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Reduced fronto–striatal white matter integrity in schizophrenia
patients and unaffected siblings: a DTI study
Max de Leeuw1, Marc M Bohlken1, René CW Mandl1, René S Kahn1 and Matthijs Vink1

BACKGROUND: Schizophrenia is characterized by impairments in the fronto–striatal network. Underlying these impairments may
be disruptions in anatomical pathways connecting frontal and striatal regions. However, the specifics of these disruptions remain
unclear and whether these impairments are related to the genetic vulnerability of schizophrenia is not known.
METHODS: Here, we investigated fronto–striatal tract connections in 24 schizophrenia patients, 30 unaffected siblings, and 58
healthy controls using diffusion tensor imaging. Mean fractional anisotropy (FA) was calculated for tracts connecting the striatum
with frontal cortex regions including the dorsolateral prefrontal cortex (DLPFC), medial orbital frontal cortex, and inferior frontal
gyrus. Specifically, the striatum was divided into three subregions (caudate nucleus, putamen, and nucleus accumbens) and mean
FA was computed for tracts originating from these striatal subregions.
RESULTS: We found no differences between patients, siblings, and controls in mean FA when taking the whole striatum as a seed
region. However, subregion analyses showed reduced FA in the tract connecting the left nucleus accumbens and left DLPFC in both
patients (P= 0.0003) and siblings (P= 0.0008) compared with controls.
CONCLUSIONS: The result of reduced FA in the tract connecting the left nucleus accumbens and left DLPFC indicates a possible
reduction of white matter integrity, commonly associated with schizophrenia. As both patients and unaffected siblings show
reduced FA, this may represent a vulnerability factor for schizophrenia.
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INTRODUCTION
Underlying the clinical and cognitive symptoms in schizophrenia
may be dysfunctions of the frontal lobe and the striatum.1–5

Indeed, functional magnetic resonance imaging (MRI) studies have
demonstrated abnormal fronto–striatal activity.1–3,6–9 Moreover,
structural MRI studies have revealed reductions in brain volume of
the frontal cortex10–12 and striatum11,13 in schizophrenia patients.
In addition to functional and structural brain measurements,

anatomical pathways connecting frontal and striatal regions may
also be disrupted in schizophrenia. Two studies have investigated
fronto–striatal white matter tracts using diffusion tensor imaging
(DTI). Quan et al.14 reported reduced fractional anisotropy (FA) in
the tract connecting the left inferior frontal gyrus (IFG) with the
striatum in 16 schizophrenia patients compared with 18 matched
controls.14 However, they only compared tracts connecting frontal
regions with the whole striatum, using the striatum as a single
seed region, rather than subdividing it into specific subregions.
This subdivision is important as different striatal components are
involved in specific functional networks.15 Indeed, Bracht et al.16

investigated white matter tracts connecting the nucleus accum-
bens with frontal and subcortical regions in schizophrenia patients
(n= 24) and controls (n= 22).16 They reported on increased pro-
bability indices forming part of a bundle of interest for the tract
connecting the nucleus accumbens with the dorsolateral pre-
frontal cortex (DLPFC), suggesting reduced white matter tract
integrity. However, they did not find a difference in FA in this tract.
This inconsistency makes it unclear whether and how this white
matter tract is impaired by schizophrenia. Furthermore, in both
the studies, it remains unclear whether these fronto–striatal white

matter tract dysfunctions are related to the illness itself or to a
genetic vulnerability for the disorder.
Therefore, we investigated fronto–striatal tracts in a large cohort

of schizophrenia patients, unaffected siblings, and matched
healthy controls using DTI. Siblings do not have the illness, but
share on average 50% of their genes with their ill relative.17

Furthermore, they have a 10-fold increased risk to develop
schizophrenia.18 Consequently, if siblings show impairments in
fronto–striatal tract connections similar to those observed in
patients this would provide evidence in support for a genetic
vulnerability underlying this phenotypic abnormality. Fronto–
striatal tract abnormalities in siblings are anticipated given reports
on functional1,6,19–22 as well as structural abnormalities10,11,23 in
this network. Moreover, abnormalities in white matter integrity
have already been shown in siblings in other brain regions includ-
ing the fasiculus arcuatus,24–26 medial frontal cortex,27 prefrontal
cortex,28 cingulate and angular gyri,29 inferior occipitofrontal
fasiculus,25 anterior limb of the internal capsules,26 corpus
callosum genu,30 cuneus,31 and temporal lobe.30

