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Introduction: Kidney renal clear cell carcinoma (KIRC), a kind of malignant disease, is a
severe threat to public health. Tracking the information of tumor progression and
conducting a related dynamic prognosis model are necessary for KIRC. It is crucial to
identify hypoxia–immune-related genes and construct a prognostic model due to immune
interaction and the influence of hypoxia in the prognosis of patients with KIRC.

Methods: The hypoxia and immune status of KIRC patients were identified by utilizing
t-SNE and ImmuCellAI for gene expression data. COX and Lasso regression were used to
identify some hypoxia–immune-related signature genes and further construct a prognostic
risk model based on these genes. Internal and external validations were also conducted to
construct a prognostic model. Finally, some potentially effective drugs were screened by
the CMap dataset.

Results: We found that high-hypoxia and low-immune status tend to induce poor overall
survival (OS). Six genes, including PLAUR, UCN, PABPC1L, SLC16A12, NFE2L3, and
KCNAB1, were identified and involved in our hypoxia–immune-related prognostic risk
model. Internal verification showed that the area under the curve (AUC) for the
constructed models for 1-, 3-, 4-, and 5-year OS were 0.768, 0.754, 0.775, and 0.792,
respectively. For the external verification, the AUC for 1-, 3-, 4-, and 5-year OS were 0.768,
0.739, 0.763, and 0.643 respectively. Furthermore, the decision curve analysis findings
demonstrated excellent clinical effectiveness. Finally, we found that four drugs (including
vorinostat, fludroxycortide, oxolinic acid, and flutamide) might be effective and efficient in
alleviating or reversing the status of severe hypoxia and poor infiltration of immune cells.

Conclusion: Our constructed prognostic model, based on hypoxia–immune-related genes,
has excellent effectiveness and clinical application value. Moreover, some small-molecule
drugs are screened to alleviate severe hypoxia and poor infiltration of immune cells.
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INTRODUCTION

Cancer is a major public health problem worldwide and is the
second leading cause of death in the United States (Siegel et al.,
2018). In 2020, about 73,750 newly diagnosed renal cancer cases
and 14,830 deaths were registered. The incidence rates in male
and female are 5 and 3%, respectively (Siegel et al., 2020). Kidney
renal clear cell carcinoma (KIRC) is the most representative
subtype of renal cancer, accounting for about 75% of all
patients with renal cancer, with an increased incidence rate
year by year (Linehan and Ricketts, 2019; Bai et al., 2020a).
However, KIRC-related clinical symptoms and biomarkers are
lacking. Hence, KIRC cannot be diagnosed early, resulting in poor
response to conventional therapy and poor survival rate (Bai
et al., 2020b). Thus, KIRC is a threat to public health as a
malignant disease, and it is necessary to conduct real-time
information tracking and dynamic prognosis analysis for
KIRC patients (Zhao et al., 2018). TNM staging is a classical
manner to predict cancer prognosis and suggest treatment
strategies. However, the classification of TNM is based on
clinical information, and it does not consider any genetic
features (Choi et al., 2017; Wang et al., 2021a). So, it is of
great significance and urgency to identify some novel effective
gene signatures for KIRC.

Recently, immune therapy has been proven highly efficacious
in KIRC; especially immune checkpoint inhibitors that block PD-
1/PD-L1 or CTLA-4 T cell inhibitory receptors are considered
standard treatment (Motzer et al., 2015; Motzer et al., 2018).
KIRC is heterogeneous, such that the tumor cells are in an
intricate tumor microenvironment, including immune cells,
spongiocytes, fibroblasts, and vessels. Features of the
infiltration immune cells in the tumor microenvironment can
heavily affect the responses to systemic therapy (Vuong et al.,
2019). Hypoxia is a typical hallmark in nearly all solid tumors,
arising from the rapid and uncontrolled proliferation of tumors
and insufficient blood supply, which plays a vital role in tumor
genetic instability and prognosis (Schödel et al., 2016; Shao et al.,
2018). Hypoxia also plays a critical role in cell proliferation,
differentiation, apoptosis, and tumor angiogenesis (Haase, 2006;
Gonzalez et al., 2018; Zhang et al., 2020a). Some studies have
shown that hypoxia can regulate the status of the tumor immune
microenvironment, such as promoting the recruitment of innate
immune cells and interfering with the differentiation and
function of adaptive immune cells, which finally leads to the
consequent immunosuppression and immune evasion of the
tumor (Palazon et al., 2014; Terry et al., 2017; Jing et al., 2019;
Wang et al., 2021b). HIFs are dimeric proteins consisting of an
O2-sensitive a subunit (HIF-1a, HIF-2a, or HIF-3a) and a scaffold
b subunit (HIF-2b) that play an important role in mediating
hypoxia-related biological processes (Shi et al., 2021; You et al.,
2021). Under hypoxia conditions, HIFs can bind with
transcriptional coactivator and hypoxia response element to
increase the expression of a string of target genes,
consequently regulating various biological processes, including
proliferation, metabolism, angiogenesis, migration, and invasion
(Gilkes et al., 2014; de Heer et al., 2020; Hoefflin et al., 2020; Yang
et al., 2020). Therefore, immune-hypoxia-related genes may be

effective signatures for predicting the overall survival (OS)
outcomes of KIRC patients.

