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Virtual screening, Docking, ADMET 
and System Pharmacology studies 
on Garcinia caged Xanthone 
derivatives for Anticancer activity
Sarfaraz Alam1,2 & Feroz Khan   1,2,3

Caged xanthones are bioactive compounds mainly derived from the Garcinia genus. In this study, a 
structure-activity relationship (SAR) of caged xanthones and their derivatives for anticancer activity 
against different cancer cell lines such as A549, HepG2 and U251 were developed through quantitative 
(Q)-SAR modeling approach. The regression coefficient (r2), internal cross-validation regression 
coefficient (q2) and external cross-validation regression coefficient (pred_r2) of derived QSAR models 
were 0.87, 0.81 and 0.82, for A549, whereas, 0.87, 0.84 and 0.90, for HepG2, and 0.86, 0.83 and 0.83, 
for U251 respectively. These models were used to design and screened the potential caged xanthone 
derivatives. Further, the compounds were filtered through the rule of five, ADMET-risk and synthetic 
accessibility. Filtered compounds were then docked to identify the possible target binding pocket, to 
obtain a set of aligned ligand poses and to prioritize the predicted active compounds. The scrutinized 
compounds, as well as their metabolites, were evaluated for different pharmacokinetics parameters 
such as absorption, distribution, metabolism, excretion, and toxicity. Finally, the top hit compound 1G 
was analyzed by system pharmacology approaches such as gene ontology, metabolic networks, process 
networks, drug target network, signaling pathway maps as well as identification of off-target proteins 
that may cause adverse reactions.

Cancer is a major public health problem worldwide and is the second-leading cause of death in the United States. 
In 2016, projected new cancer cases and cancer deaths in the USA are 1,685,210 and 595,690 respectively1. The 
burden of cancer will increase to 23.6 million new cases by 20302. The Indian Council of Medical Research has 
estimated that about 14.5 lakh patients will develop cancer in India during 2016 with the number expected to 
rise to 17.3 lakh by 20203. This high mortality rate throughout the world, make the pharmaceutical companies as 
well as the scientific community to have an acquisitive appetite for new lead identification. One of the important 
sources of drug discovery is natural products. Over the past 30 years, more than 50% of the drugs developed in the 
pharmaceutical industry are natural products or inspired by their structure4. In the case of anticancer drugs, the 
percentage is even higher. The Camptothecin (Camptotheca acuminate), Vinblastine & Vincristine (Catharanthus 
roseus), Paclitaxel (Taxus brevifolia), Podophyllotoxin (Podophyllum peltatum) and its semi-synthetic derivatives 
known as Etoposide and Teniposide5 etc. is its best example. One such promising tree is Garcinia, a plant genus of 
the family Clusiaceae, native to Asia, Australia, tropical and southern Africa. The best-known species in India are 
G. mangostana, G. gummi-gutta, and G. hanburyi. The gambogin resin secreted by the Garcinia genus of tropical 
plants has been used as folk medicine for centuries in Southeast Asia6. The major bioactive constituents of the 
gamboges resin secreted primarily by G. hanburyi7. Studies with this resin extract led to the identification of a 
new class of natural products that are collectively referred to as caged Garcinia xanthones based on their unique 
4-oxa-tricyclo [4.3.1.03,7] dec-2-one caged scaffold with a common xanthone backbone8.

Prior studies suggest that Garcinia xanthone and its derivatives have significant in vitro anticancer activ-
ity with promising pharmacology, but the molecular reason behind the activity is not yet explored. Keeping in 
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mind the unusual caged skeleton and remarkable bioactivity of Garcinia xanthones, the present work reports 
the identification of pharmacophore features and activity controlling sites, along with the identification of the 
mechanism of action based on the structure-activity relationship which led to virtual screening of a caged xan-
thone derivatives library, for the identification of anticancer lead compounds. These are achieved by using the 
combined approach of Quantitative Structure-Activity Relationship (QSAR), docking, Absorption, Distribution, 
Metabolism & Toxicity (ADMET) and system pharmacology in a pipeline9–12. The QSAR permits the quantifi-
cation of the relation between structure (described by selected properties or descriptors) of the ligand and its 
biological activity. It also helps in the optimization of the groups that modulate the potency as well as in the 
rationalization of the compound which leads to better activities and can also be used as a screening tool13. The 
efficacy of a drug also depends on its binding mode and affinity toward the target site, somehow the docking study 
help to perceive this efficacy and affinity14.

In this work three QSAR models were developed for anticancer activity as per OECD (Organization for 
Economic Co-operation and Development) regulatory purposes guidelines such as (i) a defined endpoint (ii) 
an unambiguous algorithm; (iii) a defined domain of applicability; (iv) appropriate measures of goodness-of-fit, 
robustness and predictive power and (v) a mechanistic interpretation15 and validated through different statisti-
cal parameters. These models were developed by adopting multiple linear regression (MLR) method using the 
training data set of diverse but in vitro experimentally known cytotoxic/anticancer activity of caged xanthones 
and its derivatives against human cell lines, namely alveolar adenocarcinoma cell line (A549), liver hepatocellular 
carcinoma cell line (HepG2), and glioblastoma cell line (U251). The derived QSAR models quantified the chem-
ical descriptors or properties and predicted the inhibitory concentration to 50% of the population (IC50) of each 
designed compound thereby highlighting its range of clinical efficacy and toxicity. The derived chemical proper-
ties were used to design 1000 compounds and advanced to screen through the QSAR models. Those compounds 
having the IC50 value of more than 15 µM was excluded.

Further, 25 designed compounds were filtered through Lipinski’s rule of five, along with ADMET risk parame-
ters assessments. In addition to optimizing the screening and testing by looking at only the most promising com-
pounds for its early information on ADMET data so to reduce the risk of late-stage attrition. The parameters of 
the risk were also provided so that it should be removed when designing the drugs. Later an appraisal of synthetic 
accessibility of compounds was performed, which gives an idea to the easiness of synthetic possibility16. Prior to 
docking studies, the target identification work is carried out. With the receptor model identification, in next the 
ligands were identified with the help of molecular docking studies. After manually scrutinizing the top-ranked 
compounds for novelty, biological potential activity, synthetic accessibility, and through passing pharmacological 
activity, the compound 1G (IC50 of 2.04 µM) was projected for detailed pharmacological studies. Further, this 
compound and its metabolites were evaluated with system pharmacology aspect. Through this, we identified and 
ranked cellular pathways and processes most influenced by the compounds 1G by enrichment analysis (EA) i.e. 
gene ontology (GO) process, metabolic networks, process networks and their pathway maps. These studied were 
helping to identify the processes, which were up-regulated or down-regulated by the candidate compound as well 
as to derive a relationship between the effects of the lead compound and biological processes17.