Here, we examined FA in fronto–striatal pathways using DTI in
24 schizophrenia patients, 30 unaffected siblings, and 58 healthy
controls. FreeSurfer software32 was used to parcellate the gray
matter regions used to trace the fiber bundles of interest. We
subdivided the frontal cortex into three regions: DLPFC, medial
orbital frontal cortex (mOFC), and IFG, all of which are consistently
reported to be abnormal in schizophrenia patients and their
siblings in functional1,8,21 as well as structural MRI studies.10,33

Neurons from these frontal regions project to the caudate nucleus,
putamen, and nucleus accumbens separately, together forming
the fronto–striatal network.34 Mean FA was then computed along
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averaged tracts starting in each of these striatal subregions
directing to the frontal cortex regions.
Given reports on reduced FA in various tracts (for recent review,

see Fitzsimmons et al.35), we hypothesize that FA in fronto–striatal
white matter tracts will be reduced in schizophrenia patients.
Furthermore, we hypothesize that if these deficits signify a genetic
vulnerability, then similar deficits are also present in unaffected
siblings of schizophrenia patients.

MATERIALS AND METHODS
Participants
Twenty-four schizophrenia patients, 30 unaffected siblings, and 58 healthy
control subjects participated in this study. All subjects were right-handed
and there were no differences between groups for age and gender
(Table 1). None of the participants had any contraindications for MRI or
suffered from alcohol or drug dependence, which was assessed with the
Composite International Diagnostic Interview. The patients were out-
patients recruited from the Department of Psychiatry at the University
Medical Center Utrecht and participating in an ongoing longitudinal
study.36 The diagnosis of schizophrenia, schizophreniform, or schizoaffec-
tive disorder in patients was assessed with the Structured Clinical Interview
for DSM-IV or the Comprehensive Assessment of Symptoms and History.37

Symptom severity in terms of positive, negative, and general symptoms
were assessed with the positive and negative syndrome scale (PANSS).38

All schizophrenia patients received antipsychotic medication (medication
use is listed in Supplementary Information). Four siblings had a history of at
least one depressive episode, as verified by the Comprehensive Assess-
ment of Symptoms and History. None of the healthy control subjects had a
history of a neurological or psychiatric diagnosis as verified by either the
Mini-International Neuropsychiatric Interview39 or the Schedules for
Clinical Assessment in Neuropsychiatry (SCAN 2.1).40 Healthy control
subjects who had a first-degree relative suffering from a psychotic disorder
were excluded. The participants received monetary compensation for
participation. All gave written informed consent. The ethics committee of
the University Medical Center of Utrecht approved this study.

Diffusion tensor imaging
Image acquisition and preprocessing. A T1-weighted structural MRI scan
and a set of two diffusion-weighted imaging (DWI) scans were obtained
from each subject using a 3.0 T Achieva scanner (Philips, Best, The
Netherlands). One three-dimensional T1-weighted scan (185 slices; repe-
tition time= 8.4 ms; echo time= 3.8 ms; flip angle = 8°; field of view,
252× 185× 288mm; voxel size: 1 mm isotropic) of the whole head was
made for anatomical reference. The T1-weighted scans were used to

extract anatomically delineated regions of interest (ROIs) of the caudate
nucleus, putamen, nucleus accumbens, DLPFC (consisting of the rostral
middle frontal gyrus41), mOFC, and IFG, consisting of the pars opercularis,
pars orbitalis, and pars triangularis; Figure 1, Figure 2) in each hemisphere
using the FreeSurfer 5.1.0 structural imaging pipeline.32