In this research, we hypothesized that immune and hypoxia
interaction might greatly influence the prognosis of patients with
KIRC by identifying a string of hypoxia–immune-related genes.
On that basis, we constructed a novel prognostic risk model and
screened some potentially effective drugs to improve the KIRC
prediction (d≤iagnosis) and understand its underlying
mechanism.

METHODS

Data Acquisition
All data about kidney renal clear cell carcinoma in this study were
obtained from The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO). The TCGA cohort total included
511 records of patients with KIRC, whose profiling data (level 3,
“”FPKM workflow) and corresponding clinical data were
obtained from the TCGA official website (https://
cancergenome.nih.gov). Furthermore, the gene expression
profile of 72 normal samples (normal tissue adjacent to the
tumor in the same patient) was also obtained from TCGA.
The expression matrix and clinical information of GSE29609
were downloaded from GEO. It was based on the GPL1708
platform and contained 39 KIRC samples. Background
correction and quality normalization were performed for GEO
profiling data by applying the multiarray average algorithm.

In our research, the patients from TCGA-KIRC were defined
as a training cohort, and the patients from GSE29609 were
utilized as an external validation cohort. The detailed clinical
information about the training cohort and the external validation
cohort are shown in Table 1, including age, gender, tumor stage,
and pathological grade.

Identification of Hypoxia Status
Algorithms of t-distributed Stochastic Neighbor Embedding
(t-SNE) and K-Means Clustering (K-means) were utilized to
deduce the hypoxia status of tumor samples, which can be
applied from Rtsne and k-means R software packages. T-SNE
is a nonparametric, unsupervised method that divides or
condenses patients into several distinct clusters based on given
signatures or hallmarks. This present research included 79 genes
as adopted hallmarks of hypoxia genes, which were obtained by
following these two procedures. Firstly, 200 genes were obtained
from collecting hypoxia-related hallmark gene sets in the
Molecular Signatures Database (MsigDB V7.4). Secondly,
univariate Cox regression analysis was used to select from
these genes, which was performed by Survival R-package, and
finally, the hypoxia-related genes utilized in this research were
obtained. Based on the algorithms mentioned above, the patients
were divided into groups depending on hypoxia status.
Expression changes analysis about HIF-1 pathway-related
genes and survival analysis were conducted to explore the
difference between hypoxia-low and hypoxia-high groups. The
primary genes involved in the HIF-1 signaling pathway were
extracted from the Kyoto Encyclopedia of Genes and Genomes
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(KEGG) database. Among the retrieved 26 genes, 16 were
involved in the “increase oxygen delivery” cluster, and 11
were related to the “reduce oxygen consumption” cluster. In
addition, HIF-1α was artificially added to these gene sets. The
expression change analysis was conducted by the Limma
package and EdgeR package of R software. Genes with a
false discovery rate (FDR) adjusted p-value < 0.05 and an
absolute value of log2 (fold change) >1 were considered to be
of statistical significance.

Identification of Immune Infiltration Status
ImmuCellAI (Immune Cell Abundance Identifier) is a newly
developed web tool (http://bioinfo.life.hust.edu.cn/
ImmuCellAI/), which aims to estimate the abundance of 24
immune cells from a gene expression dataset including RNA-
Seq and microarray data. A major advantage of ImmuCellAI is
providing an infiltration score to represent the overall
infiltration level of immune cells for each cancer sample
(Miao et al., 2020). So, in this research, ImmuCellAl was
used to predict the immune status and provided the basis
for dividing the samples into immune-high and immune-low
groups. We identified the best optimal cutoff value by dividing
the samples with the most significant outcomes. A function
“surv_cutpoint” from the Survminer R software package was
applied in our research to determine the optimal cutoff value
for one or multiple continuous variables at once.

Dividing Into Groups Based on
Hypoxia–Immune Status
The identification of hypoxia and the immune status of each
patient have been described above. All TCGA samples were
labeled with two-dimension contributions and divided into
three groups, including “hypoxia-high + immune-low group,”
“hypoxia-low + immune-high,” and “mixed group,” which
contained “hypoxia-high + immune-high group” and
“hypoxia-low + immune-low group.” Survminer R package
was utilized to carry out a survival analysis for these three
groups. Moreover, the Limma package was used to obtain the

preliminary hypoxia–immune-related differentially expressed
genes (DEGs).

In the same way, the DEGs between tumor samples and
normal samples were also achieved. Two sets of genes
(hypoxia–immune-related protective and risk DEGs) were also
developed by overlapping the hypoxia–immune-related DEGs
and tumor–normal-related DEGs.

