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Abstract

The concept of forecasting asthma using humans as animal sentinels is uncommon. This study explores the plausibility of
predicting future asthma daily admissions using retrospective data in London (2005–2006). Negative binomial regressions
were used in modeling; allowing the non-contiguous autoregressive components. Selected lags were based on partial
autocorrelation function (PACF) plot with a maximum lag of 7 days. The model was contrasted with naı̈ve historical and
seasonal models. All models were cross validated. Mean daily asthma admission in 2005 was 27.9 and in 2006 it was 28.9.
The lags 1, 2, 3, 6 and 7 were independently associated with daily asthma admissions based on their PACF plots. The lag
model prediction of peak admissions were often slightly out of synchronization with the actual data, but the days of greater
admissions were better matched than the days of lower admissions. A further investigation across various populations is
necessary.
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Introduction

Asthma is a chronic respiratory illness of immense global

proportions, and it affects over 300 million people. Recent reviews

have reaffirmed the highly heterogeneous nature of the disease,

which is influenced by complex genetic and environmental effects

as well as an evolving knowledge-base of its key determinants [1].

Many of these reviews comprehensively addressed the key factors

which contribute to the manifestation and progression of asthma

in individuals and lab based experiments [2,3,4]. There was

however less content on the forecasting of asthma events for the

purposes of providing early warning systems to help manage the

condition in larger populations. Meanwhile, an approach to

develop a forecast for respiratory conditions that are dependent on

environmental exposures (e.g. asthma), which is yet to be reported

in the literature, is the use of humans as animal sentinels to

forecast asthma.

The classical animal sentinel is the canary in the coal mine. Coal

miners would carry a caged canary with them into mines knowing

that the birds were more sensitive to the toxic gases found in the

coal seams than were the miners [5,6,7]. If the canary died then

the humans had early warning about the presence of toxic gases

and could evacuate the mine.

Since those times animal sentinels have been widely used for

monitoring changes in environmental exposures [3,8,9,10].

Although it is not usually discussed in these terms, there is also a

potential for humans to act as animal sentinels for environmental

exposures for other humans. The use of syndromic surveillance to

detect non-infectious bioterrorism is an example of this [11,12].

Unlike animal sentinels, however, where specific identifiable

animals are followed up over time, human sentinel surveillance

follows fluctuations in health events over entire populations. The

logic is that people who are more sensitive to environmental

exposures or (because of geographic location) people who

experience earlier exposure will present in hospital records sooner

than the less sensitive. As the dose of an environmental exposure

increases (or diffuses across the population), so more people will

experience health events. Thus, temporal fluctuations in the

numbers patients presenting to hospitals will be, in part,

attributable to fluctuations in environmental exposure.

There is the potential to utilize human sentinels for predicting

more routine variations in disease events to inform health service

provision. For example, in the case of asthma events, those people

with more sensitive lungs are likely to respond more quickly to

changes in environmental exposure than those people with less

sensitive lungs. In effect, the sensitive lung is ‘‘the canary in the

coal mine’’ for the less sensitive lung. Without having to measure

any particular environmental trigger or determine the causal

relationships between environmental exposures and asthma

events, the potential exists to use the frequency of asthma events

today to predict the frequency of asthma events in the future and

feed this into decision making about health services provision.

Previous studies have looked at the forecasting of asthma events,

but have tended to focus on relationships between the environ-

mental exposures which are known to trigger asthma events, such

as weather conditions or Ozone and PM10 levels, as well as the

extent to which these can be used to forecast asthma [13–18].

Other related studies, such as the recent study by Eisner and

colleagues on the use of an assessment tool for measuring the

‘‘severity of asthma score’’ and using it to predicts clinical
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outcomes in patients with moderate to severe persistent asthma,

have demonstrated the predictability of adverse clinical outcomes

in specific group of patients (i.e. moderate to severe asthma) [19].