A set of two transverse DWI scans were acquired (30 diffusion-weighted
volumes with different non-collinear diffusion directions with b-factor =
1,000 s/mm2 and eight diffusion-unweighted volumes with b-factor = 0 s/
mm2; parallel imaging SENSE factor = 2.5; flip angle = 90°; 60 slices of
2.5 mm; no slice gap; 96 × 96 acquisition matrix; reconstruction matrix
128× 128; FOV=240mm; TE= 88ms; TR = 9,822ms; no cardiac gating; and
total scan duration= 296 s). The second DWI scan is identical to the first
except that the k-space readout is reversed, which allows for correction of
susceptibility artifacts during preprocessing. Preprocessing of the DWI
scans was performed with the diffusion toolbox of Andersson et al.42,43 and
in-house developed software.44 First, susceptibility artifacts were corrected
by calculating a distortion map on the basis of the two b= 0 images

Table 1. Demographic characteristics of the diagnostic groups

HC (n=58) SB (n= 30) SZ (n= 24) Test statistic P

Age (years) 28.8± 1.0 31.4± 1.2 31.1± 0.7 F= 2.04 0.14
Gender (M/F) 35/23 17/13 19/5 χ2= 3.39 0.18
Participant’s education level 7.2± 0.2 6.3± 0.3 4.8± 0.4 F= 15.10 o0.001
Father’s education level 5.2± 0.5 5.6± 0.5 5.4± 0.5 F= 0.23 0.80
Mother’s education level 4.9± 0.5 5.4± 0.4 4.6± 0.5 F= 0.85 0.43
Cigarette smokers 2 13 12 F= 1.68 0.20
Cigarettes per day 3.5± 1.5 10.4± 2.1 14.3± 3.7 F= 1.16 0.33
Duration of illness (years) 6.2± 0.9
Paranoid/disorganized/undifferentiated type 23/0/0
Schizoaffective disorder 1
Chlorpromazine equivalent doses (mg) 321.5± 53.4
PANSS positive symptoms score 14.5± 0.8
PANSS negative symptoms score 13.3± 0.7
PANSS general symptoms score 27.0± 1.1
History of depressive episode 4

Abbreviations: F, female; HC, healthy controls; M, male; PANNS, positive and negative syndrome scale; SB, unaffected siblings of schizophrenia patients; SZ,
schizophrenia patients.
Values represent mean± s.e.m. Level of education was measured on a 9-point scale ranging from no education (0) to university degree (8).

Figure 1. Mean fractional anisotropy was compared along averaged
fibers connecting the striatum (red) with the frontal cortex regions:
striatum–DLPFC (green), striatum–mOFC (blue), and striatum–IFG
(yellow). Right= right.
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acquired with reversed k-space readout. Subsequently, it was applied to all
DWI volumes. This resulted in one corrected DWI set consisting of a single
b = 0 volume (averaged over eight b = 0 volumes) and 30 corrected
weighted volumes.43 Finally the DWI set was corrected for eddy-current
distortions and small head movements.42

Fronto–striatal fiber tractography and diffusion parameter reconstruction.
Diffusion modeling and probabilistic tractography were carried out using
the FMRIB Diffusion Toolbox (FDT, version 2.0, http://fsl.fmrib.ox.ac.uk/fsl/
fsl-4.1.9/fdt/fdt_probtrackx.html). This process involves generating con-
nectivity distributions from user-specified seed voxels to target voxels.
First, the whole striatum (nucleus accumbens, putamen and caudate
nucleus) was used as a seed mask and the three ROI’s of the frontal cortex
(DLPFC, mOFC and IFG) were defined as target ROI’s, such that for each
subject three fiber distributions from striatum to frontal cortex were
obtained (Figure 1). Each frontal ROI was specified as a waypoint and as a
termination mask to ensure that only those streamlines running between
the seed mask and target ROI were captured in the fiber distribution. The
default parameters (5000 streamline samples, step length of 0.5 mm, and
curvature threshold of 0.2) were used during the probabilistic fiber tracking
procedure.
Subsequently, tracts originating from the three anatomical subregions of

the striatum were analyzed separately by using these predefined ROIs as
separate seed masks directing to the frontal cortex regions as described
above (Figure 2). In this way, a total of 12 tracts were traced for and within
each hemisphere between the frontal cortex and the striatum, leaving 24
fiber distributions for each subject in total.
Because the seed points could be volumetrically dependent on

individual or group differences, a group average fiber was reconstructed
for each of the 24 fiber distributions. First, the Tract Based Spatial Statistics
toolbox (version 1.2)45 was applied to subjects’ FA maps for warping into
FMRIB58_FA standard space. This nonlinear registration was also applied to
each of the 24 individually obtained fiber distributions. By only selecting
the top 1% of streamlines in each fiber distrubution that overlapped in all
participating subjects, a total of 24 group average tracts were recon-
structed. The group average tracts were made binary and subsequently
they were projected onto the warped FA maps, allowing for the estimation
of a mean FA measure per individual per tract.

