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The etiology of Parkinson’s disease (PD) is linked with cellular inclusions in the substantia nigra pars compacta region of the brain
that are enriched in the misfolded presynaptic protein α-synuclein (αS) and death of the dopaminergic neurons. Brain iron
homeostasis governs both neurotransmission and neurodegeneration; hence, the role of iron in PD progression and neuronal
health is apparent. Elevated iron deposits become prevalent in the cerebral region upon aging and even more so in the PD brain.
Structural as well as oxidative modifications can result from coordination of αS with redox active iron, which could have
functional and/or pathological implications. In this review, we will discuss iron-mediated αS aggregation, alterations in iron
metabolism, and the role of the iron-dopamine couple. Moreover, iron interactions with N-terminally acetylated αS, the
physiologically relevant form of the human protein, will be addressed to shed light on the current understanding of protein
dynamics and the physiological environment in the disease state. Oxidative pathways and biochemical alterations resulting from
aberrant iron-induced chemistry are the principal focus of this review in order to highlight the plethora of research that has
uncovered this emerging dichotomy of iron playing both functional and disruptive roles in PD pathology.
1. Introduction

Parkinson’s disease (PD) is identified as the second most
prevalent neurodegenerative disorder in the world, and it is
an age-related progressive disease [1]. It has been estimated
that approximately 1 million people in the United States
alone are suffering from PD, where the majority of that
population is over the age of 60. The key symptoms of PD
include resting tremors, slow movements, muscle stiffness,
and difficulties performing voluntary movements [2]. The
main characteristic feature associated with PD is the loss of
dopaminergic neurons in the substantia nigra pars compacta
(SNpc), and these neurons are the principal source of dopa-
mine (DA), a neurotransmitter that regulates motor behavior
[3]. PD etiology is also linked to the presence of cellular
inclusions, known as Lewy bodies (LBs), which have been
identified as postmortem hallmarks of PD [4, 5]. The major
constituent of LBs is aggregated α-synuclein (αS), an intrin-
sically unfolded protein predominantly localized in the pre-
synaptic regions of dopaminergic neurons. A tetrameric
form of αS has also been identified in human tissues that
has been postulated as the inactive storage form of this struc-
turally dynamic protein due to its aggregation resistance
[6, 7]. Although the cellular mechanisms and normal func-
tions associated with αS have not yet been completely resolved,
the increased levels of αS in the brains of patients with PD
suggest a relationship with the neurotransmitter DA [8].

It is well known that metal homeostasis plays an impor-
tant role in regulating cellular functions [9]. Copper, iron,
manganese, and zinc are essential transition metal ions for
neurotransmission, enzymatic reactions, and mitochondrial
functions regulated by the central nervous system (CNS)
[10]. Thus, an imbalance of metal ions has an impact on dis-
ease states, among which are neurodegenerative disorders. In
vivo magnetic resonance imaging (MRI) has highlighted the
accumulation of iron in the SNpc region of the PD brain,
which disrupts iron circulation pathways to create an imbal-
ance of the metal [11, 12]. In a separate study, meta-analysis
of literature data on blood serum iron levels also pinpointed
an increase in this metal [13]. However, a direct correlation
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Figure 1: Schematic diagram of αS aggregation.
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Figure 2: Cartoon representation of the N-terminal region, NAC region (highlighted within the box), and C-terminal region of αS with the
primary amino acid sequence shown underneath. The iron binding site is highlighted at the C-terminal region in red text; genetic PD
mutations are colored and underlined in purple.
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between iron deposition and iron transportation within the
brain has not been established in PD patients [14]. Beyond
PD, in vivo MRI mapping of iron content among neurode-
generative tremulous diseases has also indicated a deposition
of iron in the SNpc as compared to healthy controls [15, 16].
It is worth noting that iron dyshomeostasis associated with
neurodegeneration is influenced by age, race, and gender.
Therefore, iron-sensitive MRI mapping could be a powerful
tool to diagnose and differentiate neurodegenerative diseases
at an early stage. Evidence for iron accumulation within the
SNpc region of the PD brain along with abundant misfolded
αS inclusions implies a direct relationship between iron and
αS in the pathogenesis of PD [17]. As shown in Figure 1, αS
found in LBs exists in the form of highly ordered aggregated
species that can be described as oligomers and/or fibrils.
Under an oxidatively stressed environment, the aggregation
processes of αS are majorly affected by interaction with redox
active iron [18].

