaved well as
part of our algorithm, and the impact of using different a
level thresholds for QTL detection was also assessed here.
In QTL mapping analysis, it is important to have a reasonable
balance between detection power and FDR, as we are inter-
ested in mapping as many true QTL as possible. When de-
ciding on which a level to adopt, one should consider the
goals of the study, i.e., whether it is intended to use a few
very reliable QTL for marker-assisted breeding, or to discover
as many QTL-related putative genes as possible for further
validation. Although one could use a more relaxed criteria in

Table 2 Random-effect multiple interval mapping (REMIM) of yield-related traits from ‘Beauregard’3‘Tanzania’ (BT) full-sib family

Trait QTL LG Position (cM) Score P-value s2
q h2

q (%)

NOCR 1 1 137.60 (99.43–152.87) 222.89 9.35 3 1026 0.0622 13.70
2 3 20.18 (0.00–49.27) 172.52 1.37 3 1024 0.0996 21.93

NONC 1 1 142.07 (128.08–159.30) 207.83 1.42 3 1025 0.0447 10.11
2 3 13.11 (0.00–51.33) 165.75 1.07 3 1024 0.0420 9.50
3 10 102.26 (96.50–113.55) 267.28 3.40 3 1027 0.0647 14.63
4 15 67.20 (39.10–78.04) 247.92 1.33 3 1026 0.0661 14.95

TNR 1 1 140.43 (128.08–152.87) 251.13 7.36 3 1027 0.1789 10.97
2 3 20.18 (13.11–43.69) 279.18 1.42 3 1027 0.3595 22.04
3 10 165.43 (102.26–187.27) 192.09 2.69 3 1025 0.1467 8.99
4 15 78.04 (35.50–119.08) 207.07 1.34 3 1027 0.2131 13.06

CYTHA 1 15 5.34 (0.00–34.27) 242.24 5.62 3 1026 6.3128 19.93
RYTHA 1 15 5.34 (0.00–35.50) 226.56 1.32 3 1025 6.9177 18.97
FYTHA 1 10 29.09 (16.12–134.37) 203.16 4.4 3 1025 2.1077 14.78

Linkage group (LG), map position (in centiMorgans) and its �95% support interval (within parenthesis), score statistic and its corresponding P-value, variance ðs2
qÞ; and

heritability (h2q, in percentage) of mapped QTL using resampling-based genome-wide significance P-value threshold of 0.05 (backward elimination)
Trait abbreviations: number of commercial (NOCR), noncommercial (NONC) and total (TNR) roots per plant, commercial (CYTHA), noncommercial (NCYTHA) and total
(RYTHA) root yield in t ha21, foliage yield (FYTHA) in t ha21, and commercial index (CI).
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order to increase the power of detection while still maintain-
ing an acceptable level of FDR, REMIM with respective for-
ward and backward a levels of 0.20 and 0.05 seemed
reasonable.

QTL mapping for yield traits in sweetpotato

Most of the linkage and QTL mapping work done for sweet-
potato so far has relied on strategies based on a double
pseudotestcross approach for diploid species (Grattapaglia
and Sederoff 1994). For example, separate parental maps
have been built based on this diploid-based simplification,
using qualitative marker systems such as randomly amplified
polymorphic DNA (RAPD; Ukoskit and Thompson 1997), am-
plified fragment length polymorphism (AFLP; Kriegner et al.
2003; Cervantes-Flores et al. 2008a; Nakayama et al. 2012),
retrotransposon insertion polymorphisms (Monden et al.
2015), and simple sequence repeats (SSR; Kim et al. 2017).
A recent map was developed from a selfing population and
used only single-dose SNPs, resulting in higher marker satu-
ration in comparison to the previous maps (Shirasawa et al.
2017), though the map was still not integrated. In some of
these cases, QTL mapping analyses were performed for sev-
eral traits, related mostly to quality (Cervantes-Flores et al.
2011; Zhao et al. 2013; Yu et al. 2014; Kim et al. 2017) and
resistance to biotic stresses (Cervantes-Flores et al. 2008b;
Yada et al. 2017a). For yield-related traits, only two studies
have been reported to date (Chang et al. 2009; Li et al. 2014).
The use of DNA markers with unknown DNA sequence lim-
ited our ability to compare their results with I. trifida and I.
triloba genomes (Wu et al. 2018), and, ultimately, with our
present QTL study (see Table S5). Moreover, although these
diploid-based strategies were the state-of-the-art at that time
for qualitative marker-based, low density genetic maps, they
imposed significant restrictions on statistical power for QTL
detection and its genetic interpretation.