In contrast, it is the aim of the present study to ignore the specifics

of any environmental exposure or demographic factor(s), and focus

exclusively on the possibility of using sentinel humans living within

the community to forecast asthma events. If asthma sufferers can

be used as sentinels for other asthma sufferers, the possibility exists

that by monitoring changes in the number of asthma events,

health services would be able to respond more efficiently to the

future demands. As a result individual asthma sufferers could be

alerted to their personal increased risk. The plausibility however

needs to be established first before the potential value to health

issues can be explored.

The objective of this study was to examine the relative value of

autoregressive models to forecast asthma admissions using data for

two years of hospital admissions for asthma from London (2005–

2006). Because the interest is forecasting performance, and there is

no sense in which one can suggest that the lagged count of asthma

admissions from some days ago caused the asthma admissions of

today, reporting the parameter estimates for particular lags are

likely to be of little value, or misleading [20]. We focus, therefore

on the more relevant predictive performance of the models

Methods

This study involved the development of an asthma forecasting

model based on a secondary analysis of hospital administrative

data from London, England. The data covered 20,794 hospital

admissions that occurred within the perimeter formed by the M25

Motorway (surrounding London) where the admissions had a

primary diagnosis of asthma.

Data
Data were sourced from the nationally recorded Hospital

Episode Statistics (HES) maintained by the National Health

Service, England [21]. Asthma admissions were defined as any

hospital admission with a primary diagnosis of asthma; i.e., an

International Classification of Diseases (ICD-) 10 code of J45. The

data covered all days between January 1st, 2005 and December

31st, 2006 with no missing data.

The outcome variable for the study was the daily count of

admissions for asthma. The predictor variables were selected lags

of previous days’ admissions. The selection of lags is explained in

the following section (Data Analysis). The data were divided into

two annual sets: a model development data set from the 2005

admissions data and a cross validation data set from 2006

admissions data.

Based on the aggregate, anonymous and administrative nature

of the data, an exemption from ethical review for the secondary

analysis was obtained from the Monash University Human

Research Ethics Committee (Number: 2011001092).

Data Analysis
The analysis of the data relied on a comparison of forecasting

models of asthma daily admissions in which 2005 hospitals

admissions data was used in the development of three negative

binomial regression models, and 2006 data were used for cross-

validation. The three models were:

A mean daily admissions (historical model). This model was a

null model that included no predictor variables.

A seasonal model: The seasonal model included three dummy

predictor variables to model the effects of the four seasons. Season

was dummy coded, in keeping with earlier work using these data,

because this fitted the data better than a smoothed seasonal model.

An autoregressive (lags) models: A lag represents the admissions

count from a previous day. Thus a 1 day lag represents the

admissions count from the day before the day being modelled, and

a two day lag represents the admissions count from two days prior

to the day being modelled. The lags model included the non-

contiguous lagged data from the days prior to the modeled day as

predictor variables. The lags were informed by a partial

autocorrelation function (PACF) plot with a maximum lag of 7

days.

Negative binomial regression was chosen for the modelling

because the asthma daily admissions counts were known to have

issues with over dispersion, [22–27]. Following Hilbe, [28] the

probability model can be conceptualised in the following way. P is

the probability function of the negative binomial distribution:

P Y~yijXið Þ~ C yiz1=að Þ
C yiz1ð ÞC 1=að Þ

: 1

1zam

� �1=a

: am

1zam

� �yi

Where: yi represents the number of admissions; m = exp(Xib); b is

the vector of coefficients; Xi is the vector of predictor variables (in

this case ‘‘1’’ for the historical model, the dummy variables of

three seasons for the seasonal model, and the admissions counts for

the lagged days 1, 2, 3, 6 and 7 for the lags model); a is the

overdispersion parameter; and C is the gamma function The

predictor variable parameters (b) were estimated via maximum

likelihood estimation.