In this review, structural and biochemical conse-
quences associated with iron-bound αS and alterations in
the intracellular iron composition within dopaminergic neu-
rons will be discussed. Key roles of iron will be delineated
with respect to both the healthy brain and the PD brain.
Cerebral iron levels are often associated with the modulation
of dopamine-related biochemical pathways in the brain;
therefore, the impact of the iron-dopamine couple and the
disruption of biological cascades associated with these two
components will be addressed in this review. Moreover, the
impact of iron redox chemistry on the αS structure will also
be highlighted.

2. α-Synuclein Structure and Iron Coordination

αS, encoded by the SNCA gene, consists of 140 amino acids
and contributes approximately 1% of the protein content in
cytosol [4, 5]. There are three distinct regions of αS protein
(Figure 2). The N-terminal region, which contains 11 imper-
fect amino acid repeats with a consensus sequence KTKEGV,
adopts an amphipathic α-helix conformation upon mem-
brane interaction [8, 19]. The central non-amyloid-β compo-
nent (NAC region) is involved in aggregation pathways and
contains the hydrophobic core of αS. The C-terminal region
is an acidic segment rich in negatively charged amino acid
residues, namely, aspartic acid (D) and glutamic acid (E),
and is highly dynamic. Although the pathogenesis of sporadic
PD is mainly driven by the vulnerability of dopaminergic neu-
rons, several genetic point mutations in αS have been identi-
fied as associated with PD, including A30P, E46K, H50Q,
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G51D, A53E, and A53T (mutation sites are highlighted in
Figure 2) [20]. In fact, enhanced aggregation properties have
been reported for E46K, H50Q, and A53T as compared to
wild-type, suggesting that these single point mutations initi-
ate dramatic structural changes that seed fibrillation. The
familial mutant A53T has also been reported to possess
increased neurotoxicity upon elevated iron levels in compar-
ison to wild-type αS due to selective loss of DA neurons as
well as motor impairment [21].

Postmortem analyses of brain tissues isolated from
patients with PD or dementia with Lewy bodies (DLB) have
indicated that αS is acetylated at the N-terminus [22, 23].
Thus, it has been confirmed that N-terminally acetylated αS
is the physiologically relevant form of the protein [24]. N-
terminal acetylation is the transfer of an acetyl group from
acetyl coenzyme A to the α-amino group of the first amino
acid residue of a protein, as in methionine (M) for αS.
Although it is a common posttranslational modification cat-
alyzed by different N-terminal acetyltransferases (NATs) in
that approximately 84% of human-derived proteins carry
this modification [25–27], the majority of αS research has
been carried out with the nonacetylated αS variant. The con-
sequences of this modification are becoming increasingly
more apparent with respect to membrane interactions, metal
coordination, and the protein folding tendencies [18, 28–31].
The innate structural dynamics and behavioral patterns of αS
are strongly influenced by N-terminal capping; for example,
this modification can further stabilize the tetrameric struc-
tural orientation of αS [7].

The inherent metal binding properties of αS have been
vastly studied [9, 10, 32, 33]. Among the prevalent redox
active transition metals in the brain, copper has shown the
highest binding affinity to αS [34]. Copper levels are dimin-
ished in the PD brain, while iron levels are elevated [35].
Thus, iron-αS interactions would be more prevalent under
disease conditions. The primary binding site of iron at the
C-terminus, 119DPDNEA124 (Figure 2), is a motif rich in neg-
atively charged amino acids that will facilitate hard acid/hard
base interactions via potential iron-oxygen coupling. The
presence of a proline residue can also facilitate protein fold-
ing dynamics to form a more stable global configuration
upon iron binding. It can also be postulated that binding of
iron at the C-terminus of αS (pI of 4.7) causes a neutraliza-
tion of the negative charges [36]. Such charge pairing can
result in electrostatic shielding, which may impact protein
folding dynamics by further altering the structure upon pro-
tein oxidation, crosslinking, aggregation, etc.