Most drugs which affect and metabolize the Cytochrome P450 (CYP450) also affect and hydroxylate various 
endogenous and xenobiotics compounds such as steroids, cholesterols, lipids, vitamins, or bile salts. It was found 
through our in silico analysis that the compound 1G interface with the Estradiol and Estriol metabolism. Here we 
study the associated xenobiotic-sensing nuclear receptors, which play key roles in maintaining hepatic choles-
terol, steroid, and bile acid homeostasis by interacting with a number of other nuclear receptors and transcription 
factors. Besides renal excretion and hepatic metabolism, the biliary excretion is the major pathways involved in 
the removal of xenobiotics. Bile acids facilitate the intestinal digestion and absorption of drugs. This excretion 
may sometimes consider as phase III metabolism. The bile acid is an important signaling molecule involved in 
the drug metabolism. The regulatory function of bile acids is mainly a result of bile acid activation of three main 
intracellular ligand-activated nuclear receptors, such as the farnesoid X receptor (FXR), pregnane X receptor 
(PXR), and vitamin D receptor. Activation of xenobiotic nuclear receptors by drugs, bile acids, and xenobiotics 
induces a network of genes involved in phase I, phase II, and phase III drug and bile acid metabolism, transport 
and detoxification. Thus, we here study the bile acid regulation of lipid metabolism and negative FXR-dependent 
regulation of bile acid concentration. The uptake of xenobiotics by bile acid transportation system and its regu-
lation, along with the regulation of drug metabolism through neurophysiological process circadian rhythm was 
also studied18–20. The circadian regulation is involved not only in the drug-metabolizing process but also in the 
elimination of the metabolized compounds through the Hepatobiliary system and the kidney. This system has a 
strong impact on the pharmacokinetics of drugs and, with the known chromodynamics mechanisms influencing 
drug efficiency and detoxifications21. This effect was demonstrated through a canonical pathway enlisting the 
enzymes, transporter, transporter ligands, and transcriptional factors involved.

The possible mechanism of action was identified for the candidate compound along with signaling pathway 
and associated functional genes through the available omics data. However, drugs may also bind to off-target 
proteins, which affects other biological processes and causes adverse reactions22. Most side effects are harmful 
to humans, but side effects can also be utilized to find new uses for the compounds or the synonyms effect of 
the compound23. We identified such a target which is associated with our lead compound. For the first time, 
this research article on Garcinia plant derived xanthones, leading to the identification of major anticancer drug 
targets and therefore defining the mechanism of action. Such study would further establish the development of 
pharmacophore for drug designing and identification of potential leads against cancer, a disease affecting millions 
of lives worldwide.
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Methods and Computational Details
Raw data.  Initially a total of 111, 100, and 110 active compounds with reported anticancer activity in terms 
of (IC50; μM) were selected in the training data set for the development of QSAR models correlating structural 
properties with anticancer activity against three different human cancer cell lines, namely A549, HepG2, and 
U251 respectively (Tables S1–S6).

Design and implementation.  This section describes the material and methods used for (1) compound 
standardization, (2) descriptor calculations, (3) QSAR model development, (4) statistical evaluation of the model, 
and (5) Designing, bioactivity and property prediction for new compounds.

Compound standardization.  The VLifeMDS® software was used to draw the structures, energy calcu-
lation and optimization of structural geometries of compounds. The two-dimensional (2D) structures were 
transformed into three-dimensional (3D) structures by using the converter module of VLife module. The 3D 
structures were then subjected to energy minimization, which was performed in two steps. The first step was 
energy minimization using molecular mechanics-2 (MM2) until the root mean square (RMS) gradient value 
became smaller than 0.1 kcal/mol Å and in the second step, minimized MM2 (dynamics) compounds were sub-
jected to re-optimization through the MOPAC (Molecular Orbital Package) method until the RMS gradient 
attained a value smaller than 0.0001 kcal/mol Å24.

Descriptor calculation.  The descriptors were calculated by using the QSARPlus module of VLifeMDS®. 
These descriptors were grouped into three classes, namely physicochemical descriptors, alignment independent 
descriptors and atom-type count descriptors. Further, these major classes were categorized in several sub-classes 
and each individual descriptor has been calculated for each of the training set compounds. In order to select the 
best subset of descriptors, highly correlated descriptors were excluded. The correlation matrix for derived models 
was provided in Tables S7–S9.

QSAR model development.  Prior to the QSAR model development selected experimental dataset was 
divided into the training (Tables S1–S3) and test set (Tables S4–S6). To divide the dataset the sphere exclusion 
clustering method was used25. The validity of training and test set were compared through the UniColoumn sta-
tistics approach. Finally, the QSAR models were developed based on stepwise forward MLR method26.

Statistical evaluation/validation of model.  Statistical validation is a very important process of robust 
QSAR model development. Therefore, various types of statistical validations were procured and the best model 
was selected by applying these different statistical parameters. Listed below are validations performed for the 
tested alignment, e.g., (i) Coefficient of determination (r2) should >0.7, (ii) Leave-one-out cross-validation 
(LOOcv) or correlation coefficient (q2) should be >0.5, (iii) Correlation coefficient of external validation set 
(pred_r2) should be >0.5. This is required to verify the ability of derived model in order to predict the biologi-
cal activity of similar molecules, (iv) Correlation metrics (rm2) calculated based on the correlation between the 
observed and predicted response data, with or without the intercept and also by interchanging the axes. For an 
acceptable QSAR model, the value of ‘Average rm2’ should be >0.5 & ‘Delta rm2’ should be <0.224, (v) Degree 
of freedom (Df) should be higher (higher is better), (vi) F-test for statistical significance of the model (higher is 
better, for the same set of descriptors and compounds), (vii) Highest q2 value in the randomization test (best_
ran_q2) should be low as compared to q2, (viii) Highest r2 value in the randomization test (best_ran_r2) should 
be low as compared to r2, (ix) Statistical significance parameter by randomization (alpha_test) should be <0.01, 
(x) Standard error of estimate (r2_se, q2_se and, pred_r2 se) should be smaller (smaller is better), (xi) Z-score 
calculated by the randomization test (ZScore) should be higher (higher is better) and, (xii) Applicability Domain 
(AD)/Extrapolation parameter defined as ‘0’ and ‘1’. The ‘0’ indicate applicability and data are true, whereas ‘1’ 
indicate the outlier26.

Designing of novel caged xanthone derivatives.  Based on structural feature selection in terms of chemical descrip-
tors and 3D structural components (pharmacophores) of derived QSAR models, activity controlling sites were 
identified for each model and accordingly novel caged xanthone derivatives were virtually designed.

Rule of five, ADMET risk screening and Synthetic accessibility assessment.  Lipinski’s rule of five was used for the 
screening of xanthone derivatives and filtered the orally bioavailable compounds27. Further, these filtered xan-
thone derivatives were evaluated for ADMET Risk parameters by using ADMET PredictorTM (Simulations Plus, 
USA). The overall risk was considered to be in the range of 0–24, where a lower score is preferable and show better 
druggability28. Later the synthetic accessibility was measured in terms of a score on a scale from 1 (very easy to 
synthesize) to 10 (complex and challenging to synthesize) by using the SYLVIA-XT 1.416.

Target identification and Molecular Docking Studies.  Target identification: The possible drug targets for the iden-
tified hits were explored with the help of MetaDrugTM (Thomson Reuters, USA). Through this, a list of targets is 
identified, such as ESR1 (Estrogen Receptor 1), GCR (glucocorticoid receptor), FGF (Fibroblast growth factors), 
CREBP1 (Cyclic AMP Response Element-Binding Protein) and STATs (signal transducer and activator of tran-
scription) (Fig. S1).