KEGG Pathway, GO Enrichment Analysis,
and Construction of the PPI Network
To understand the functions and pathways of these risk or
protective DEGs obtained as detailed above, KEGG pathway
analysis and GO enrichment analysis were conducted by
applying clusterProfiler R package. Both p- and FDR values
less than 0.05 were statistically significant.

Protein–protein interaction (PPI) networks were also
constructed to further screen the key module for risk genes
and protective genes. PPI networks of risk or protective genes
were constructed using the Search Tool for the Retrieval of
Interacting Genes database (STRING, version 11.0) to provide
credible information in interactions between proteins and
supply detailed annotation (Szklarczyk et al., 2019).
Cytoscape (version 3.7) is a general-purpose, open-source
software (Shannon et al., 2003), which was further
employed to build PPI networks. The crucial modules were
screened using the Molecular Complex Detection module with
a criterion score ≥5.

Building and Verifying the
Hypoxia–Immune-Related Prediction Model
The risk and protective gene sets mentioned above were
normalized by using log2 transformation. Univariate Cox
and least absolute shrinkage and selection operator
(LASSO) regression were conducted using the Survival and
Glmnet R package. Afterward, multivariate Cox regression
analyses were utilized to construct a hypoxia–immune-
related prediction model. The risk score was calculated

TABLE 1 | Detailed clinical information about the training cohort and external validation cohort.

Characteristics Group TCGA-KIRC (N = 511) GEO-GSE29609 (N = 39)

Number % Number %

Age ≤60 260 50.9 16 41.0
＞60 251 49.1 23 59.0

Tumor stage I 255 49.9 10 25.6
II 53 10.4 3 7.7
III 118 23.1 12 30.8
IV 85 16.6 14 35.9

Pathological grade G1 12 2.3 1 2.6
G2 217 42.5 12 30.8
G3 202 39.5 11 28.2
G4 75 14.7 15 38.5

Unknown 5 1.0 0 0.0
Vital status Alive 346 67.7 23 59.0

Dead 165 32.3 16 41.0
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using the following formula: risk score = ∑n
i�1coef × gene.

Kaplan–Meier survival analysis was also carried out to assess
the difference in survival between high- and low-risk-score
groups by using the “survival” R package. GEPIA was utilized
again to verify the influence on the expression and prognosis
by these genes contained in the prediction model (Tang et al.,
2017).

We verified the performance of the gene risk model by
comparing the prediction efficiency with the clinical features.
The time-dependent receiver operating characteristic (ROC)
curve was used by applying the “survivalROC” R package. The
decision curve analysis (DCA) algorithm from the ggDCA R
package was also conducted to determine the clinical

usefulness of the gene risk model by quantifying the net
benefits at different threshold probabilities. In addition, the
ROC and DCA analyses were also conducted for GSE29609,
which were used as external validation.

Construction and Validation of a Predictive
Nomogram Consisting of Risk Score and
Clinical Features
A nomogram was built using the rms R package, and it
included the risk score calculated above and some clinical
features, such as clinical stage, pathological grade, gender, and
age. The calibration plot was applied to explore the calibration

FIGURE 1 | Identification of hypoxia status. (A) Dot plot for three distinct clusters identified by t-SNE and K-means algorithms based on 79 hypoxia-related genes.
(B) Survival analysis (Kaplan–Meier) of overall survival for patients in three clusters. (C) Expression changes analysis about HIF-1 pathway-related genes to explore the
difference between the hypoxia-high and hypoxia-low groups.
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and discrimination of the nomogram by utilizing the rms R
package.

Identification of Candidate Small-Molecule
Drugs Based on Hypoxia–Immune DEGs
The Connectivity Map (CMap) is a gene expression profiling
database. It has excellent potential for discovering new
therapeutic drugs for a disease, and it was used in this study
to research on some small-molecule therapeutic drugs (Bai et al.,
2020b; Lamb et al., 2006). By uploading the risk and protective
gene sets respectively into the CMap website (https://portals.
broadinstitute.org/cmap/), some candidate compounds were
discovered to reverse the status of high-hypoxia and low-
immune in KIRC patients. Negatively related drugs [p < 0.05,
n ≥ 5, and mean score <−0.4 (Chen et al., 2020)] were screened,
which had potential antagonistic effects, indicating that they
could reverse the high-hypoxia and low-immune status and
could serve as therapeutic drugs. Finally, the 3D structure data
of these selected compounds were obtained from the ZINC
dataset and represented by Pymol software (Sterling and
Irwin, 2015).