Notably, the metal coordination sites for iron and
copper are located at opposite termini, where iron prefer-
entially interacts within the αS C-terminal region, and
copper has two separate sites within the N-terminus that
are dependent on the copper redox state. Davies et al.
have shown that there are only subtle changes in the bind-
ing affinity upon iron(III) interaction with copper(II)-satu-
rated αS, indicating that the binding of the two metals is
independent from each other [37]. Copper was further pro-
posed as a cofactor for αS due to the measured ferrireductase
activity in the presence of an electron accepter such as
NADH [37].
The ability of αS to transform iron(III) to iron(II) high-
lights a ferrireductase activity of αS that could uncover a
functional role. Conversely, the overexpression of αS could
lead to excessive generation of iron(II) that may eventually
result in an oxidative stress environment due to reactive oxy-
gen species (ROS) production mediated by the Fenton reac-
tion. Recently, we also reported evidence to support the
ferrireductase activity of αS upon binding to iron(III) under
anaerobic conditions as well as an increase in the antiparallel
β-sheet composition as is characteristic of αS aggregates
formed under oxidizing conditions in the presence of FeII

[18]. On a similar note, Ortega and coworkers have reported
that intracellular overexpression of αS in neurons promotes
the accumulation of iron in the perinuclear region [38],
accentuating that iron binding to αS correlates with αS aggre-
gation and iron deposition as is reported for PD. Detection of
iron in these regions could be acknowledged as an indirect
biomarker for PD.

3. Iron-Mediated α-Synuclein Aggregation

The typical αS aggregation pathway involves propagation
of natively unfolded monomers to higher-ordered oligo-
meric species which eventually form fibrillar structures
[39, 40]. Specifically, the cardinal conformational alteration
occurs when the disordered, “random coil” structure of the
native protein is transformed into the well-known “β-sheet”
structure concentrated in both oligomeric and fibrillar mac-
romolecular aggregates. The orientation patterns of β-sheet
(parallel or antiparallel) are distinguishable within certain
contexts [41]. Although the in vivo toxic form of aggregates
is not yet fully identified, antiparallel β-sheets are believed
to be a characteristic of the toxic form [41]. The least com-
pact oligomeric intermediates are reported to be toxic due
to disruptive cellular functions including cellular leakages
generated by membrane pores [42]. Hence, a correlation
between oligomers and antiparallel β-sheets is expected.
Based on nuclear magnetic resonance (NMR) spectroscopy
and high-resolution cryoelectron microscopy techniques,
the fold of fibrils is proposed to be parallel β-sheets [43];
however, the antiparallel versus parallel conformations of
αS oligomers and/or fibrils have not yet been fully discerned.
Traditionally, the mechanistic folding pathway is thought to
involve an oligomer state that precedes fibrillation [44]; how-
ever, off-pathway aggregation routes have also been reported
[18]. Fibrillation pathways via oligomer intermediates have
also been thought to progress from antiparallel to parallel
β-sheets [45].

The redox activity of metals like copper and iron is
linked with oxidative and/or nitrosative stress and contrib-
utes as a major factor to the aggregation of αS [18, 30, 31,
46, 47]. For example, rat neuronal cultures rich in αS
aggregates have indicated excessive free radical formation,
implying oligomer-induced oxidative stress which is also
metal-dependent [48]. It has also been suggested that iro-
n(III)-induced SDS-resistant oligomers of αS form pores
in the lipid planar bilayer in the presence of ethanol or
DMSO, which eventually lead to toxicity as a result of per-
meability [49, 50]. Previously, it was reported that fibrils
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Figure 3: Graphical representation of N-terminally acetylated
αS structural consequences upon aggregation mediated by iron-
oxygen chemistry.
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generated over the course of aggregation with iron(III) adopt
a distinctly different morphology when compared to analo-
gous fibrils with Cu(II) [36]. Transition electron microscopy
(TEM) analysis of the stoichiometric FeIII-αS aggregates indi-
cated the presence of a short, thick, network-like fibrillar
structure without any amorphous material. Growth patterns
and morphology of fibrils are a potential biomarker which
can aid in understanding structural factors affecting cell via-
bility in neurodegeneration.