Protein preparation.  To prepare the target protein, structure of identifying proteins were retrieved from the 
RCSB PDB database29. In the first step, the protein preparation protocol was used. This protocol performs tasks 
such as modeling missing loop regions, inserting missing atoms in incomplete residues, deleting alternate confor-
mations and standardizing names of the atoms, protonating titratable residues, and removing water30.
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Protein-ligand Docking Studies.  The molecular docking and visualization studies were performed with 
the help of the LibDock program in Discovery Studio v3. 5 (Accelrys, USA)31. The LibDock is a flexible docking 
module. LibDock uses protein site features, referred to as hot spots, consisting of two types states (polar and apo-
lar). The ligand poses are placed into the polar and apolar receptor interactions site. A polar hotspot is preferred 
by a polar ligand atom (e.g., a hydrogen bond donor or acceptor), and an apolar hotspot is preferred by an apolar 
atom (e.g., a carbon atom)32. The protocol allows the user to specify several modes for generating ligand confor-
mations for docking. Conformer Algorithm based on Energy Screening And Recursive buildup (CAESAR) was 
used for generating the conformations33. The smart minimizer was used for in situ ligand minimization. Further, 
to identify definite interacting residues of the receptor with bound ligand a 2D diagram of docking was also per-
formed. The different scoring protocol was used for the scoring functions such as Jain, Ludi, potential of mean 
force (-PMF) and piecewise linear potential (PLP1) to evaluate ligand binding in a receptor cavity34.

In silico pharmacokinetics, metabolism, and toxicity studies.  Different pharmacokinetics parameters, namely, 
Absorption, Distribution, Metabolism, Excretion, and Toxicity were calculated. This study includes the quantita-
tive measurement of drug-like properties, pKa, absorption, solubility, lipophilicity, bioavailability, permeability, 
volume of distribution, blood-brain-barrier (BBB) penetration, hepatic clearance, transporters, dermal and ocu-
lar penetration, plasma-protein binding, metabolism, drug-drug interaction, half-life, etc. A plethora of diverse 
enzyme families and proteins are involved in xenobiotic metabolism, including CYP450 enzymes. These enzymes 
were detected for predicted active xanthone derivatives. The different metabolites and the sites of metabolism for 
Phase I and Phase II metabolism were also calculated. The safety of the compounds is an important parameter 
for a successful drug. For this, the hepatotoxicity, nephrotoxicity, neurotoxicity, and chance of causing anemia 
etc. is calculated. We also study the effect of the compound on different liver associated enzymes such as alka-
line phosphatase (ALP), gamma-glutamyl transpeptidase (GGT), serum glutamic oxaloacetic (SGOT) & serum 
glutamate-pyruvate transaminase (SGPT), and lactate dehydrogenase (LDH) enzymes when administered. These 
findings will be helpful to set dose-ranges. These studies were performed by using the ADMET PredictorTM, 
MetaDrugTM, MetaPrint2D, MedChem DesignerTM and TOPKAT module of Discovery Studio molecular mod-
eling software35.

System pharmacology study for enrichment analysis.  Identification and ranking of cellular pathways and biolog-
ical processes which was most influenced by candidate compound 1G were performed by MetaDrugTM tool. For 
this, the enrichment analysis, such as process networks, metabolic networks, and their pathway map analysis was 
projected. The enrichment significance was measured in terms of −log (p-value). Lower −log (p-value) means 
higher the relevance of an entity26.

Signal transduction pathway exploration to identify the possible mechanism of action.  In a 
quest to understand the possible mechanism of action of predicted top hit compound 1G, signal transduction 
pathway exploration study was performed and identified the pathway and the associated functional genes affected 
by the top hit compound through MetaDrugTM software.

Off-targets prediction for compound 1G.  Numerous drugs are known for their multi-targeting activ-
ities. Thus, keeping in mind these off-target interactions, the complexity of candidate compounds for any such 
interference with other human protein targets was evaluated by different prediction modules of MetaDrugTM 
platform.

Results and Discussion
QSAR model development and its validation.  In the present study, three statistical regression QSAR 
models were developed, so that to study the xanthones derivatives activity against three different cancer cell lines 
A549 (Model 1), HepG2 (Model 2), and U251 (Model 3). The study results, several models and the best model was 
selected based on various statistical parameters such as a square of the correlation coefficient or regression coef-
ficient (r2), and the robustness of model predictions was estimated from the cross-validated squared correlation 

Figure 1.  Regression plot representing training and testing of QSAR models. (A) Model 1 (B) Model 2 (C) 
Model 3.
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coefficient (q2). The plot of observed verses predicted activity provides an idea about how well the model was 
trained and how well it predicts the activity of the external test set Fig. 1A–C. These derived QSAR models are 
discussed below in details, and showing the relationship between in vitro experimental activity (i.e., IC50) as the 
dependent variable and independent variables (chemical descriptors).

QSAR Model 1.  Result shows that the model 1 yielded a high activity–descriptors relationship accuracy of 87% 
referred by regression coefficient (r2 = 0.87). It showed the internal (q2) and external (pred_r2) predictive ability of 
about 81% and 82% respectively. The fitness plot for the training and test set was provided in Fig. 1A. A radar plot 
representing the closeness between the actual and predicted activity of training and test set compounds was also 
summarized in Fig. S2. The equation 1 shows that the descriptors which play an important role in determining the 
anti-cancer activity are SdsCHE-index, MMFF_29, SssssCcount, DeltaEpsilonC; and T_2_2_1. The contributions 
(positive and negative) aggregate of each of the descriptors was provided in Fig. S3A.

µ = − . ×
− . ×
− . ×
− . ×
+ . × −
− .

Predicted Log IC M( ) 39 0090 DeltaEpsilonC
0 8078 MMFF_29
1 0827 SssssCcount
0 0483 T_2_2_1
0 5053 SdsCHE index
0 0560 (1)

50

Where,
DeltaEpsilonC: A measure of the contribution of electronegativity.
MMFF_29: Atom type count descriptor class.SssssCcount: this descriptor defines the total number of carbons 

connected with four single bonds.
T_2_2_1: Count of a number of double-bonded atoms.
SdsCHE-index: Electrotopological state indices for a number of –CH group connected with one double and 

one single bond.

QSAR Model 2.  This model conceded an activity–descriptors relationship accuracy of 87% referred by regres-
sion coefficient (r2 = 0.87). The internal (q2) and external (pred_r2) predictive ability was 84% and 90% respec-
tively. The fitness plot for the training and test set was provided in Fig. 1B. With this, a radar plot which represents 
the closeness between the actual and predicted activity of the compounds of training and test set were pro-
vided in Fig. S4. This model in equation 2 showed that the descriptors SdsCHE-index, MMFF_29, SssssCcount, 
DeltaEpsilonC, and T_2_2_1 play an important role in determining the anticancer activity. The positive and 
negative contribution of these descriptors was showing through the bar graph in Fig. S3B.

= − . × −
− . ×
− . × −
+ . × −
+ . ×
+ .