RESULTS

Identification of Hypoxia Status and
Immune Status
As shown in Figure 1A, the TCGA samples were divided into
three groups based on hypoxia status by utilizing the t-SNE
algorithm, and each group had 206, 142, and 163 samples,
respectively. Kaplan–Meier survival analysis discovered that
group 2 had the best overall survival, while group 3 had the
worst prognosis. It indicated that groups 2 and 3 might be in
the lowest and highest hypoxia status. So, we explore the gene
expression changes of the HIF-1α signal pathway, which
contains 29 genes and can be classified into three gene sets:
(1) 15 genes about “increase oxygen delivery,” (2) 13 genes
about “reduce oxygen consumption,” and (3) the core gene
“HIF-1A.” As shown in Figure 1C, four genes (TIMP1,
SERPINE1, EPO, and TF) had higher expression levels in
the hypoxia-high group, and only one gene (IL1RL1) was
overexpressed in the hypoxia-low group. We found that the
expression changes of upregulated genes were higher than
those of downregulated genes. These results showed that the
defined groups were significantly associated with hypoxia.

FIGURE 2 | Identification of immune infiltration status. (A)Heat map showing the infiltration characteristics of all immune cells for all samples. (B) Scatter plot shows
the optimal cutoff value for the immune scores of the tumor samples. (C). Kaplan–Meier plots of overall survival for patients in the immune-high and immune-low groups.
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Meanwhile, patients who were classified in group 2 were
labeled hypoxia-high and those in group 3 were assigned as
hypoxia-low.

ImmuCellAl calculated the infiltration proportions of all
24 immune cells of all TCGA samples, and we could find that
the infiltration characteristics of all immune cells were
obviously different between the tumor sample and the
normal sample, especially in terms of Treg, CD8-T,
cytotoxicity, infiltration score, and so on (Figure 2A).

ImmuCellAl also provided an infiltration score term for
all samples, which ranged from 0.351 to 0.9, representing
the overall level of the infiltration proportion of all immune
cells in patients. Based on the infiltration score, we identified
the optimal cutoff value to classify patients into immune-
high and immune-low groups with the most distinct
prognosis by applying the “surv_cutpoint” function of the
Survminer R package (Figure 2B). The result of the survival
analysis demonstrated that a total of 437 patients in the

FIGURE 3 | Dividing into groups and getting risk and protective differentially expressed genes (DEGs) based on hypoxia–immune status. (A) Kaplan–Meier plot of
OS for patients in group I (hypoxia-low + immune-high), group II (hypoxia-high + immune-low group), and group mix (hypoxia-high + immune-high group and hypoxia-
low + immune-low group). (B) Volcano plot showing the DEGs between group I and group II. (C) Volcano plot showing the DEGs between tumor samples and normal
samples. (D) Venn diagrams showing overlaps of hypoxia–immune-related risk DEGs and hypoxia–immune-related protective DEGs.
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immune-high group apparently represented better survival
outcomes than those in the immune-low group (Figure 2C).

Dividing Into Groups and Getting Risk and
Protective DEGs Based on
Hypoxia–Immune Status
According to the hypoxia and immune status identified above, we
further combined them into a two-dimensional index, whereby
TCGA patients could be divided into three groups: (1) group I
was “hypoxia-low + immune-high,” (2) group II was “hypoxia-
high + immune-low group,” and (3) group mix included
“hypoxia-high + immune-high group” and “hypoxia-low

+ immune-low group.” The survival analysis showed a
significant difference among these three groups, wherein
patients in group I had a better prognosis. In contrast,
the survival of patients in group 2 was worst, as shown
in Figure 3A. Furthermore, this indicated that a more
severe hypoxia status and a lower level of immune cell
infiltration could induce a more severe prognosis in patients
with KIRC.

To get the DEGs related to hypoxia and immune status, we
conducted different expression change analyses between group 1
(hypoxia-low + immune-high) and group 2 (hypoxia-high +
immune-low group), and a total of 789 DEGs were
preliminarily obtained, as shown in Figure 3B. Then, in order

FIGURE 4 | Enrichment analysis for the hypoxia–immune-related differentially expressed genes (DEGs). (A, B) Column diagrams of Gene Ontology analysis for
hypoxia–immune-related DEGs. (C, D) Circos plots of Kyoto Encyclopedia of Genes and Genomes analysis for hypoxia–immune-related DEGs.
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to narrow down the scope of their DEGs, we achieved
DEGs between tumor samples and normal samples
(Figure 3C) and overlapped the hypoxia–immune-related
DEGs and tumor–normal-related DEGs. Finally,
409 hypoxia–immune-related DEGs were identified, including
284 overexpressed genes in group 2, which were defined as

hypoxia–immune-related risk DEGs, and 125 overexpressed
genes in group 1, which were defined as hypoxia–immune-
related protective DEGs (Figure 3D). It suggested that a
higher expression of hypoxia–immune-related risk DEGs
would lead to a poor prognosis; however, a higher expression
of protective DEGs would cause a better prognosis.