Oligomer formation can be coupled with potential mem-
brane interactions related to pore-forming proteins which
regulate metal homeostasis [49]. Oligomers generated in the
presence of both iron(III) and iron(II) have also been sug-
gested as nonharmful and to instead possess a potential func-
tional role [51–53]. The Xie group has reported that the
aggregation of αS induced by iron is dose- and time-
dependent [54]. The cell viability assay conducted with SK-
N-SH human neuroblastoma cells indicated that the higher
the iron concentration (>1mmol/L) and longer the period
of aggregation (>24 h), the more toxicity to cells [54, 55].
Diminished mitochondrial transmembrane potential and
elevated ROS production indicated the pivotal role of iron
in inducing cytotoxicity. Cell toxicity due to iron-induced
αS aggregation was treated by silencing the intracellular
expression of αS using siRNA [56]. As it is evident that
iron-mediated oxidative stress leads to cytotoxicity, it will
be beneficial to look into iron chelators (Section 6 in this
review), which could attenuate disease progression.

In order to shed some light on the iron-αS interaction,
our group focused on iron-mediated aggregation of αS,
marking the first publication to address the relationship of
the iron-αS couple on the native N-terminally acetylated
form of the protein [18]. A distinct change in the protein
conformation was noted demonstrating the iron-oxygen-
driven generation of an oligomer-locked iron-αS structure
rich in right twisted antiparallel β-sheets (Figure 3). The
PD relevance of this oligomeric motif was determined by its
positive response to the anti-oligomer A11 polyclonal anti-
body, which selectively identifies soluble oligomeric epitopes
present in common amyloidogenic proteins such as αS (PD),
amyloid-β (Alzheimer’s disease), IAPP (type II diabetes), and
prion protein (Creutzfeldt-Jakob disease or mad cow disease)
[57]. Hence, our results highlight the major role of iron redox
chemistry in the process of αS oligomerization.
4. Iron Metabolism and Alterations in the
PD Brain

Iron plays a functional role in brain biochemistry by act-
ing as a cofactor for tyrosine hydroxylase (TyrH), an enzyme
that initiates the conversion of tyrosine to DA in the cytosol
[58, 59]. Iron additionally serves as an essential element in
various fundamental processes within the CNS, including
mitochondrial respiration, DNA synthesis, myelin produc-
tion, neurotransmission, and metabolism [60]. The innate
redox nature of iron is coupled with electron transfer pro-
cesses. Hence, the redox state of iron, whether ferrous
(Fe2+) or ferric (Fe3+) ions, governs the feasibility of various
iron-dependent biological functions. Dysfunction or imbal-
ance of the equilibrium between iron(II) and iron(III) ions
can disrupt processes due to the generation of ROS as is com-
monly associated with Fenton chemistry. Therefore, iron
homeostasis plays a pivotal role in regulating cellular func-
tions as is briefly illustrated in Figure 4.

Brain iron uptake is mainly driven by the glycoprotein
transferrin (Tf), the primary iron transport protein in the
CNS [61, 62]. Studies have shown that non-transferrin-
bound iron levels are high in the cerebrospinal fluid due to
controlled Tf transportation through the blood-brain bar-
rier [63]. Tf possesses high affinity iron(III)-binding sites,
and transferrin-bound ferric ions are engulfed into cells
with the aid of transferrin receptor-1 (TfR-1) via endocy-
tosis [62]. Newly imported ferric ions are subsequently
reduced to ferrous ions and released into the cytosol by diva-
lent metal transporter-1 (DMT-1). Intracellular iron levels
are further controlled by iron regulatory proteins (IRP) that
act in concert with DMT-1 and TfR-1. In iron-deficient cells,
IRPs selectively bind to an iron responsive element (IRE)
that facilitates iron uptake by stabilizing the mRNA coding
for TfR-1 and DMT-1 [64]. IRE adopts a loop-like structure
consisting of 26-30 nucleotides, often present in 3′ or 5′
untranslated regions (3′-UTR or 5′-UTR) of eukaryotic
mRNA for iron-dependent translational control. Another
iron transporter, transferrin receptor-2 (TfR-2), which
does not have an IRE, is also found in the dopaminergic
neurons of the SNpc and concentrated more within the
mitochondria of these cells [65]. Mitochondrial dysfunc-
tion has been accompanied by elevated Tf and TfR-2 levels
in PD, suggesting oxidative stress promoted by iron redox
chemistry [17, 62, 65].