µPredicted Log IC M( ) 0 6407 SdssCE index
0 0336 T_2_2_2
0 1278 H AcceptorCount
0 2226 SdsCHE index
0 5877 T_O_O_3
0 5940 (2)

50

Where,
SdssCE-index: Electrotopological state indices for a number of carbon atom connected with one double and 

two single bonds.
T_2_2_2: count of a number of double bounded atoms.
H-AcceptorCount: Number of hydrogen bond acceptor atoms.
SdsCHE-index: Electro topological state indices for a number of –CH group connected with one double and 

one single bond.
T_O_O_3: Count of a number of Oxygen atoms.

QSAR Model 3.  The derived QSAR model generated a good activity–descriptors relationship accuracy of 86% 
referred by regression coefficient (r2 = 0.86). The model exhibit internal (q2) and external (pred_r2) predictive 
ability of 83% each. The fitness plot for the training and test set was provided in (Fig. 1C). Consecutively a radar 
plot was provided in Fig. S5 which represents the closeness between the actual and predicted activity of training 
and test set compounds. The model (equation 3) showed that three descriptors were highly correlated with the 
biological activity, such as T_T_N_4, T_O_O_3, and SssssCE-index. All the descriptors were directly propor-
tional to the activity and were presented through a bar graph in Fig. S3C.

µ = + . ×
+ . ×
+ . × −
+ .

Predicted Log IC M( ) 0 0948 T_T_N_4
0 5217 T_O_O_3
0 3687 SssssCE index
1 1313 (3)

50

Where,
T_T_N_4: Topological descriptor for the number of atoms separated from any nitrogen atom by 4 topological 

bonds.
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T_O_O_3: Count of number of Oxygen atoms (single, double or triple bonded) separated from the oxygen 
atom by 3 bond distances in a molecule.

SssssCE-index: Electrotopological state indices for number of carbon atom connected with four single bonds.

Validation of the developed models.  Validation is a very important process for QSAR models. Therefore, various 
types of validations were procured and the best model was selected by applying different statistical parameters. 
All the models were successfully validated by using a random test set compounds (Tables S4–S6), along with 
other parameters such as r2, (LOOcv) q2, pred_r2, Df, F test, best_ran_r2, best_ran_q2, alpha_test, r2 se, q2 se, 
pred_r2 _se, ZScore, Applicability domain etc. and the result was provided in Table 1. The r2 which necessary to 
be ≥0.7 was calculated as 0.87 for model 1 and 2, whereas 0.86 for model 3. The result shows that the q2 & pred_r2 
values were ≥0.5 for all the models. The Df were found to be 43, 48 and 35 and the F test was found to be 56.84, 
63.17 and 72.59, whereas the Z score was found to be 13.74, 15.84 and 14.51 respectively for Model 1, model 2 
and model 3 Table 1. The best_ran_r2 & q2 are found to be 0.24 and 0.00 for model 1, whereas 0.26 and 0.03 for 
model 2 and 0.29 and 0.15 for model 3. All the models show 0.00 as the alpha test. The standard error (se) was 
calculated to identify the possible error in the model’s predicted accuracy. The result shows that the error for r2, 
q2 and pred_r2se were 0.18, 0.22, and 0.21 respectively, for model 1 and 0.15, 0.17 and 0.21 for model 2 and 0.12, 
0.14 and 0.15 for the model 3 (Table 1). The residual error plot of the respective model was shown in Fig. S6. The 
result shows that the developed models were robust.

Virtual designing and filtering of novel GX derivatives.  Designing of compounds.  A library set of 
about 1000 compounds was designed by using the useful descriptors identified through the QSAR models. Out of 
1000 designed xanthone derivatives, 350 compounds were designed based on structural feature selection through 
A549 cancer cell line specific QSAR model, 350 compounds were designed based on feature selection through 
HepG2 cell line specific QSAR model, and 300 derivatives were designed based on feature selection through U251 
cell line specific QSAR model. Further, these compounds are predicted for its anticancer activity by using the 
respective models. The compound which has the IC50 value of more than 20 µM has been excluded and the rest 
are carried for additional studies (Tables S10–S12).

Screening through Lipinski’s Rule of Five, ADMET Risk and synthetic accessibility.  The possible active compounds 
were further screened through Lipinski’s rule of five for oral bioavailability, which screened out 300 designed 
compounds. Further, screened compounds were analyzed through pre-ADMET risk screening study. For this, 
a score based risk was calculated to identify the real ADMET problem behind the compound so that to prevent 
later failure of the compound. The compounds with an ADMET risk of 10 or more were excluded. The result of 

Parameters
QSAR 
Model 1

QSAR 
Model 2

QSAR 
Model 3

r2 0.87 0.87 0.86

(LOOcv) q2 0.81 0.84 0.83

pred_r2 0.82 0.90 0.83

Df 43.0 48.0 35.0

F test 56.84 63.17 72.59

best_ran_r2 0.24 0.26 0.29

best_ran_q2 0.00 0.03 0.15

alpha_test 0.00 0.00 0.00

r2 se 0.18 0.15 0.12

q2 se 0.22 0.17 0.14

pred_r2 _se 0.21 0.21 0.15

ZScore 13.74 15.84 14.51

Applicability domain 0 0 0

Table 1.  Different statistical validation of the developed QSAR model.

Risk Absorption
P450 
oxidation Mutagenicity Toxicity

ADMET 
Risk

Risk Parameters

Synthetic 
accessibility 
scoreRange 0–8 0–6 0–4 0–7 0–24

1G 1.48 1.0 1.0 4.0 7.3

Size, Charge, water solubility, 
Volume of distribution, acute rat 
toxicity, carcinogenicity in rat 
SGOT, hepatotoxicity, inhibition of 
3A4 oxidation of midazolam

7.41

Topotecan 0.0 0.0 2.0 2.0 2.0 Hepatotoxicity, inhibition of 3A4 
oxidation of midazolam 4.23

Table 2.  The ADMET risk parameters for compound 1G and Topotecan.
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candidate compounds 1G along with control compound was shown in Table 2. The result indicates that the 1G 
showed the risk of 7.3 in comparing to control drug topotecan, which shows a score of 2.0. The risk parameters 
evaluated were size, charge, water solubility, the volume of distribution, acute rat toxicity and carcinogenicity, 
SGOT elevation, hepatotoxicity and inhibition of 3A4 oxidation of midazolam (Table 2). The query compounds 
were screened for their synthetic accessibility. To measure this, the complexity of the ring system, complexity 
of the molecular structure, similar to commercially available compounds, the number of stereocenters and the 
potential for using important synthetic reactions were independently weighted to provide a single value for the 
synthetic accessibility score. Those compounds which show the high score was removed. The Synthetic accessibil-
ity score of compound 1G was found to be 7.4 (Table 2).