FIGURE 5 | Protein–protein interaction networks for hypoxia–immune-related risk differentially expressed genes (DEGs) and protective DEGs. The densely
connected regions of these two networks are labeled with different colors.
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Enrichment Analysis for the
Hypoxia–Immune-Related DEGs
To further explore the hypoxia–immune-related DEGs
obtained as detailed above, we conducted KEGG pathway
enrichment analysis and GO function enrichment analysis.
It can be seen from Figure 4A that the risk DEGs were
mainly enriched in BP, including “acute inflammatory

response,” “regulation of inflammatory response,”
“leukocyte migration,” etc., which were primarily related to
the function of the immune response. The BP analysis of
protective DEGs primarily included “organic anion
transport,” “organic acid catabolic process,” “carboxylic acid
catabolic process,” etc., which were correlated with the
regulation of surrounding acid (Figure 4B).

FIGURE 6 | Construction of a hypoxia–immune-related prognostic model. (A, B) Determination of the number of factors by the LASSO analysis. (C) Hazard ratio
and p-value of genes involved in risk model and some parameters of this risk model. (D) Scatter plot of the optimal cutoff value of the risk score. (E) Kaplan–Meier plots of
overall survival for patients in the risk-high and risk-low groups. (F)Hypoxia–immune-related risk score distribution. (G)Heatmap of the expression profiles of members in
the selected 6 genes.
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The KEGG pathway analysis showed that the risk DEGs were
mainly enriched in some cancer or immune-related pathways,
including “complement and coagulation cascades,” “p53 signaling
pathway”, “transcriptional misregulation in cancer,” and so on
(Figure 4C). The protective DEGs also mainly included “valine,
leucine, and isoleucine degradation” and “mineral absorption”
(Figure 4D). All these results indicated that these DEGs were
closely correlated with immune and cancer pathways.

PPI Network of Hypoxia–Immune DEGs
By using the STRING database and Cytoscape software, we
constructed two PPI networks for hypoxia–immune-related
risk DEGs and protective DEGs, respectively. The PPI network
of risk DEGs contained 283 nodes and 825 edges (Figure 5A); the

PPI of protective DEGs contained 125 nodes and 106 edges
(Figure 5B), and an interaction score >0.7 is considered a
high-confidence interaction relationship. We also utilized
Cytoscape software to find densely connected regions of these
two networks and labeled them with different colors, as shown in
Figure 5.

Construction and Validation of the
Hypoxia–Immune-Related Prognostic
Model
By utilizing univariate Cox regression, multivariable Cox
regression, and LASSO regression, we selected a total of six
signature genes (PLAUR, UCN, PABPC1L, SLC16A12,

FIGURE 7 | Internal verification and external verification for hypoxia–immune-related prognostic model. (A) Receiver operating characteristic (ROC) curve for 1-, 3-,
4-, and 5-year overall survival (OS) in samples of internal verification. (B) ROC analysis for other clinical features in samples of internal verification. (C)ROC curve for 1-, 3-,
4-, and 5-year OS in external verification. (D) ROC analysis for other clinical features in samples of external verification. (E, F) Decline curve analysis curves for 1-, 3-, 4-,
and 5-year OS in samples of internal and external verification.
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NFE2L3, and KCNAB1) from the hypoxia–immune-related gene
set to construct a prognostic model, as shown in Figures 6A–C.
PLAUR, PABPC1L, SLC16A12, NFE2L3, and KCNAB1
presented significantly different expression levels between
tumor tissues and normal tissues (Supplementary Figure S1).
Meanwhile, the expression levels of five genes (PLAUR, UCN,
PABPC1L, NFE2L3, and KCNAB1) were significantly associated
with OS and DFS, and the PABPC1L expression was only related
with OS (Supplementary Figures S2, S3). This
hypoxia–immune-gene-based model was established to

evaluate the survival risk for each TCGA sample as follows:
risk score = 0.19639 × (expression of PLAUR) + 0.3222 ×
(expression of UCN) + 0.15812 × (expression of PABPC1L) −
0.21351 × (expression of SLC16A12) + 0.26479 × (expression of
NFE2L3) − 0.22544 × (expression of KCNAB1). The optimal
cutoff value of the risk score was 1.33, which was calculated by the
“surv_cutpoint” algorithm (Figure 6D). We classified the
patients into high-risk and low-risk groups based on this
cutoff value. There was a significant prognostic difference
between patients from these two groups, which meant that

FIGURE 8 |Construction and validation of nomogram. (A)Nomogram to predict the 1-, 3-, and 5-years overall survival. (B,C)Calibration curves for the nomogram
model in samples of internal and external verification.
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patients with a high-risk score had a higher mortality rate than
those with a low-risk score (Figure 6E). It can also be seen from
the risk curve and heat map (Figures 6F,G) that these five
signature gene expression patterns were different between the
high-risk group and low-risk group.