Statistical analysis. Demographic data between schizophrenia patients,
siblings, and healthy controls were compared using independent sample
t-tests. General linear model (GLM) analyses were performed to test for
effects of group (schizophrenia patients, siblings, and controls) on FA of
the tracts connecting the striatum with the frontal regions (DLPFC, mOFC,
and IFG). Subsequently, similar GLMs were performed to test for effects of
group (schizophrenia patients, siblings, and controls) on FA of the tracts
connecting the three subregions of the striatum (caudatus, putamen, and
nucleus accumbens) with the frontal regions (DLPFC, mOFC, and IFG). All
the results were Bonferroni corrected for multiple testing (three seeds ×
three targets × two hemispheres = 18), resulting a critical P value of 0.0028.
In schizophrenia patients, Pearson’s correlations were used to calculate asso-
ciations between mean FA and symptom severity, as measured with the
PANSS. Finally, as it has been shown that nicotine use may impact FA mea-
sures in fronto–striatal tracts,46 we compared mean FA, using two-sample

t-tests, between cigarette smokers and nonsmokers in the whole sample as
well as in healthy controls, schizophrenia patients, and siblings.

RESULTS
Group differences in fractional anisotropy
There were no significant differences among patients, siblings,
and controls in mean FA along tracts averaged for the whole
striatum with the frontal cortex regions (Table 2). However, when
investigating tracts projecting from subregions of the striatum,
schizophrenia patients as well as their unaffected siblings showed
reduced mean FA in the tract between the left nucleus accumbens
and left DLPFC (patients versus controls: t(80) = 3.80, P= 0.0003;
siblings versus controls: t(86) = 3.49, P= 0.0008; Table 3). Patients
and siblings did not differ (t(52) = 0.56, P= 0.58) indicating a similar
reduction in FA. Symptoms severity in schizophrenia patients as
measured with the PANNS scores did not correlate with mean FA
in this tract (PANSS positive symptoms score: r= 0.1, P= 0.65,
PANSS negative symptoms score: r=− 0.6, P= 0.77, PANSS general
symptoms score: r=− 0.2, P= 0.38). Finally, smoking status
did not affect mean FA for this tract in the whole sample (t
(60) = 0.68, P= 0.50), nor in healthy controls (t(8) =− 1.86, P= 0.10),
schizophrenia patients (t(20) = 0.45, P= 0.66), or siblings (t
(28) = 0.68, P= 0.50). Mean FA in the other tracts did not differ
between the groups.

DISCUSSION
This study investigated fronto–striatal pathways in 24 schizo-
phrenia patients, 30 unaffected siblings, and 58 healthy controls

Figure 2. The striatum was divided into three subregions: nucleus accumbens (blue), caudate nucleus (yellow), and putamen (red), and mean
fractional anisotropy was computed for tracts originating from these striatal subregions directing to frontal cortex regions including DLPFC,
mOFC, and IFG. Right= right.

Table 2. Fractional anisotropy for tracts connecting the whole
striatum with the frontal cortex regions

HC (n= 58) SB (n= 30) SZ (n= 24) P (HC
versus SB)

P (HC
versus SZ)

P (SB
versus SZ)

Striatum–DLPFC
R 0.36± 0.02 0.36± 0.02 0.36± 0.02 0.80 0.53 0.74
L 0.35± 0.02 0.34± 0.02 0.35± 0.02 0.67 0.25 0.17

Striatum–mOFC
R 0.28± 0.01 0.28± 0.01 0.28± 0.01 0.71 0.97 0.73
L 0.26± 0.01 0.26± 0.01 0.26± 0.01 0.61 0.87 0.53