Fragment inhibitor screening through molecular docking.  The filtered compounds were advanced 
for docking studies. Prior to docking studies the targets were identified by using the MetaDrugTM program, which 
resulted in the identification of possible target such as FGF [PDB ID: 4RWJ], ESR [PDB ID: 1L2I], GCR [PDB 
ID: 4LSJ], CREBP1 [PDB ID: 4TS8], STAT1 [PDB ID: 1BG1], STAT3 [PDB ID: 3CWG] and STAT5 [PDB ID: 
1Y1U] (Fig. S1). Later, molecular docking study was performed on these identified target receptors for filtered com-
pounds and by using control (co-crystallized inhibitors in complex) namely, C1 (66 T/CID:51039095), C2 (ETC/
CID:4474781), C3 (LSJ/CID:72710581), C4 (XZ8/CID:6937521), C5 (PTR/CID:30819), C6 (CID:160254), and C7 
(CID:2726045), respectively (Fig. S7). After scrutinizing all the results, the top hit compound 1G were explored and 
presented in detail. The best docking score for compound 1G was achieved against the ESR1 receptor. The docking 
results for most promising compound 1G on target ESR1, showed a high binding affinity as indicated by LibDock 
(docking) score of 121.33 and binding energy of −154.27 kcal/mol, in comparison to co-crystallized inhibitor ETC, 
i.e., LibDock score of 112.22 and binding energy of −103.55 kcal/mol (Table 3). Docking results revealed the pres-
ence of both H-bonds and hydrophobic interactions within the docked binding site of ESR1 (Fig. 2A). The com-
pound 1G when docked showed several pose and orientation and thus several configurations. Each configuration 
is combined score of Vander Waals forces, H-bonds, pi interactions and other parameters and refers in form of 
LibDock score. Higher the LibDock score means a high chance of ligand-protein binding. Results of docking poses 
and binding mode conformations revealed that HH21 and HH22 of Arg394 (basic, polar, positive charged), donate 
the hydrogen atom which was accepted by O29 atom of compound 1G. Whereas, compound 1G donates atom (H39) 
and (H52) which were accepted by an oxygen atom of Leu346 (hydrophobic), and Phe404 (hydrophobic, aromatic).

These hydrogen bonds may be considered as a stabilizer of the complex and may be the reason for confor-
mational stability and thus resulted in significant activity (Fig. 2B). The interactive amino acid residues were 
presented in Table 3. These interactions were displayed with 2D diagram and represented by different colors e.g., 
pink indicates electrostatic interactions; purple indicates the covalent bond, and green indicates Van der–Waals 
interaction. Solvent accessibility of the ligand atoms and the amino acid residues are shown in a light blue shade 
surrounding the atom or residue. High shade indicates more exposure to the solvent (Fig. S8). The measured 
binding affinity of compound 1G and the inhibitor of ESR1 receptor in terms of the LibDock score was further 
re-calculated through different other scoring functions so that to avoid false positive predictions. The calculated 
docking scores of compound 1G against ESR1 were 99.46, 6.83, 629 and 157.7 for PLP1, Jain, Ludi and PMF scor-
ing functions, respectively. However, for control drug/inhibitor of ESR1, the calculated docking scores were 92.85, 
6.02, 674 and 135.86 for PLP1, Jain, Ludi and PMF scoring functions, respectively. These results indicate that 
compound 1G docking scores were higher than the control drug/inhibitor (Table 3). These results may provide a 
molecular level of the foundation, to understand the possible mode of action of top hit compound 1G. This infers 
that compound 1G may be a potential inhibitor of ESR1.

Compliance with in silico pharmacokinetics parameters.  The use of in silico methods to predict vari-
ous pharmacokinetics parameters such as ADMET is intended as a first step to analyze the novel chemical entity, 
to prevent wasting time on lead candidates that would be toxic or metabolized by the body into an inactive form 
and unable to cross membranes. In the studied work, different physicochemical properties of the candidate com-
pound 1G were calculated and then compared with that of standard drug topotecan. The calculated molecular 
diffusion coefficient in water for compound 1G was 0.58, and octanol-water distribution coefficient (LogP/D) was 
3.45. The compound 1G was found slightly lipophilic in nature and showed good solubility, but slightly lower than 
standard anticancer drug topotecan. Results of compound 1G showed a tendency to supersaturate in water, with 

S.No. LibDock Score H bonding
Binding energy 
(kcal/mol) PLP1 Jain score Ludi -PMF Interactive Amino acid residue

1G 121.33
ARG394 (2)
LEU346
PHE404

−154.27 99.46 6.83 629 157.7

MET343, LEU346, THR347, LEU349, 
ALA350, GLU353, TRP383, LEU384, 
LEU387, MET388, LEU391, ARG394, 
PHE404, MET421, ILE424, PHE425, 
LEU428, LEU525, LEU540

ETC (Control) 112.22 ARG394
GLU353

−103.55 92.85 6.02 674 135.9

MET343, LEU346, THR347, LEU349, 
ALA350, GLU353, TRP383, LEU384, 
LEU387, MET388, LEU391, ARG394, 
LEU402, PHE404, MET421, ILE424, 
PHE425, LEU428, GLY521, HIS524, 
LEU525, LEU540

Table 3.  Details of LibDock scoring functions, H-bond, binding energy and interacted binding site amino acid 
residues for compound 1G & control drug docked on anticancer target ESR1.
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a native water solubility of 7.87E−03 mg/mL. The solubility of the compound 1G in the fasted state at gastric fluid 
was found 2.11E−03 mg/mL, and in a fasted state intestinal fluid, it was 1.86E−02 mg/mL, whereas, in a fed state 
intestinal fluid, it was found 1.16E−01 mg/mL. The compound 1G was analyzed for permeability measurement 
through human skin and human jejunal effective permeability, along with apparent MDCK COS (Madin-Darby 
Canine Kidney, Cells-On-Sheet) permeability, and permeability through rabbit cornea. The calculated perme-
ability through human skin was 24.09 cm/s × 107 and for Peff, it was 2.47 cm/s × 104 cm/s × 107. The calculated 
MDCK permeability for compound 1G was 381.31 cm/s × 107, and the permeability through the rabbit cornea 
was 67.35 cm/s × 107. These results indicate high intrinsic passive uptake capacity of the liver, which considered 
good in the sense of pharmacology studies.