Recently,more improvedmethodsandcomputational tools
that take into account autopolyploid complexity for dosage
SNP calling (Voorrips et al. 2011; Serang et al. 2012; Schmitz
Carley et al. 2017; Gerard et al. 2018) and integrated linkage
map construction (Hackett et al. 2016; Bourke et al. 2018;
Mollinari and Garcia 2019) have become available, mostly

dedicated to tetraploids. Taking advantage of the newly de-
veloped MAPPOLY package, Mollinari et al. (2020) built the
first integrated genetic map for sweetpotato, from the BT
population used here. For a hexaploid species, this has
opened up new opportunities for more interpretable QTL ge-
netic models due to MAPPOLY implementation of a HMM that
delivers QTL genotype conditional probabilities along a fully
integrated genetic map (Mollinari and Garcia 2019). Based
on this map, we detected 13 QTL (Figure 3) using REMIM,
with QTL heritabilities ranging from 8.99 to 22.05% (Table 2,
see Figure S2). Most of these QTL were also mapped among
the 12 QTL using FEIM (see Figure S4), with proportion of
variance explained (PVE) ranging from 8.42 to 12.43% (see
Table S3). Based on the double pseudotestcross approach,
previous studies found nine QTL for storage root yield
ð17:7%# PVE# 59:3%Þ (Li et al. 2014), seven QTL for root
and top (foliage) weight ð16:0%# PVE# 29:5%Þ; plus one
QTL for root number ðPVE ¼ 14:8%Þ (Chang et al. 2009).
Because of likely estimation bias due to reduced population
sizes (n , 200), and the use of not very informative markers
and linkage maps, these previous PVE findings are hard to
compare with our results.

Although number of roots seemed to be as heritable as root
yield (Table 1), only one colocalized QTL was detected for
CYTHA/RYTHA. These traits are likelymore complex in terms
of their genetic architecture, though. That is, not only number
of roots contributes to yield, but also size and composition, so
we can expect that more regions are involved in root yield, in
addition to those involved in number of roots. Nevertheless,
Yada et al. (2017b) found a rather low trait heritability (likely
individual-basis) for commercial root yield (H2 = 24%)
among 278 full-sibs of a cross between ‘NewKawogo’, a Ugan-
dan landrace, and ‘Beauregard’, possibly due to stronger
G 3 E interaction, which adds to the trait complexity. Here,
G 3 E interaction seemed important for all traits, and its
consequences to QTL mapping and breeding will be explored
in future studies. As QTL mapping targets major QTL, usually
stable across environments, most of theminor onesmust have
gone undetected. Moreover, additional genetic variation
could be due to higher-order allele interactions and genetic
epistasis, which the current models do not account for.

Figure 4 Additive allele effects from the
decomposed best linear unbiased predictions
(BLUPs) for the QTL 1 (on linkage group 15 at
5.27 cM) of commercial root yield in t ha21

(CYTHA) in a hexaploid sweetpotato full-sib
family (‘Beauregard’ 3 ‘Tanzania’). Letters rep-
resent each of the six haplotypes from each
parent.
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Colocalized QTL among number of roots and yield traits ex-
plain some of the correlations among QTL-based breeding
values (see Figure S3), partially explaining the correlations
among the predicted means for these traits (Figure 1). Based
on the correlation between QTL-based breeding values,
FYTHA does not seem to be useful in indirect selection for
CYTHA, as suggested previously (Chang et al. 2009).