Striatum–IFG
R 0.30± 0.01 0.30± 0.01 0.29± 0.01 0.96 0.30 0.33
L 0.28± 0.01 0.28± 0.01 0.28± 0.01 0.47 0.93 0.49

Abbreviations: DLPFC, dorsolateral prefrontal cortex; HC, healthy controls;
IFG, inferior frontal gyrus; L, left; mOFC, medial orbital frontal cortex; R,
right; SB, unaffected siblings of schizophrenia patients; SZ, schizophrenia
patients.
Values represent mean± s.d.
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using DTI. Results show reduced functional anisotropy (FA) in the
tract connecting the left nucleus accumbens and left DLPFC in
schizophrenia patients as well as their unaffected siblings, indicat-
ing reduced white matter integrity compared with controls. Taken
together with the fact that siblings share on average 50% of their
genes with their ill relative, these results indicate that reduced
white matter integrity in this tract may represent a vulnerability
factor for schizophrenia.
Our finding of reduced FA in the tract connecting the left

nucleus accumbens and left DLPFC is consistent with findings
from Bracht et al.16 who compared fronto–striatal tracts between
24 schizophrenia patients and 22 healthy controls. Although
they did not find difference in FA, they computed a measure
representing spatial extension of fiber tracts (probability indices
forming part of a bundle of interest). They found this measure to
be increased in schizophrenia patients compared with controls in
the tract between the left nucleus accumbens and left DLPFC, and
suggest this to indicate volume reduction of this white matter
pathway. We replicated and extended this finding by showing
decreased FA in this particular tract in schizophrenia patients.
Moreover, we found a similar FA reduction in this tract in siblings
of schizophrenia patients, indicating that this deficit may
represent a vulnerability factor for schizophrenia.
We did not find reduced FA in schizophrenia patients or siblings

when averaging over all tracts connecting the entire striatum and

DLPFC. This is in line with data from Quan et al.,14 who also did not
find differences between schizophrenia patients (n= 16) and
controls (n= 18) in FA values between tracts connecting DLPFC
and striatum.14 However, they did not investigate tracts originat-
ing from different subsections of the striatum.
Our finding of decreased mean FA in both schizophrenia

patients and siblings may indicate decreased white matter
integrity, as FA is used as an index for the microstructural integrity
of white matter fiber bundles.47 White matter integrity abnorm-
alities as measured with DTI have been reported in schizophrenia
patients and their unaffected siblings in several regions of the
brain including the frontal lobe, hippocampus, and internal
capsule.24–30,35 In the present study, we extend these results by
showing white matter integrity reductions in schizophrenia
patients and siblings specifically in fibers connecting the left
nucleus accumbens and left DLPFC. As we did not find deficits in
other tracks, it is unlikely that our results are driven by a global
impairment in white matter integrity. However, it should be
noticed that the schizophrenia patients in our sample are rela-
tively young, so it cannot be ruled out that progression of the
illness over time may result in abnormalities of other white matter
tracks.48

Both the nucleus accumbens and the DLPFC are part of reward
pathways49 and are known to be involved in delayed reward
processing.50,51 Our finding of reduced FA in this particular tract is

Table 3. Fractional anisotropy for tracts connecting subregions of the striatum with the frontal cortex regions

HC (n= 58) SB (n=30) SZ (n=24) P (HC versus SB) P (HC versus SZ) P (SB versus SZ)

Nucleus accumbens–DLPFC
R 0.38± 0.02 0.37± 0.02 0.37± 0.02 0.16 0.22 0.92
L 0.35± 0.01 0.34± 0.02 0.33± 0.02 0.0008* 0.0003* 0.58

Nucleus accumbens–mOFC
R 0.22± 0.01 0.21± 0.01 0.22± 0.01 0.24 0.63 0.55
L 0.21± 0.01 0.21± 0.02 0.21± 0.01 0.82 0.80 0.72

Nucleus accumbens–IFG
R 0.27± 0.01 0.27± 0.02 0.27± 0.01 0.42 0.48 0.94
L 0.25± 0.01 0.25± 0.01 0.26± 0.01 0.92 0.10 0.16