Translation of ferritin, the main iron storage protein in
the body, is also regulated by the availability of intracellular
iron, as an IRE is found in the 5′-UTR of Tf mRNA [66].
Interestingly, a region in the 5′-UTR of human αS mRNA
is reported to possess a high resemblance to the IRE present
in Tf mRNA [67]. A potential IRE motif in αS mRNA sug-
gests the possibility of iron-dependent posttranscriptional
regulation of αS protein generation. Polysomal RNA analysis
conducted after treatment with iron chelators has confirmed
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that expression of αS is influenced at a translational level by
iron availability [66]. Another essential iron storage macro-
molecule in neurons, neuromelanin, has also been detected
to accumulate in the SNpc of PD patients [68]. Both ferritin
and neuromelanin possess dense iron cores [69, 70]. In the
dopaminergic neurons, the ferric ions are easily reduced to
ferrous ions by cytotoxic by-products of DA oxidation
[17, 58, 59, 62, 71]. The ability of some cellular compo-
nents, such as melanin, to reduce iron(III) to iron(II) can
stimulate the hydroxyl radical formation mediated by Fenton
chemistry [61, 69].

Physiological iron levels are expected to rise with aging;
however, a drastic elevation is noted in PD patients [72].
Pathological iron dyshomeostasis affects the progression of
PD, resulting from cumulative events that affect the capacity
for neuronal survival. Suppressed expression of ferroportin
and increased expression of DMT-1 mainly contribute to
the elevated levels of iron in the body. Ferroportin, an iron
efflux pore, is predominantly responsible for neuronal iron
export, yet the efficiency of ferroportin is not governed by
cellular iron levels alone [62]. There are several additional
factors contributing to inefficient iron export from the neu-
rons. For example, hepcidin is an iron regulatory hormone
responsive to iron overload and inflammation. Binding of
hepcidin to surface ferroportin impedes iron export via cellu-
lar internalization and degradation of ferroportin [73]. The
ferroxidase activity of ceruloplasmin, a multicopper oxidase
enzyme, can facilitate iron efflux coupled to ferroportin,
enabling iron(III) to become readily available for binding
with extracellular transferrin [74]. Notably, the low levels of
copper in the SNpc as has been reported in PD patients cor-
relate with low activity of ceruloplasmin, thus contributing to
the intracellular accumulation of iron [17, 35, 75]. In addi-
tion, tau protein interacts with amyloid precursor protein to
promote ferroportin-mediated iron export, and reduced
levels of both of these neuronal proteins have been reported
in PD brains [76]. Hence, the consequences of iron accu-
mulation collectively disrupt cellular pathways that are
dependent on our metabolism. Disruption of intracellular
homeostasis could potentially be utilized to develop an indi-
rect set of biomarkers for the diagnosis of PD based on vari-
ous cellular components and proteins that are less commonly
linked to PD. However, quantitative statistical analyses based
upon external variables, such as age and ethnicity, have to be
taken into account to establish a standard biomarker identifi-
cation system.
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5. Toxic Consequences of the Interplay between
Iron and Dopamine