Then, we conducted a series of analyses to verify the effectiveness
and sensitiveness of the prognostic model constructed as detailed
above, including internal verification (TCGA samples) and
external verification (GSE29609 samples). For the internal
verification part, ROC analysis was conducted firstly. The
area under the curve (AUC) values of risk score for 1-, 3-,
4-, and 5-year OS were 0.768, 0.754, 0.775, and 0.792,
respectively (Figure 7A). Compared with other clinical
features, including clinical stage and pathological grade, the
ROC analysis again indicated that the risk score was as great as
the clinical stage and better than the other clinical features, as
shown in Figure 7B. For the external verification part, the
AUC values of risk score for 1-, 3-, 4-, and 5-year OS were
0.768, 0.739, 0.763, and 0.643 respectively, which were similar
to the results of the internal verification. Moreover, the results
of a further ROC analysis to compare with clinical features also
had consistency with the internal verification. Moreover, we
carried out the DCA analysis for internal and external
verification to determine the clinical usefulness of the gene
risk model by quantifying the net benefits at different
threshold probabilities. As shown in Figures 7E,F, the
characteristic of the risk score had excellent clinical
effectiveness, which was similar to the clinical stage.

The Construction of a Nomogram Depends
on the Hypoxia–Immune-RelatedModel and
Clinical Features
To evaluate the clinical features and the hypoxia–immune-related
prognostic model for KIRC prognosis, we integrated the predictive
model and some clinical characteristics, including age, clinical grade,
and pathological grade, to build a nomogram (Figure 8A). In
addition, as shown in Figures 8B,C, we also portrayed the
corresponding calibration plots in 1, 3, and 5 years for internal
and external verification. Furthermore, it was found that the
performance of the nomogram was excellent, especially in
predicting 3- and 5-year OS.

Screening of Small-Molecule Drugs Based
on Hypoxia–Immune-Related DEGs
Finally, we employed the CMap dataset to screen some small-
molecule drugs, which can potentially treat KIRC patients in

the hypoxia–immune-related high-risk group. We predicted
these small-molecule drugs with highly significant correlations
based on the aforementioned hypoxia–immune-related DEGs.
As shown in Table 2, vorinostat, fludroxycortide, oxolinic
acid, and flutamide showed a significantly negative
association with the high-hypoxia and low-immune status
and implied a great possibility in clinical application to
alleviate or even reverse the status about severe hypoxia of
the tumor microenvironment and low infiltration of immune
cells. In addition, the 3D structures of these four molecules are
displayed in Figure 9.

DISCUSSION

KIRC is one of the most common malignancies threatening
public health and creating a significant global health burden.
It is often diagnosed in the advanced stage due to less notable
clinical symptoms in the early stage (Bray et al., 2018). TNM
staging is a classical manner to predict the prognosis of KIRC,
which is based on clinical information. However, TNM
staging does not consider any genetic features. Hence, to
provide personalized treatment, it is of great value to identify
some genetic features and construct a prognostic model to
stratify patients with different risks and prognoses.

We selected the two characteristics of hypoxia and immune
to conduct a series of analyses and construct a prognostic
model. As the hypoxia in the tumor microenvironment is
complicated and varied, it is not valid to determine the
hypoxia status by a single biomarker (Liu et al., 2020).
Therefore, we utilized the t-SNE algorithm, which is a
classical type of machine learning method and provides a
robust dimensionality reduction approach. Moreover, t-SNE
algorithm has been used in subtype classification in prostate
cancer, breast cancer, and gastric cancer (Ahmed et al., 2018;
Guo et al., 2019; Liu et al., 2020). As for the immune status, we
adopted the ImmuCellAI method to calculate the infiltration
of immune cells in KIRC samples. This method supported the
ssGSEA enrichment score of expression deviation profile per
cell type and has been widely used in cancer research,
including pituitary adenomas, hepatocellular carcinoma,
sarcoma, and lung adenocarcinoma (Wang et al., 2020a;
Zhang et al., 2020b; Hu et al., 2021; Zhao et al., 2021). We
successfully clustered the KIRC patients into different groups
by hypoxia and immune status using these combined methods.
Additionally, our method might be effective and provide a
reference for follow-up studies.

By exploring the OS outcomes of patients with different
hypoxia and immune status, we found that the high-hypoxia-
status samples and low-immune-status samples tend to induce
a poor OS outcome, which is consistent with other studies. The
hypoxia and immune microenvironment play a critical role in
the progression of KIRC (Zhang et al., 2021). Von Hippel
Lindau tumor suppressor (pVHL) and HIFs are critical factors
in hypoxia-related pathways. With tumor cell proliferation
and growth, the hypoxia status of KIRC is more severe and
induces the activated HIF signaling pathway to respond to the

TABLE 2 | Results of the CMap dataset.

