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Abstract

Although the hemipterans (Aphididae) are comprised of roughly 50,000 extant insect species, only four have
sequenced genomes that are publically available, namely Acyrthosiphon pisum (pea aphid), Rhodnius prolixus (Kissing
bug), Myzus persicae (Green peach aphid) and Diuraphis noxia (Russian wheat aphid). As a significant proportion of
agricultural pests are phloem feeding aphids, it is crucial for sustained global food security that a greater
understanding of the genomic and molecular functioning of this family be elucidated. Recently, the genome of
US D. noxia biotype US2 was sequenced but its assembly only incorporated ~ 32% of produced reads and
contained a surprisingly low gene count when compared to that of the model/first sequenced aphid, A. pisum.
To this end, we present here the genomes of two South African Diuraphis noxia (Kurdjumov, Hemiptera:
Aphididae) biotypes (SA1 and SAM), obtained after sequencing the genomes of the only two D. noxia biotypes
with documented linked genealogy. To better understand overall targets and patterns of heterozygosity, we also
sequenced a pooled sample of 9 geographically separated D. noxia populations (MixIX). We assembled a 399 Mb
reference genome (PRINA297165, representing 64% of the projected genome size 623 Mb) using + 28 Gb of

101 bp paired-end HiSeq2000 reads from the D. noxia biotype SAM, whilst + 13 Gb 101 bp paired-end HiSeq2000
reads from the D. noxia biotype SA1 were generated to facilitate genomic comparisons between the two
biotypes. Sequencing the MixIX sample yielded +26 Gb 50 bp paired-end SOLID reads which facilitated SNP
detection when compared to the D. noxia biotype SAM assembly. Ab initio gene calling produced a total of 31,885
protein coding genes from the assembled contigs spanning ~ 399 Mb (GCA_001465515.1).
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Introduction

Diuraphis noxia (Kurdjumov), commonly known as the
Russian wheat aphid, is an economically important hem-
ipteran pest species (Hemiptera: Aphididae) afflicting
wheat and barley yield in dry-land production regions
[1]. Diuraphis noxia was first reported as a pest of small
grains in South Africa during 1978 [2]. In 1986, D. noxia
was detected in the US Texas Panhandle [3], where after
it spread to 16 other states and two Canadian provinces
within a few years. In 1988, D. noxia was recorded in
Chile, by 1992 in Argentina [4] and finally spread to
Australia in 2016 [5].The feeding of D. noxia results in
foliar damage which include distinct white, yellow, purple
or reddish-purple longitudinal streaks (chlorotic streak-
ing), with severe leaf rolling in fully expanded leaves and
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the inhibition of leaf unfolding of developing leaves. This
inability of the leaves to unfold traps the developing spike
of the plant (termed “head-trapping”) which results in no
seeds being produced [6, 7]. The rolling of leaves has the
added unwanted effect of protecting the aphid from harsh
environmental conditions (such as insecticide spraying or
extreme temperatures) and from natural predators [8].
Overall, D. noxia infested wheat also suffers from stunted
growth leading to a lowered biomass and a decrease in the
number of tillers produced [6] thereby greatly affecting
yield potential. Seed obtained from D. noxia infested
wheat also tend to have lowered protein content and other
negative attributes for the flour industry [9] which only
adds to the economic injury of this pest. In D. noxia, it is
common for mothers to carry both their daughters and
granddaughters, as parthenogenetically produced grand-
daughter embryos develop directly within daughters, even
before their own birth. This process allows for short D.
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noxia generation times and rapid population growth in fa-
vorable environments [1], but is thought to limit the avail-
able diversity possible within D. noxia populations [10].
Since its appearance in South Africa in the late 1970, D.
noxia has undergone several biotypification events as
there are currently five different biotypes recognized in
South Africa [11, 12] and eight in the USA [13]. Biotypifi-
cation, as referenced here, is when an aphid population is
able to overcome previously established resistance within
wheat [14]. Recently, the genome of the United States
Diuraphis noxia biotype US2 was released [15] with an as-
sembly size of ~395 Mb (296 Mb represented by contigs)
and containing 19,097 genes. While the study was able to
produce a total of 1.3 Gb of sequence data, it could only
incorporate ~32% of this into an assembly comprising ~
70% of their predicted genome size. A partial assembly
due to an under estimation of genome size may explain
why their values differ so greatly to that of the closest rela-
tive of D. noxia, A. pisum (37, 865 genes and 541 Mb
assembly).