Biosynthesis of DA is initiated from the amino acid tyrosine
following its import into dopaminergic neurons by amino
acid transporters (Figure 5) [77]. The rate-limiting step of
DA synthesis is the conversion of tyrosine to dihydroxyphe-
nylalanine (L-DOPA), which is driven by TyrH [77]. The
active site of TyrH requires an iron atom in its ferrous form
as a cofactor; thus, a deficiency of ferrous ions debilitates
DA synthesis [77, 78]. The subsequent conversion of L-
DOPA to DA is driven by aromatic amino acid decarboxylase
(AADC, dopa decarboxylase), and it is selective to L-amino
acid substrates [77]. Due to the dependency of the DA meta-
bolic pathway on iron, changes in the redox state balance of
Fe(III)/Fe(II) in PD brains and/or alterations in the iron flux
can directly impact the health of dopaminergic neurons.

The major metabolites of enzymatic DA degradation
are 3,4-dihydroxyphenylacetic acid and homovanillic acid
(Figure 5) [79, 80]. DA degradation is prompted by mono-
amine oxidase (MAO) enzyme which results in 3,4-dihy-
droxyphenylacetaldehyde and hydrogen peroxide. Both
substances are highly reactive and potential candidates for
neurotoxicity. Under physiological conditions, 3,4-dihydrox-
yphenylacetaldehyde is readily oxidized to 3,4-dihydroxy-
phenylacetic acid, eventually leading to formation of
homovanillic acid via catechol-o-methyl transferase (COMT)
[79]. Elevated levels of both of these metabolites are identi-
fied in cerebrospinal fluid in patients with motor disorders
or early PD symptoms. Hence, clinical studies emphasize
that 3,4-dihydroxyphenylacetic acid and homovanillic acid
could be pivotal biomarkers in PD progression [81]. In par-
ticular, the highly reactive nature of 3,4-dihydroxyphenyla-
cetaldehyde can initiate hydroxyl radical generation leading
to in vitro and in vivo neurotoxicity [82]. In fact, immunoa-
nalyses have demonstrated that aggregation of αS both in vitro
and in vivo is enhanced by 3,4-dihydroxyphenylacetaldehyde
in a dose-dependent manner [83]. Furthermore, the aggrega-
tion is provoked by this metabolite to potentially form toxic
oligomers [83].

In the presence of ferric ions, DA undergoes oxidation
to generate DA-o-quinone (Figure 5), which can enter into
neurotoxic pathways and eventually promote degeneration
of dopaminergic neurons [84]. DA oxidation can be gov-
erned by several factors, such as oxygen, inorganic reagents,
and redox active metals (primarily manganese, copper, and
iron) [85–89]. Iron-facilitated DA oxidation forms another
neurotoxic byproduct called 6-hydroxydopamine (6-OHDA)
[90, 91], which perturbs mitochondrial functions and conse-
quently promotes acute cell death due to disruption in ATP
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synthesis [92]. It also contributes to oxidative stress by pro-
ducing H2O2, eventually triggering lipid peroxidation and
cell apoptosis [92].

Conversely, DA oxidation is also an essential step in the
synthesis of neuromelanin [84], which is rapidly generated
in the presence of iron(III) via formation of an iron-DA com-
plex (Figure 5). While promoting biological reactions, the
redox chemistry of iron can simultaneously influence the
ROS and reactive nitrosative species (RNS) formation leading
to lipid peroxidation, DNA/protein degradation, and ulti-
mately cell death. Neurotoxicity coupled with the iron-DA
complex depends upon its cellular uptake. The stable precur-
sor of neuromelanin synthesis, aminochrome, can lead to
subsequent ROS generation mediated by Fenton reactions
and αS aggregation [93–95]. In addition, aminochrome can
progress mitochondrial dysfunction, protein degradation,
and oxidative stress in the neurons [96–98]. Toxic oligomer-
ization of αS associated with aminochrome can be prevented
by DT-diaphorase (NQO1), a flavoenzyme involved in the
quinone reduction pathways [93]. This enzyme attenuated
aggregation by stabilizing the monomeric state of αS upon
catalyzing the reduction of quinone (aminochrome) to leu-
koaminochrome. In a separate study, the fibrillization path-
way of αS has also been altered to spherical oligomer
formation following DA oxidation [94]. The function of αS
is also believed to be associated with DA metabolism [99].
DA interaction with αS leads to formation of SDS-resistant
soluble oligomeric species upon oxidation of methionine res-
idues in the αS amino acid sequence (Met locations: 1, 5, 116,
and 127), consequently thwarting αS fibrillation [100, 101].
Modulation of aggregation pathways associated with αS by
DA causes an increase in αS oligomers in the extracellular
environment. Even though the disruptive mechanism behind
the oligomerization is still under debate, these soluble oligo-
mers are believed to be neurotoxic. Hence, a more detailed
analysis of in vivo oligomerization and its potential to form
cytotoxic membrane pores will be essential to understand
the pathophysiology of the disease state.