CMap name Mean N Enrichment P % non-null

Vorinostat −0.486 12 −0.614 0 75
Fludroxycortide −0.5 5 −0.6 0.02906 80
Oxolinic acid −0.499 5 −0.672 0.00881 80
Flutamide −0.439 5 −0.598 0.02988 80
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hypoxia environment (Millet-Boureima et al., 2021). HIF-1 is a
master regulator of hypoxia by mainly activating the
transcription of some genes to regulate cell angiogenesis,
energy metabolism, chromatin remodeling, cell cycle, and
even the oxygen-sensing pathway itself, which includes
increasing oxygen delivery and facilitating metabolic
adaptation to hypoxia (Schödel et al., 2016). The genome-
wide analysis showed that more than 500–1,000 genes are
associated with the HIF pathway (Mole et al., 2009; Schödel
et al., 2011). On the other hand, pVHL is recognized as a
component of an E3 ubiquitin–ligase complex, targeting HIFs
for proteasomal degradation by tagging them with ubiquitin.
However, about 60–80% of KIRC cases display loss-of-
function coding mutations in the VHL gene, causing
accumulation and stabilization of HIF-α and subsequent
transcriptional responses to increase tumor oxygenation
(Schödel et al., 2011; Schödel et al., 2016). KIRC is
considered to be an immunogenic tumor and has shown
high effectiveness for immune therapy, especially immune
checkpoint inhibitors and also known to mediate immune
dysfunction by stimulating the infiltration of some immune
inhibitory cells, such as regulatory T cells (Tregs) and myeloid-
derived suppressor cells, into the microenvironment (Vuong
et al., 2019; Díaz-Montero et al., 2020). The hypoxia
microenvironment can influence the infiltration of immune
cells. The immune microenvironment of KIRC appears to be
uncommon in some respects, including tumor-infiltrating
lymphocytes, Treg, and dendritic cells, which are correlated
with disease recurrence and worse survival (Giraldo et al.,
2015; Giraldo et al., 2017). A recent transcriptomic and
proteomic analysis found that HIF-2α-deficient tumors are
related to antigen presentation, CD8+ T cell infiltration, and
activation, and the single-copy loss of HIF1A or high levels of

HIF2A expression is correlated with a higher T cell abundance,
all of which indicated that the HIF1 pathway appears to affect
T cell inflammation (Hoefflin et al., 2020). However, the
mechanisms have not been identified and will require
further study.

Our research identified some essential signature genes in
KIRC, which are also connected with hypoxia and the immune
microenvironment. These genes are PLAUR, UCN,
PABPC1L, SLC16A12, NFE2L3, and KCNAB1, and some of
them have been previously reported in multiple types of
cancer. The plasminogen activator receptor (PLAUR) is a
glycosylated, glycan lipid-anchored membrane protein,
which has been proven to be a prognostic marker and has
a potential role in therapeutic implications (Li and Chen,
2011; Wang et al., 2020b). It binds and activates PLAU, which
can convert plasminogen to active plasmin, which can degrade
components of the extracellular matrix, thus facilitating
invasion and metastasis (Li et al., 2013; K. Lund et al.,
2011). Studies also found that PLAUR is related to some
vital signaling pathways (as PI3K/Akt and ERK), thus
inducing cell migration and proliferation (Aguirre-Ghiso
et al., 2003; Nowicki et al., 2011). In addition, recently,
research found that PLAUR secretes several cytokines and
chemokines and initiates inflammatory responses in
macrophages and fibroblast-like synoviocytes through
activation of the PI3K/Akt signaling pathways in
rheumatoid arthritis (Dinesh and Rasool, 2018). That
indicts that PLAUR may also relate to the infiltration of
immune cells. Urocortin (UCN) is a 40-amino-acid
peptide, which has a prognosis value in KIRC patients, and
it is involved in the regulation of angiogenesis and inhibition
of proliferation (Tezval et al., 2009; Wan et al., 2019). Poly(A)
binding protein, cytoplasmic 1-like (PABPC1L) is an

FIGURE 9 | 3D structures of vorinostat, fludroxycortide, oxolinic acid, and flutamide represented by Pymol software.
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important paralog of PABPC1, regulating and stabilizing the
mRNA translation. The depletion of PABPC1L can inhibit the
expression level of p-AKT and p-PI3K and suppress the
process of proliferation, migration, and invasion in
colorectal cancer cells (Wu et al., 2019). Nevertheless, no
study has investigated the roles of PABPC1L in KIRC and its
relationship with the immune and hypoxia
microenvironment. Solute carrier family 16, member 12
(SLC16A12) participates in the transport of creatine, with a
high expression level in the normal kidney tissue and a low
expression level in KIRC tissue, which indicates that a
decreased expression of SLC16A12 is a poor prognostic
factor in KIRC (Mei et al., 2019). The nuclear factor
erythroid 2-like 3 (NFE2L3) participates in constructing
the basic-region leucine zipper family of transcription
factors, which is an important factor in tumor progression
(Sun et al., 2019). It can promote cell proliferation and
metastasis and induce “”EMT of hepatocellular carcinoma
via activation of the Wnt/β-catenin pathway (Ren et al., 2020).
Research also demonstrated that NFE2L3 functions as a
critical regulator in a pathway that links NF-κB signaling
to control CDK1 activity, thereby driving colon cancer cell
proliferation (Bury et al., 2019). As for KCNAB1, most studies
showed that the potassium channel, voltage-gated subfamily
A regulatory beta subunit 1(KCNAB1) is related to neurologic
disorders and diseases. However, few studies focused on the
influence on tumor progression (Busolin et al., 2011; Tiong
et al., 2019).