A positive coefficient in the regression output indicates that a

factor will increase the number of daily asthma admissions relative

to its reference category and conversely a negative coefficient will

decrease the number of daily asthma admissions relative to its

reference category. The exponent of the coefficient can be

interpreted, all other things being equal as the proportionate

increase (for values greater than 1) or decrease (for values between

0 and 1) of number of daily asthma admissions associated with a

one unit increase in the predictor variable [27,28]. The predictor

variable(s) herein refers to the functional form of the lag term(s)

constituting the NBM. As stated in the objective of this study, this

univariate model does not account for other plausible indicators of

asthma (e.g. pollution) other than lagged asthma events. We

acknowledge that, accounting for multivariable factors is beyond

the scope of this paper, even though they may be viewed as

potentially confounding risk factors that are also time dependant.

Hence for our analyses, specific potential covariates were selected

nonlinear lags of 0 to 7 days of asthma admissions from the

training dataset (i.e. 2005 asthma daily admissions in London). To

the best of our knowledge, there is no standard reference in

current literature for lag selection for this kind of study, as it has

not been carried out before. Hence our choice of this range of lags

was to satisfy the biological plausibility of our hypothesis and also

develop a tool which relies on a ‘‘short memory’’. The selection of

lag combinations for the models involved a computationally

exhaustive process, selecting the best fit for all possible lags.

Model Formulation
Three models were developed for comparison purposes, using

the 2005 data. The first model was the mean daily admissions

(historical) model. The final model utilized non-contiguous

autoregressive lags. Season was dummy coded, in keeping with

earlier work using these data that indicated a better fit than with a

smoothed seasonal model.

Humans as Animal Sentinels for Forecasting Asthma
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1. Mean daily admissions (historical model): This model was

defined by a function of the average daily asthma admissions in

London in 2005;

2. Seasonal model: Then seasonal model was defined by four

meteorological seasons, categorized as dummy variable;

3. Lags models: The lag model was defined by a function of

combinations of the 0–7day lags which yielded the best

predictive model. The model comprised a multivariable 1, 2, 3,

6 and 7 day lags.

Error measures
Three measures of fit were used to evaluate modeled data for

2005 and the predictive forecast of the model on the cross-

validation data from 2006. The measures of predictive perfor-

mance were R-squared, root mean squared error (RMSE) and

mean absolute scaled error (MASE) [29]. RMSE was included

because it is well known and still popular in the literature although

it has known problems [30]. R-squared, though flawed as a

measure of predictive validity, [31] remains popular and was

included purely for historical reasons. MASE is now regarded as

one of the better measures of predictive validity, [32] but it

requires a scaling factor against which to measure performance.

The scaling factor was derived from the mean absolute error of the

predictions based on the 2005 historical mean daily admissions.

When interpreting the measures of error, it should be noted that

with the exception of R-squared, smaller numbers indicate less

error between the forecast and actual data. In contrast, larger R-

squared values are indicative of a better fit between the forecast

and actual data.

Analyses were conducted using the R (Version 2.14.1) statistical

environment [33] and Stata (version 11.2) statistical package [34].

Results

The mean daily asthma admission in 2005 was 27.9 and in 2006

it was 28.9. The plot of the PACF indicated lags 1, 2, 3, 6 and 7

were independently associated with daily asthma admissions.

These plots lie within reasonable confidence bounds (i.e. 95%

Confidence Interval). The negative binomial regression model was

developed using these lags.

Figure 1 shows a plot of the asthma admissions data (grey line),

and the lag model (dashed black line), seasonal model (solid black

line) and the historical model (straight dashed line). A solid vertical

line (1 January 2006) shows the division between the data on

which the models were developed and the data on which the

models were cross-validated (i.e., the predictive forecasts were

measured).

It appears from the figure that the lag model captures the daily

variation in the admissions better than the seasonal model, which

is certainly better than the historical model. Careful scrutiny of the

figure however shows the peak admissions predicted by the lag

model are often slightly out of synchronization with the actual

data. It also appears that the days of greater admissions are

somewhat better matched than the days of lower admissions.