The calculated volume of distribution of compound 1G was 5.33 L/kg. The compound 1G showed the ability 
to cross the BBB partition. The brain/blood partition coefficient was found (in logarithm) −0.36, whereas the 
percent unbound to blood plasma proteins was 4.97. The predicted blood to plasma concentration ratio was 
0.72 for Compound 1G. The major CYPs involved were CYP3A4, CYP1A2, CYP2C9, and CYP2C19, and the 
compound 1G showed potency to inhibit these CYPs. The compound 1G was predicted to act as a substrate of 
CYP3A4, and the identified sites of metabolism on compound 1G were C13, C16, C21, and C24. The compound 
1G was found to be the inhibitor of the CYP3A4-mediated metabolism of midazolam and testosterone. The cal-
culated inhibition constant (Ki) valuations for midazolam and testosterone inhibition were 0.769 and 69.033 µM, 
respectively. The affinity of compound 1G for CYP450 enzymes in quantitative terms was also evaluated. The 
calculated Km and Vmax values provide the knowledge of metabolic rate. The calculated kinetics Michaelis-Menten 
Km constant for predicted sites of CYP3A4 mediated metabolism was 1.89E + 01 µM, whereas the calculated 
Vmax constant for predicted sites of enzyme CYP3A4 mediated metabolism was 1.40E + 01 nM/min/nM. The 
calculated intrinsic clearance constant (CLint) for predicted sites of CYP3A4 mediated metabolism was 8.25E + 
01 µL/min/mg. The enzyme kinetics Michaelis-Menten Km constant value for CYP3A4 mediated metabolism 
(human liver microsomes) was 2.36E + 02 µM, while Vmax constant for predicted sites of CYP3A4 mediated 
metabolism (human liver microsomes) was 6.70E-01 nM/min/nM. The intrinsic clearance constant for predicting 
sites of CYP3A4 mediated metabolism (human liver microsomes) was 2.84E + 00 µL/min/mg. These metabolisms 
related enzyme kinetics data may further be used to calculate the hepatic clearance and in vitro/in vivo relation-
ship. The overall calculated intrinsic clearance in human liver microsomes was 1.82E+01 and 1.64E+01 μL/min/
mg for compound 1G and standard anticancer drug topotecan, respectively. These results suggest that the renal 
clearance may decrease for compound 1G, but metabolic clearance may increase. Through this metabolic rate, a 
precise knowledge of elimination rate may be optimized and later can be used to calculate the drug’s half-life and 
total clearance (Tables S13 and S14).

In addition to the CYP450, however, there are a variety of other drug metabolizing enzymes such as oxidases, 
hydrolases, reductases, and dehydrogenases (oxidoreductases) that can affect the distribution of orally admin-
istered compound in the systemic circulation. To study potential metabolism mediated compound interactions 
in terms of their metabolites, have important implications for both drug efficacy and safety. For this, compound 
1G was analyzed computationally for investigation of possible drug metabolism and their metabolites implica-
tions. Due to this, predicted results of potential metabolic sites, metabolites, and type of reactions involved for 
compound 1G are discussed here in details. Results of CYP450 mediated metabolism of compound 1G showed 
the probability of six possible metabolites by CYP 3A4 enzyme (Fig. 3). Moreover, results also showed the possi-
ble metabolic sites and corresponding metabolites for each biochemical reaction. These metabolic reactions for 
compound 1G were demethylation, glucuronidation, oxidation, sulfation, glucosidation, phosphorylation, and 
hydration (Fig. 4). However, no sites were identified for (UGT) uridine 5′-diphospho-glucuronosyl transferases 
family, which catalyze in Phase II metabolism and has the potential to transform small molecules to water-soluble 
form. The overall results suggest that compound 1G covers, good drug-like properties.

Molecular interactions of compound 1G with druggable proteins.  There are some proteins which are reported to 
be involved in xenobiotic metabolism, detoxification, BBB penetration and channel inhibition. Results indicate 

Figure 2.  (A) Structural model of ESR1 (PDB ID: 1L2I) with ligand binding site (green sphere). (B) Binding 
site pocket residues with best fit confirmation and superimposition of ligand 1G (green) in comparison with 
control compound ETC (yellow).
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that compound 1G may activate the PXR, which regulates the expression of proteins involved in detoxification. 
Beside this, compound 1G showed the potential to become a substrate, as well as possesses a tendency to inhibit 
the human P-glycoprotein transporter (Pgp), which is known to be involved in multiple drug resistance (MDR) 
and BBB penetration. Results also indicate that compound 1G inhibited by the hepatic organic anion-transporting 
polypeptide (OATP-1B) transporter, thus there may be a little chance of drug–drug interaction (Table S13). These 
results support the predicted anticancer activity of compound 1G.

Figure 3.  The predictive metabolites and sites of metabolism of candidate compound 1G.

Figure 4.  The possible reactions and metabolites of Compound 1G. (A) Demythalation (B) Sulfation, (C) 
Glucuronidation, (D) Phosphorylation, (E) Hydroxylation, (F) Hydration, (G) Oxidation, (H) Glucosidation.
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Predicted toxicology of compound 1G.  Results of in silico toxicity risk assessment for compound 1G revealed 
no sign of cardiotoxicity and anemia, similar to standard anticancer drug topotecan. Results of compound 1G 
showed no hERG (human ether-a-go-go-related gene) potassium channel inhibition in human, similar to stand-
ard drug topotecan, which otherwise may cause risk of cardiotoxicity. However, results showed that compound 
1G may cause mild nephrotoxicity if used for prolonged or at high doses. Drug-induced liver injury (DILI) stud-
ies indicate that compound 1G may elevate the level of GGT, SGOT, SGPT, ALP and thus may cause liver necrosis, 
Cholestasis and may damage the bile duct, On the other hand, level of LDH enzymes thus not cause any risk of 
ischemic hepatitis. Likewise, results of compound 1G showed predicted rat maximum tolerated dose in feed state 
was 0.16 g/kg body weight, similar to standard drug topotecan i.e., 0.15 g/kg body weight. The compound 1G 
predicted to be non-sensitized against toxicity risk parameter allergenic respiratory sensitization in the rat, sim-
ilar to topotecan. Beside this, compound 1G showed moderate ocular irritancy, mild skin irritant, and weak skin 
sensitization, in contrary to topotecan, which showed none irritancy, except severe ocular irritancy. However, 
compound 1G was detected non-toxic for estrogen receptor toxicity in the rat, while topotecan showed a toxic 
response. On the contrary, compound 1G showed toxic response against androgen receptor toxicity in the rat, 
similar to topotecan. However, both 1G and topotecan cause non-toxic response against parameter causing phos-
pholipidosis. The compound 1G showed non-mutagenic (Ames) response, similar to topotecan. In terms of pure 
compound and metabolites, the predicted mutagenicity responses varied against different strains of S. typhimu-
rium (Table 4). The compound 1G may cause developmental toxicity, similar to topotecan. No carcinogenicity 
potential predicted for both female and male species of rat and mice. The carcinogenic potency for compound 
1G in terms of predicted tumorigenic dose, 50% (TD50) for the mouse and rat were 4.33 and 2.60 mg/kg body 
weight/day, respectively, similar to topotecan (Table 4). These toxicity risk assessment results overall indicate that 
compound 1G showed under limit toxicity range, except few parameters, which can be optimized by dose limit 
experiments. These results will be helpful in setting dose ranges for in vivo small animal’s assays.

Enrichment analysis through Systems Pharmacology.  To find out the processes upregulated or 
downregulated by compound 1G, function-based pathways, compounds association analysis, GO terms were 
studied in detail, through biological processes, molecular functions, and genes set enrichment scores. This study 
resulted in a relationship between the effect of compound 1G and biological processes. These EA results for 
compound 1G are represented through the GO process and key network object (Fig. S9), metabolic networks 
(Fig. S10), and biological process networks (Fig. S11) and corresponding biological pathway maps. The signifi-
cance of EA score was represented by p-value (negative logarithm; -log value). Higher p-value represents higher 
relevance of the entity. Thus, each process ranked based on quantitative p-value and so summarizes the pharma-
cological and toxic effect at systems pharmacology level.