We constructed a prognostic risk model based on these six
hypoxia–immune genes. The internal verification showed that
the 1-, 3-, 4-, and 5-year OS were 0.768, 0.754, 0.775, and
0.792, respectively. The AUC values of the external verification
for 1-, 3-, 4-, and 5-year OS were 0.768, 0.739, 0.763, and 0.643,
respectively, and compared with clinical stage and
pathological grade, the ROC analysis indicated that our
prognostic model was as great as the clinical stage and
better than the other clinical features. Moreover, compared
with other similar research, our hypoxia–immune-related
prognostic model had better effectiveness. Zhong et al.
developed a prognostic model based on nine RNA-binding
protein signatures, and the AUC values of this model were
0.71, 0.66, and 0.69, respectively, for 1-, 3-, and 5-year OS
(Zhong et al., 2020). Xu et al. constructed a prognostic risk
model based on PPAR pathway-related genes. The 5-year
AUC score was 0.746, and the 10-year AUC score was
0.825, which indicated that this risk model could accurately
predict the 5- and 10-year survival rates of KIRC patients.
However, the PPAR-related model involved 13 gene
signatures, and their research lacked external verification
(Xu et al., 2020). In addition, we also carried out a DCA to
determine the clinical usefulness of the gene risk model by
quantifying the net benefits at different threshold
probabilities. The result showed that our risk model had a
strong clinical application value. Afterward, based on our
prognostic risk model and some clinical features, we further
developed a nomogram. The corresponding calibration
demonstrated that the performance of the nomogram was

great, especially in predicting the 3- and 5-year OS. All of these
indicated that we have successfully constructed a
hypoxia–immune-related prognostic risk model.

Finally, we screened vorinostat, fludroxycortide, oxolinic
acid, and flutamide from many small-molecule drugs. These
four drugs showed a significantly negative association with the
high-hypoxia and low-immune status, which may alleviate or
reverse the status about severe hypoxia of the tumor
microenvironment and low infiltration of immune cells, thus
improving the prognosis of patients with KIRC.

Among the four drugs mentioned above, vorinostat and
flutamide have been used for the treatment of cancer.
Vorinostat is a histone deacetylase (HDAC) inhibitor that
was approved by the US Food and Drug Administration for
the treatment of cutaneous T cell lymphoma. HDAC
inhibitors have an effect on anti-angiogenesis by altering
the VEGF signaling pathway. A combination of
selumetinib and vorinostat can inhibit proliferation and
spheroid formation, which is associated with an increase in
apoptosis, cell cycle arrest, and reduced cellular migration
and VEGF-A secretion in CRC cells (Deroanne et al., 2002;
Morelli et al., 2012). Vorinostat also has been recognized as
having a correlation with some immune cells in cancer. A
study found that it can enhance the sensitivity of cervical
cancer cells to the NK cell-mediated cytolytic reaction
through the PI3K/Akt pathway (Xia et al., 2020). It also
enhances trastuzumab-mediated, antibody-dependent, cell-
mediated phagocytosis, which supports a rationale combined
treatment approach with trastuzumab for cancer treatment
(Laengle et al., 2020). Moreover, vorinostat can down-
regulate B7-H1 expression through impairing IFN-γ
signaling, which can induce the percentage of tumor-
infiltrating CD8+ T cells in gastric cancer (Deng et al.,
2018). Flutamide is a nonsteroidal antiandrogen that acts
by binding to and blocking intracellular androgen receptors,
which is an antineoplastic agent (Brogden and Clissold, 1989;
Mariappan and Sundaraganesan, 2014). Research has
demonstrated that androgen-mediated suppression of immune
reactivity increases the threshold for autoimmunity to develop
but likely lowers the threshold for cancer (Gubbels Bupp and
Jorgensen, 2018). Meanwhile, studies also found that androgen
deprivation therapy (ADT) leads to cell death and infiltration by
lymphocytes, and combining ADT with immunotherapy can
improve the efficacy of prostate cancer immunotherapy (Gamat
andMcNeel, 2017). Moreover, the regulation of hypoxia is related to
androgen. It has been identified that androgens can regulate VEGF
levels through HIF activation in prostate tumors, and inhibition of
androgen receptor and HIF may provide a new therapeutic option
(Boddy et al., 2005).

CONCLUSION

In conclusion, hypoxia and immune status are correlated with
the prognosis of patients with KIRC. Some hypoxia–immune-
related genes are identified, and a prognostic model is also
constructed, which is the first prognostic model based on
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hypoxia–immune-related signatures and has a better value of
effectiveness and clinical application. Finally, a few small-
molecule drugs are screened that may alleviate severe hypoxia
of tumor microenvironment and low infiltration of immune
cells, thus improving the prognosis of KIRC.
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