Table 1 shows the measured fit of the lag model, the seasonal

model and the historical model. The scaling factor for the MASE

measure was derived from the historical model. As a consequence,

the MASE for the historical model for 2005 is 1, and all

comparisons of fit relate to the fit of the historical model.

Discussion

Using human sentinels to forecast asthma events in large

concentrated populations is uncommon. Previous studies on

animal sentinels have tended to use mammals, which occupy

shared environments and/or exposures with humans [10]. This

study makes an important contribution by using retrospective

asthma admission records in London to demonstrate the plausible

hypothesis.

The idea of forecasting asthma using human sentinels was based

on the probable observation that asthma sufferers with more

sensitive lungs, all things being equal, would react more to

environmental changes or to the precursors of asthma exacerba-

tions than their less sensitive counterparts. Where others have

considered lagged effects of pollutants on asthma, and sometimes

included autoregressive components in their analysis, these have

not been used for forecasting [13–18]. Where research has been

conducted on forecasting of asthma (and other respiratory

conditions), this has not considered autoreggressive predictors

[19].

There is no consensus on the approach to developing health

forecasting models. There is also no agreed scale in determining

what constitutes a good health forecast model, but for the fact that

such a model predicts well. The modeling approach described in

this study is quite flexible because it provided an opportunity to

choose the most suitable predictors and guarding against over

fitting of the model by limiting the range of lags (covariates) to be

selected.

Partial autocorrelation function plots (and other model diag-

nostic tools like Plot of time series residuals, Normal quantile plot

and Autocorrelation function) have been found to be useful guides

in selecting covariates for modeling and prediction [35,36]. A key

advantage of this model building approach is that it combines fast

input selection with accurate but computationally demanding non-

linear predictions [37]. Additionally, the complexity of the input

variable selection process makes the approach viable for large scale

population health challenges. Ultimately, it still provides a wide

range of potential models for the best forecast model to be selected

based on the chosen measures of fit and cross validation.

Forecasting and error measures
There is little difference in the R2 for the lag model in 2005 or

2006. Both measures account for a little over 35% of the variation

in asthma daily admissions. The seasonal model, surprisingly,

accounts for a greater proportion of the variation of asthma daily

admissions in the cross validation period.

The RMSE statistics show that the lag model consistently out

performs the seasonal model, which in turn consistently out

performs the historical model. For the modeled data (2005), the

seasonal model has an RMSE around 8% smaller than the

historical model and the lag model has and RMSE about 21%

smaller than the historical model. In the cross validation period

(2006), the forecast predictions of all the models are (as expected)

worse than they were for the modeled data. The rank order

however remains unchanged, with the lag model out performing

either of the other models. With respect to MASE, the seasonal

models performance is around 15% lower than the performance of

the historical model, and the lag model is around 25% lower than

the performance of the historical model

The preference of MASE over RMSE and R2 as an error

measure for forecasting has also been discussed by previous

authors [29,32]. The MASE statistics are more easily interpreted,

and potentially the most reliable and informative measure of

accuracy in forecasting [29]. It is widely recommended for

Humans as Animal Sentinels for Forecasting Asthma
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comparing forecast accuracy across series on different scales,

because it is a scaled error measure. Hyndman and Koehler,

(2006) have also reported that MASE provides the most reliable

approach because of its meaningful scale, which is widely

applicable and less prone to ‘‘degeneracy’’ problems [32].

Furthermore, MASE shows smaller variations, even with small

samples, than other measures in the same category and is also

known to be less sensitive to outliers [32,38]. The use of MASE as

a standard measure of accuracy may therefore enhance the utility

of our lagged models in comparing the predictions of asthma daily

admissions across various populations.