GO Processes & Key Network Objects.  The key network objects and GO processes were identified for com-
pound 1G through the MetaDrugTM database tool. A total of 27 networks was predicted, however, the top net-
works were selected based on g-score. Highly positive g-score means, the network is highly saturated with genes 
(Table 5). The key networks identified are glutathione s-transferase (GSTA1), sulfotransferase (SULT1A1), hun-
tingtin interacting protein (HYEP), N-acetyltransferase (NAT-1), aryl hydrocarbon receptor nuclear translocator 
(ARNT2) and the major GO Processes identified was responding to xenobiotic stimulus & xenobiotic metabolic 
process. A canonical pathway for the top scored network (based on a number of pathways) from active experi-
ments are shown in Fig. S12.

Identified metabolic networks for compound 1G.  The drug-induced metabolic changes in the metabolic networks 
are identified and score in the term of −log (p-value) score. Through this score, a subset of metabolic networks 
was identified and ranked in Fig. S10, which seems more influenced by the compound 1G. These changes were 
due to the interactions of some regulatory proteins with the compound 1G or its metabolites. The result indicates 
that the compound 1G more interferes with the Estradiol & Estrone metabolism. The details interfere are shown 
here with the pathway details.

Analysis of Estradiol metabolism influence by compound 1G.  In this pathway, the major cytochrome involved 
were CYP1A2, CYP3A4, and CYP2D6. They catalyze the intermediate enzyme monooxygenase, which hydrox-
ylated the 17β-estradiol into three different endogenous metabolites i.e., 2-hydroxyestradiol, 4-hydroxyestradiol, 
and estriol. Consequently, COMT (catechol-O-methyltransferase) catalyzes and convert 2-hydroxy-estradiol into 
methoxy estradiol and 4-hydroxyestradiol into 17-β-estra-1, 3, 5-trien-3, and 17-triol-4-methyl ether. The impor-
tant transporter SULT1A3 catalyzes and converts the 17β estradiol into endogenous metabolites 17β-estra-1, 3, 
5-trien-3, and 17-diol-3-sulphate. The UGT2B28, UGT1A10, and UGT1A1 catalyzes the which results in estra-
diol 3-glucuronide. Whereas the UGT2B11 catalyzes and convert the estriol into 16-α, 17-β-estra-1, 3, 5-trien-3, 
16, 17-triol-16-D-glucuronoside (Fig. 5).

Similarly, in estrone pathway its identified that CYP1A2 and CYP3A4 reacts with estrone and convert it 
into three endogenous metabolites, i.e. 16-α-hydroxyestrone, 4-hydroxyestrone and 2,3-dihidroxy-estra-
1,3,5-trien-17-one. On the other hand the Arylsulfatase (ARSD) catalyze the reaction and convert estrone into 
estrone-3-sulfate, which was later re-converted into estrone by catalyzing by steryl-sulfatase (STS) enzyme. 
Simultaneously the COMT catalyzes, and convert 4-hydroxyestrone & 2,3-dihidroxy-estra-1,3,5-trien-17-one 
and convert them into 3, 4-dihidroxy-estra-1,3,5-trien-17-one-4-methyl-ether and 3-dihidroxy-estra-1,3,5-trien-
17-one into 2,3-dihidroxy-estra-1,3,5-trien-17-one-2-methyl-ether respectively (Fig. 6).
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Biological process networks analysis for compound 1G.  Through the biological process network analysis, it’s iden-
tified that three biological processes i.e. bile acids transport system, bile acid regulation of lipid metabolism and 
negative FXR-dependent regulation of bile acids concentration and regulation of drug metabolism through neu-
rophysiological process circadian rhythm was mainly affected by 1G (Fig. S11). The studies of these networks will 
help to find a meaningful relationship between biological processes and lead compound, prior to experimental 
evaluation of small animals or clinical trials.

Bile acid transport system analysis and its regulation.  The result shows that the extracellular and intracellular 
bile acid binds with the PXR, which transcriptionally regulate the OST-β (organic solute transporter beta) major 
basolateral bile acid transport system and MDR1, MDR3 and OATP8. The PXR also binds with BSEP and activate 
it. The PXR makes a complex subunit of PXR/RXRα. This complex subunit transcriptionally regulates the small 
heterodimer partner (SHP), and again make a complex subunit RAR-α/RXR-α. This subunit transcriptionally 

Compound 1G Topotecan

Cardiotoxicity Non Toxic Non Toxic

Anaemia No No

Nephrotoxicity Mild Toxic Non Toxic

Hepato-toxicity

levels of Alkaline Phosphatase enzyme Elevated Elevated

levels of GGT enzyme Elevated Normal

levels of LDH enzyme Normal Normal

levels of SGOT enzyme Elevated Elevated

levels of SGPT enzyme Elevated Normal

pIGC50 for Tetrahymena pyriformis growth inhibition toxicity 1.688 0.754

hERG potassium channel inhibition in human No No

Estrogen receptor toxicity in rats Nontoxic Toxic

Androgen receptor toxicity in rats Toxic Toxic

Allergenic respiratory sensitization in rat Non-sensitizer Non-sensitizer

Causing phospholipidosis Nontoxic Nontoxic

Rat Inhalational LC50 0.185949 mg/m3/h 9.10882 mg/m3/h

Rat Maximum Tolerated Dose feed (g/kg_body_weight) 0.161302 0.150435

Developmental Toxicity Potential Toxic Toxic

Carcinogenic Potency TD50 (mg/kg_body_weight/day)
Mouse 4.32844 1.02803

Rat 2.60491 7.50803

FDA Rodent Carcinogenicity

Mouse female Non-Carcinogen Non-Carcinogen

Mouse male Non-Carcinogen Non-Carcinogen

Rat female Single-Carcinogen Single-Carcinogen

Rat Male Non-Carcinogen Single-Carcinogen

Daphnia EC50 2.96487 mg/l 30.8959 mg/l

Rat Chronic LOAEL (g/kg_body_weight) 0.00875437 0.0021976

Aerobic Biodegradability Degradable Non-Degradable

Ocular Irritancy Moderate Severe

Skin Irritancy Mild None

Skin Sensitization Weak None

Triggering the mutagenic chromosomal aberrations Toxic Toxic

mutagenicity (pure compound)

Ames Non-Mutagen Non-Mutagen

TA97 and/or TA1537 strains of S. typhimurium Negative Positive

TA98 strain of S. typhimurium Positive Negative

TA100 strain of S. typhimurium Negative Negative

S. typhimurium and/or WP2 uvrA strain of E. coli Negative Positive

TA1535 strain of S. typhimurium Negative Negative

mutagenicity (microsomal rat liver metabolites)

TA97 and/or TA1537 strains of S. typhimurium Positive Positive

TA98 strain of S. typhimurium Positive Negative

TA100 strain of S. typhimurium Negative Negative

TA102 strain of S. typhimurium and Negative Negative

TA1535 strain of S. typhimurium Negative Negative

Table 4.  Details for calculated toxicity risk parameters for compound 1G and control drug topotecan. 
Abbreviations: EC50, effective concentration 50%; FDA, Food and Drug administration; LC50, lethal 
concentration 50%; LD50, lethal dose 50%; LOAEL, lowest observed adverse effect level; TD50, tumorigenic dose 
50%; SGOT, serum glutamic oxaloacetic transaminase; SGPT, serum glutamate-pyruvate transaminase; GGT, 
gamma glutamyl transpeptidase; LDH, lactate dehydrogenase.
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regulates the solute carrier family 10 member 1 (SLC10A1) and hepatocyte nuclear factor (HNF4-α). The SHP 
also regulates the mono-conjugated bile acid, which later binds with scavenger receptor class B member (SR-BI). 
The PXR/RXRα also induces the bile acid conjugation enzymes, SULT2A1. This activation of FXR reduces 
hepatic fat accumulation and the level of plasma triglyceride (Fig. S13).