Caudate–DLPFC
R 0.37± 0.02 0.37± 0.02 0.37± 0.02 0.86 0.23 0.38
L 0.36± 0.02 0.35± 0.02 0.36± 0.03 0.57 0.17 0.09

Caudate–mOFC
R 0.29± 0.02 0.29± 0.01 0.29± 0.02 0.70 0.92 0.80
L 0.28± 0.02 0.28± 0.01 0.29± 0.02 0.92 0.48 0.55

Caudate–IFG
R 0.35± 0.01 0.35± 0.02 0.35± 0.01 0.78 0.19 0.20
L 0.33± 0.01 0.33± 0.02 0.33± 0.01 0.72 0.95 0.72

Putamen–DLPFC
R 0.39± 0.02 0.39± 0.02 0.39± 0.02 0.89 0.75 0.86
L 0.38± 0.02 0.38± 0.02 0.39± 0.02 0.55 0.27 0.11

Putamen–mOFC
R 0.32± 0.02 0.32± 0.02 0.31± 0.01 0.67 0.74 0.50
L 0.28± 0.02 0.28± 0.01 0.28± 0.01 0.41 0.91 0.51

Putamen–IFG
R 0.26± 0.01 0.25± 0.01 0.25± 0.01 0.72 0.33 0.50
L 0.24± 0.01 0.24± 0.01 0.24± 0.01 0.45 0.84 0.37

Abbreviations: DLPFC, dorsolateral prefrontal cortex; HC, healthy controls; IFG, inferior frontal gyrus; L, left; mOFC, medial orbital frontal cortex; R, right; SB,
unaffected siblings of schizophrenia patients; SZ, schizophrenia patients.
P values with * survived Bonferroni correction for multiple testing. Values represent mean± s.d.
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consistent with earlier reports on impaired fronto–striatal reward
processing in schizophrenia patients8,9 and siblings.22,52 Our
current finding of structural impairments in the reward pathway
combined with previous reports of functional fronto–striatal
impairments during reward processing adds to the evidence in
support of fronto–striatal deficits representing a genetic vulner-
ability factor for schizophrenia.
The decrease in white matter integrity in schizophrenia patients

was not related with symptom severity as measured with the
PANSS. This was anticipated given that Bracht et al. also did not
find such a relationship.16 Furthermore, siblings showed similar
white matter integrity reduction while being symptom-free. Taken
together, this null finding is consistent with the notion that
our finding of reduced white matter integrity in the tract connec-
ting left nucleus accumbens and left DLPFC is related to the
genetic vulnerability for schizophrenia rather than to the clinical
manifestations.
Our study has several limitations which need to be addressed.

Schizophrenia patients used antipsychotic medication which may
have influence on white matter integrity.53 However, this is not
expected given that we have previously failed to show an effect of
medication on white matter volume in schizophrenia patients.54

Moreover, the fact that patients as well as unmedicated siblings
show this deficit may indicate that this represents a genetic
vulnerability for schizophrenia rather than a medication effect.
However, common environmental factors cannot be ruled out. To
quantify the influence of genetic factors on the observed
reduction in white matter tract integrity, a discordant twin-
design would be most suitable. As it has already been shown that
white matter integrity is substantially heritable,55 it is likely that
genetic factors have a role in the effect observed in the present
study. One other potential limitation is that the patients were not
acutely ill as they show moderate PANSS score. However, as
unaffected siblings also show decreased FA in the tract connect-
ing the left nucleus accumbens and left DLPFC, it is unlikely that
symptom severity impacts the structural impairment we report on.
In contrast, it may very well be that patients that are more severely
affected by the illness display FA impairments in additional white
matter tracts.
Here, we show impairments in fronto–striatal pathways in

schizophrenia patients as well as in unaffected siblings. Specifi-
cally, we found mean FA to be decreased in the tract connecting
the left nucleus accumbens and left DLPFC. This result is in line
with the notion that schizophrenia is characterized by fronto–
striatal deficits. Moreover, the present data add to the evidence
suggesting that fronto–striatal deficits represent genetic vulner-
ability factors for schizophrenia. Future research should focus on
how this network develops in adolescents at genetic risk for
schizophrenia.
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