Here we present the genomes of the most virulent [11]
South African D. noxia biotype SAM and its progenitor,
the least virulent South African D. noxia biotype, SAl
[16], as well as information on the heterozygosity within
geographically separated D. noxia populations. This
study forms part of a larger survey encompassing global
D. noxia genomic variation.

Organism information

Classification and features

Diuraphis noxia Kurdjumov (Hemiptera: Aphididae)
(Table 1) is a phloem feeding Hemipteran that predom-
inantly feeds on winter wheat and spring barley [17],
with the ability to utilize other grasses as alternate hosts
[3, 16]. It is pale green and up to 2 mm long with short
and rounded cornicles (Fig. 1). Cornicles are structures
limited to aphids on the posterior abdomen and its pres-
ence is used to assist in the identification of D. noxia
[18]. The cornicles above the cauda give the aphid the
appearance of having two tails and it is believed that
these structures help aphids with predator defense [3].
Alignments using whole mitochondrial genomes [19] in-
dicate that the closest relative of D. noxia is Acyrthosi-
phon pisum (Fig. 2). Reproduction of D. noxia can either
be holocyclic (sexually reproducing males and females),
as in areas where D. noxia is deemed endemic such as
Hungary and Russia [20, 21], or anholocyclic (partheno-
genic females), where D. noxia is deemed invasive [8].
Reproduction through asexual means can lead to a fe-
cundity rate of between 3 and 5 aphids per day with an
average lifespan of roughly 50 days, of which 9 are spent
as nymphs [20]. Both forms of reproduction can lead to
two morphological morphs, namely alatae (wingless
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Table 1 Classification and general features of Diuraphis noxia
biotype SAM [22]

MIGS 1D Property Term Evidence
code®
Classification Domain: Metazoa TAS [50]
Phylum: Arthropoda TAS [51]
Class: Insecta TAS [52]
Order: Hemiptera TAS [53]
Family: Aphididae TAS [54]
Genus: Diuraphis TAS [55]
Species: noxia TAS [18]
(Type) strain: South TAS [11]
African Mutant (SAM)
Gram stain N/A
Cell shape N/A
Motility N/A
Sporulation N/A
Temperature range N/A
Optimum temperature  N/A
pH range; Optimum N/A
Carbon source N/A
MIGS-6 Habitat N/A
MIGS-6.3  Salinity N/A
MIGS-22 Oxygen requirement N/A
MIGS-15 Biotic relationship N/A
MIGS-14  Pathogenicity N/A
MIGS-4 Geographic location South Africa TAS (]
MIGS-5 Sample collection June 2012 NAS []
MIGS-4.1  Latitude N/A
MIGS-42  Longitude N/A
MIGS-44  Altitude N/A

®Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author
Statement (i.e., a direct report exists in the literature); NAS: Non-traceable
Author Statement (i.e., not directly observed for the living, isolated sample,
but based on a generally accepted property for the species, or anecdotal
evidence). These evidence codes are from the Gene Ontology project [31]

forms) and apterae (winged form), with the latter form
responsible for the wider geographical dispersal of the
aphid [6].

Genome sequencing information

Genome project history

The genome of the most virulent South African D. noxia
biotype, SAM, was sequenced, along with that of its less
virulent progenitor, biotype SA1, in an attempt to deter-
mine the genomic factors responsible for biotypification.
With this, a pooled sample comprising of geographically
separated D. noxia populations (MixIX) was also se-
quenced to ascertain the scope of heterogeneity experi-
enced by the species as a whole. The draft genome
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Fig. 1 Photomicrograph of South African Diuraphis noxia biotypes SAT and SAM
A

sequence, as well as that all produced sequences, has been
deposited at the NCBI in the GenBank database under ID
GCA_001465515.1 and BioProject PRJNA297165. The
project information and its association with MIGS version
2.0 compliance are summarized in Table 2 [22].