Bile acid regulation of lipid metabolism.  The analysis result, direct that the intracellular bile acid bound with 
FXR and activate it. On the other hand, bile acids go for reaction with CYP7A1 and make a product of bile 
acid CoA and later into mono-conjugated bile acid. This product has further transformed into di-anionic 
bile acids. The targeted FXR, transcriptionally regulate UGT2B4, peroxisome proliferator-activated recep-
tor alpha (PPARα), and SULT2A1. This SULT2A1 transcriptionally regulate the mono-conjugated bile acid. 
Simultaneously the FXR transcriptionally regulates the PXR, a nuclear receptor which makes a complex sub-
unit PXR/RXRα. The complex PXR/RXRα transcriptionally regulates the cytoplasmic enzyme CYP3A4 and 
CYP2B6. The CYP3A4 activates the SULT2A1 which transcriptionally regulate the mono-conjugated bile 
acid and catalyzes a reaction which transforms the mono-conjugated bile acid into di-anionic bile acids. The 
transcriptionally activated PPARα considered to be the important regulator of intra and extracellular lipid 
metabolism. The activated FXR increase the lipid oxidation. The FXR targeted the PPARα. The FXR/RXRα 
transcriptionally activate the gastrotropin, this protein can bind bile acid and play roles in fatty acid uptake, 
transport, and metabolism (Fig. S14). These results indicate that there was modulation of bile acid receptors by 
compound 1G, which seems functionally active with a role in lipid metabolism, therefore there is little or no 
risk of drug-induced toxicity on lipid metabolism.

Neurophysiological process analysis (Circadian rhythm).  Screening results showed that compound 1G may 
also affect the circadian rhythm. To demonstrate the affected neurophysiological processes by compound 1G 
and its metabolites, circadian rhythm analysis was studied and highlighted the molecular insight mechanism of 
action. The result of this regulation was analyzed and presented through a canonical pathway. The result showed 
that the initial regulation was by retinoic acid – related orphan receptor (RORα) and reverse-erythroblastosis 
(Rev-ERBα) which modulate the neuronal pas domain protein (NPAS2). This NPAS2 also regulated by NAD 
(+). Further, this NPAS2 bind with cryptochrome (CRY2), which transcriptionally regulates brain and muscle 

No Key network objects GO Processes Total nodes p-Value g-Score

1 GSTA1, SULT1A1, HYEP, 
NAT-1, ARNT2

Response to xenobiotic stimulus 
(69.2%), xenobiotic metabolic 
process (61.5%), cellular response 
to xenobiotic stimulus (61.5%)

51 3.01e-38 61.77

Table 5.  The key network objects and GO processes along with total nodes.

Figure 5.  Representing the pathway maps for Estradiol metabolism influence by compound 1G. The red square 
represents the affected proteins.
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ARNT-like protein (BMAL1). Later, BMAL1 binds with the circadian locomotor output cycles kaput (CLOCK) 
transcription factor. The CRY2, CRY1, BMAL1, and CLOCK all together regulate the period circadian protein 
(PER3 & PER2) (Fig. S15).

Figure 6.  Representing the pathway maps for estrone metabolism influence by compound 1G. The red square 
represents the affected proteins.

Figure 7.  Signal transduction Pathway analysis of the possible drug target FGR, ESR1 and GCRα and their 
localization. The arrow marks represent the direction and the red encircle shows important targets in pathway.
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Identification of Drug target networks for compound 1G.  The possible mechanism of action of compound 1G was 
derived by mining the available omics data and thus hypothetically identified the pathway and associated func-
tional genes involved. Results of in silico signal transduction studies suggest that compound 1G or its metabolites 
may interfere cancer cell signaling process through interaction with transporter FGF4 or its cell membrane recep-
tor FGFR1. This interference resulted in induction of transcriptional co-activation enzyme CBP (CREB-binding 
protein) in the cytoplasm. The CBP enzyme may transduce this signal through three nuclear membrane receptors 
namely, ESR1, RAR-alpha/RXR-alpha, and GCR-alpha. The ESR1 predicted to regulate nuclear proteins, namely, 
COMT, IGF-1, and vascular endothelial growth factor receptors (VEGFR-2). For therapeutic activity, ESR1 recep-
tor transcriptionally activates the Insulin-like growth factor 1 (IGF-1), while inhibiting the COMT. In another sig-
naling pathway, CBP may bind to RXR-alpha and transcriptionally activate the aldehyde dehydrogenase 2 family 
(ALDH2), thus resulted in inhibition of cell proliferation. The other possible target suggested to be GCR-alpha, 
which transcriptionally inhibit the IL-4, IL-5, and regulate the macrophage colony-stimulating factor (M-CSF) a 
nuclear receptor, thus resulted in inhibition of cell division (Fig. 7).

Off-target prediction for compound 1G.  Results suggest that compound 1G may interact and interfere with epi-
dermal growth factor (EGF) which well along bind and activates the cell membrane EGFR receptor, and later 
activate the nuclear C-Jun and SP1 transcription factors. In response to the activation of these nuclear tran-
scription factors, results suggest that it may cause inhibition of cytoplasmic off-target enzyme COMT (which 
is a known drug target for Parkinson’s disease (PD), Alzheimer disease (AD), and Schizophrenia (Fig. 8). These 
off-target results suggest the future scope of compound 1G for the evaluation of anti-PD, anti-AD, and antipsy-
chotic (against Schizophrenia) activity, which is a subject of further research work.

Conclusion
The quest for high target potency should not be pursued blindly, without an understanding of its relevance to 
efficacy and efficiency. The strategy used in this study may provide understanding in designing novel and promis-
cuous Garcinia caged xanthones as anticancer agents. Differentiating and describing the role of important chem-
ical descriptors identified through QSAR modeling gives an idea of key descriptors responsible for the in vitro 
anticancer/cytotoxic activity. In silico approaches were used to virtually screen top hit compound 1G, and later 
validated by evaluation through oral bioavailability parameters, ADMET risk screening, docking, in silico phar-
macokinetics/pharmacodynamics (PK/PD) screening study, and lastly with systems pharmacology approach. 
Structure-guided insights of molecular interactions were explored to highlight the multi-level cell networks for 
biological processes, networks, and signal transduction pathways for Compound 1G. Also highlighted the on 
and off-targets of Compound 1G. Based on signaling pathways and molecular docking energy, potential targets 
of compound 1G were suggested. These studied methods can be used as a template work, ahead of smart drug 
discovery path. By using these QSAR models and through standardization of compounds and centering and scal-
ing of descriptors a set of virtually designed compounds can be predicted as the promiscuous cancer inhibitors.
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