A comparison of the forecast models within the model

development sample (i.e. Modeled data), and equally within the

test sample (i.e. Cross-Validation data) shows various degrees of

contrast between the three models we have presented. The

observed contrasts between models that are within the same

sample frame are useful for benchmarking and selecting the best

model to be used in future predictions. These differences are

attributed to the constituents (or covariates) of each specific model.

On the other hand, it is expected that there are marked differences

between the model parameters of the Modeled and Cross-Validation

datasets because, their distributions vary as well. One important

issue worth noting and also further investigation is the fact that the

lag model predicts asthma daily admissions better during peak

periods than moments of low admissions. Further analysis on the

relationship between prediction and variations in admission rates

is also recommended.

Limitations of study
A major limitation to this approach to forecasting asthma is the

data sources and reliability. In this study we anticipated one major

limitation could be from the inherent inaccuracies (reliability) of

Figure 1. A plot of Asthma daily admissions in London (2005–2006). The grey line represents a plot of the actual asthma admissions data in
London (2005–2006); The dashed black line shows the lag model of asthma daily admissions in London (2005–2006); The solid black line shows the
seasonal model’s plots; The straight dashed line represents the historical model; and The solid vertical line (1 January 2006) shows the division
between the data on which the models were developed and the data on which the models were cross-validated.
doi:10.1371/journal.pone.0047823.g001

Table 1. Measures of fit for the historical, seasonal, and lag
models for asthma daily admissions in London, 2005 and
2006.

Error Measure 2005 (Model) 2006 (Forecast)

R2 Historical * *

R2 Seasonal 0.146 0.235

R2 Lag 0.366 0.376

RMSE Historical 8.75 9.65

RMSE Seasonal 8.09 8.55

RMSE Lag 6.97 7.57

MASE Historical 1.000 1.150

MASE Seasonal 0.887 0.977

MASE Lag 0.784 0.857

*R2 values cannot be computed for these models, because there is no variation
in the predicted daily admissions.
doi:10.1371/journal.pone.0047823.t001
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the original data/records. Generally it is assumed that everyone

experiencing an asthma exacerbation would be recorded in the

database, but conversely, some individuals may seek alternative

care and hence go unnoticed. Also, issues of misdiagnoses could be

a contributory factor to the data limitations.

In some regards, our choice of treating all cases as unique,

including repeat admission cases in the dataset, may be seen as a

limitation because of the unique characteristics of such individuals.

Nevertheless, from a service provider’s perspective, it may make

no significant difference.

Implications of the study
This study aims at demonstrating a novel approach to

developing an early warning system, which could then be used

by health service providers. We however, do not anticipate that

results of this current study would be used without circumspect,

but hope that the procedure should be validated with larger

population datasets and preferably across various populations. If

this is done, we can be hopeful that health service providers,

individual asthma sufferers and their care providers can be duly

informed of when to expect peak and low asthma exacerbations.

Such information, which comes as a guide, can enhance health

policy decisions and resource allocation, health promotion via

anticipatory care/management strategies for asthma and overall

minimize the disease burden of the condition.

Conclusions
Uncertainty and chance is an inexorable element of any

forecasting system or approach. Nonetheless this study highlights

that, detailed and comprehensive retrospective records of asthma

daily events can be used in forecasting future events. The study

demonstrates that Lag models predict peak asthma admissions

better than lower admissions.

All the three error measures (R2, RMSE and MASE) were

consistent in both the modeled data and cross-validation datasets.

The knowledge of the underlying relationships between asthma

daily admissions and related lag events that precede the former has

provided an underpinning prediction approach of future events.

This approach to forecasting does not include other potential

predictors that may be known as confounders, and thus minimizes

the potential error in predictions associated with their measure-

ment errors. However, important questions that remain unan-

swered include how such a proposed forecasting model will

perform in different settings for different populations, and the

precise mechanisms that will be most suitable for modifying the

predictors of the respective population data.
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