6. Inhibition of Iron-Mediated Aggregation

Iron accumulation in the brain is implicated in diseases
beyond PD, including rare synucleinopathies such as neuro-
degeneration with brain iron accumulation type 1 (NBIA1),
multiple system atrophy (MSA), essential tremor (ET),
progressive supranuclear palsy (PSP), and tremor in dysto-
nia [12, 16, 102]. As aforementioned, increasing evidence
supports the fact that the aggregation propensity of αS is
affected by the redox activity of iron, and exposure to iron
and oxygen stimulates a likely toxic oligomeric form of αS
[18]. Therefore, inhibition of aggregation and iron chela-
tion as a prevention technique has been briefly addressed
in this section.

Baicalein and N′-benzylidene-benzohydrazide (NBB)
derivatives, such as 293G02 and 301C09, have been shown
to inhibit iron-induced oligomer formation and/or fibrilla-
tion (Figure 6). Low concentrations of baicalein have
proven to be an excellent candidate to block the aggrega-
tion of αS initiated by treatment with organic solvent
[49]. The catechol moiety of NBB derivatives governs the
inhibitory activity, highlighting a key structure-activity rela-
tionship [103, 104]. In particular, the compound 293G02
was highly active at controlling oligomerization inhibition,
with cytotoxicity assays indicating a significant reduction in
toxicity [104].

Aggregation promoted by iron can also be affected by the
presence of redox inactive metal ions under physiological
conditions. For example, Golts and coworkers have reported
that iron-mediated αS aggregation can be inhibited by the
presence of magnesium(II) by negatively modulating the
iron(II) affinity [105]. It was suggested that an altered con-
formation enabled resistance to aggregation rather than
competing with the same iron coordination site. Therefore,
other metals that can compete for the same binding site in
αS could act as potential therapeutic agents by mitigating
the harmful effect of iron-promoted oligomerization.

Exposure of iron at early stages of life has been identified
as a potential risk factor of PD [106]; however, the toxicity
imparted upon early exposure to iron is irreversible even in
the presence of a moderate chelator. Hence, the iron-αS
interaction window is critical in PD progression as well as
in the clinical aspects of disease prevention. Treatment with
an iron chelator such as clioquinol has been shown to reduce
nigral iron resulting in an increase in the cell viability [107].
In a separate in vivo study, treatment of iron-induced αS
aggregates with deferiprone, a ferric ion chelator, has dis-
played improved motor functions in mouse models implying
that the clinical application of iron chelation holds promise
[108]. Structure-activity relationships among iron chelators
will require careful attention as a means to open up new ave-
nues in neurodegenerative drug discovery.



8 Oxidative Medicine and Cellular Longevity
7. Concluding Remarks

Brain iron dyshomeostasis plays a crucial role in neurode-
generation associated with PD. Oxidative and conforma-
tional modifications of αS have a clear link to PD etiology,
designating this structurally dynamic protein as a major tar-
get for therapeutic studies among the research community.
The involvement of iron with αS biochemistry has been stud-
ied less extensively in comparison to research on copper-αS
interactions; however, many studies have begun to address
the potential structural and oxidative consequences that lead
to αS deposits as a result of iron accumulation in the PD
brain. Iron regulation in neurons has already shed light into
clinical applications, and new research highlighted in this
review may provide an avenue towards future therapeutic
studies and/or inspire new biomarkers for PD.
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