‘Beauregard’ and ‘Tanzania’ contributed more importantly
with positive and negative major effects, respectively. How-
ever, the presence of both favorable and unfavorable QTL
alleles were observed in either parents (see Table S4), which
possibly explains the presence of transgressive segregants for
all traits. Transgression in polyploids seems to be due to cu-
mulative complementary alleles not only at different loci
(Tanksley 1993), but also from the same QTL. In fact, in-
creased heterozygosity has been suggested as one of the ma-
jor forces of polyploid evolutionary success, as a broader
allele repertoire may result in the variation of gene expres-
sion and regulation needed to thrive in more diverse environ-
mental conditions (Van de Peer et al. 2009). As an example,
‘Tanzania’ exhibited alleles contributing to increase CYTHA
from a major QTL (Figure 4), although this landrace was not
very productive in our environments overall. The additive
effects are the most important from a breeding point-of-view,
and their estimation provides straightforward direction on
which alleles to select. Simpler biallelic-based models proposed
previously (Hackett et al. 2014; Chen et al. 2018) may be used
to estimate other interactions. The effective use of these allele
interactions in QTL detection and breeding remains limited,
though. As noted by Gallais (2003), estimating multi-allelic
interactions reliably would require larger populations.

Several studies have looked at genes involved in storage
root initiationanddevelopment in sweetpotatoas reviewedby
Khan et al. (2016). The storage roots differentiate from lat-
eral roots by development of cambia around the protoxylem
and secondary xylem, while lignification of the steles of some
lateral roots inhibits this transformation (Villordon et al.
2012). Using the expression profile of the parents of the cur-
rent mapping population, we found genes in leaves and roots
(see Figure S5) related to root directional growth (e.g., SKU5,
itf03g02930 homolog; Sedbrook et al. 2002) and lateral de-
velopment (e.g., AtWOX13, itf03g03460 homolog; Deveaux
et al. 2008) as well as with sugar transport to the root tip
(e.g., ANN1 and ANN2, itf03g03280 homolog; Wang et al.
2018) within the QTL region on LG 3 associated with number
of storage roots. Thus, both root restructuring and carbon
supply is likely involved in the number of lateral root that
transform to storage root. Other genes such as MADS-box
(e.g., itf03g02230 homolog; Kim 2002), expansin (EXP,
itf03g05010 homolog), and BEL1-like homeodomain (e.g.,
itf03g02670 homolog; Ponniah et al. 2017) have been
strongly implicated in storage root formation and develop-
ment in sweetpotato, and were found within the QTL region
on LG 3. On the QTL related to storage root weight on LG 15,
we found genes related with the hormonal control of cell
proliferation (e.g., CTR1, itf15g01020 homolog; Street et al.

2015) and with starch biosynthesis (e.g., starch branching
enzyme 2.2, itf15g01120 homolog; Li et al. 2014). The asso-
ciation between these and other differentially expressed
genes listed in this study (see File S5) is yet to be defined,
and suggests the complex nature of storage root formation
and development.

Final considerations

Here,wepresent a stepwise-basedalgorithmformultiple-QTL
model selection in full-sib populations of autopolyploid spe-
cies with a fully integrated map, from which QTL genotype
conditional probabilities can be calculated. The use of score
statistics is a key component of this new method, which
depends on a dynamic and fast-computing test for model
selection during the QTL detection process. Simulations were
performed in order to assess the impact of using different
threshold criteria and to provide some empirical sense on how
touse themethod inpractice. REMIMhas been carried out in a
hexaploid sweetpotato population to detect major loci con-
tributing to the variation of yield-related traits that may be
targeted in molecular-assisted breeding. The use of random-
effect models has created the context for fittingmultiple QTL,
providing straightforward information on variance compo-
nents, important for computing QTL heritabilities. Finally,
QTL genotype predictions (BLUPs) allowed us to estimate
additive effects for characterizing major allele contributions,
and compute QTL-based breeding values that can be used for
performing selection. This novel approach may enable more
complex models, such as those accounting for interaction
amongQTLaswell asmultiple traits ormultiple environments
in order to study shared genetic control in different traits/
environments and G 3 E interaction at QTL level. Such a
model can also be expanded in order to consider multi-pa-
rental designs and double reduction or preferential pairing as
long as the reconstructed haplotypes can be used to inform on
shared alleles IBD. For these more complex models, one
could expect additional computational cost, for which further
investigation is needed. Understanding the genetic architec-
ture of root yield and other traits related to quality and re-
sistance to biotic and abiotic stresses represents great
opportunity for improving characteristics of interest in sweet-
potato and other polyploids. Most of these important traits
are polygenic in nature and only assessed later in a breeding
program, where marker-assisted selection could help to
speed up the process.
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