Growth conditions and genomic DNA preparation
Insectary reared strains of D. noxia, kept at + 22 °C and
natural lighting, were utilized for all confirmed D. noxia
populations’ genomic DNA extractions. Genomic DNA
from adult aphids of the South African D. noxia biotypes
SAM [11] and SA1 [16], and that of the pooled MixIX
sample, was used for next generation sequencing (NGS)
during the study. The genomic DNA extraction of aphid
DNA was conducted as follows; whole aphids were flash
frozen in liquid nitrogen, ground and DNA extracted
using the Qiagen DNeasy Blood and Tissue kit accord-
ing to the manufacturer’s protocol [19]. The MixIX sam-
ple consisted of 2 ng of genomic DNA for each D. noxia
representative, which consisted of three field collected
South African D. noxia populations (SA1 < SA2 < SA3 in
order of increasing virulence); one field collected Czech
D. noxia population; two insectary reared US D. noxia
populations (US1 < US2 in order of increasing virulence);
one field collected Syrian D. noxia population; and two
field collected Argentinian D. noxia populations. The in-
tegrity of the extracted DNA was then verified through
electrophoresis, making use of a 1.5% agarose gel, and
quantified using a Qubit v2.0 fluorometer.

Genome sequencing and assembly

269,657,598 (biotype SAM) and 119,235,662 (biotype
SA1) 101 bp reads were obtained from single paired-
end libraries constructed with the Illumina TruSeq
Nano DNA Library Preparation Kit, with an average
500 bp insert size, that were sequenced on the Illumina
HiSeq2000 sequencing platform by Macrogen, Inc.
(Seoul, Korea). Whole genomic DNA obtained from the
MixIX sample produced 334,866,714 50 bp reads using
the SOLiD sequencing platform from a 3-4 Kbp long
mate-paired library by SEQOMICS Biotechnoldgia Kft.
(Budapest, Hungary).

Raw sequences obtained from the Illumina HiSeq2000
sequencing of the D. noxia SAM biotype, and from the
SOLID system for the MixIX sample, were trimmed and
filtered so that all bases had a minimum Phred score of
20. Reads mapping to Buchnera aphidicola of D. noxia
[CP013259.1] and that of the mitochondrion of D. noxia
[19] were removed from further analysis. Optimal k-mer
length for the D. noxia biotype SAM assembly was de-
termined using KMERGENIE [23], while using DSK [24]
to estimate the optimal k-mer frequency cut-off. GCE
[25] was utilized to estimate the genome size of D. noxia
through using the optimal k-mer size generated by
KMERGENIE and the frequency of the optimal k-mer
size as determined by DSK. The D. noxia genome of bio-
type SAM was assembled using the SOAP de novo soft-
ware package [26]. After contig assembly, scaffolds were
constructed by realignment of useable paired-end reads
onto the contig sequences.
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Fig. 2 PAUP generated phylogenetic tree based on whole mitochondrial genomes. A maximum parsimony tree generated through PAUP [56]
utilizing whole mitochondrial genomes, that was aligned with MAFFT [57], illustrating Diuraphis noxia's close association with Acyrthosiphon pisum
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Table 2 Project information

MIGS 1D Property Term
MIGS 31 Finishing quality Level 2: High-Quality Draft
MIGS-28 Libraries used lllumina paired-end library
MIGS 29 Sequencing platforms lllumina HiSeq
MIGS 31.2 Fold coverage x45 (SAM); x22 (SA1);
%27 (MixIX)
MIGS 30 Assemblers Soapdenovo
MIGS 32 Gene calling method Augustus
Locus Tag N/A
Genbank ID GCA_001465515.1
GenBank Date of Release 14/12/2015
GOLD ID Gp0149495
BIOPROJECT PRINA297165
MIGS 13 Source Material Identifier N/A

Project relevance

Academic and Agricultural

Trimmed D. noxia biotype SAM reads were also itera-
tively mapped (3 iterations), using the Geneious (v7.1.5)
software package [27], against the assembled scaffolds of
Acyrthosiphon pisum (Acyr2.0) obtained from ENSEMBL
[28]. The consensus sequences obtained from the refer-
ence mapping were then compared through the use of the
BLASTn [29] application to the de novo contigs. Any se-
quences that produced no match through use of BLASTn
were added to the contigs obtained from the SAM de
novo assembly to build the final draft genome. A total of
190,686 contigs greater than 300 bp in length was pro-
duced with an average coverage of 44.8x, representing
~83% of the total reads generated. Using the assembled
contigs, BUSCO v1.1 [30] was utilized to assess the com-
pleteness of the assembly and found that of the 2675
single-copy orthologues 85% were present, 7% were frag-
mented and 8% were missing (Fig. 3a). To allow for com-
parison, analysis using BUSCO was also performed with
the scaffolds of the D. moxia biotype RWA2 genome
(GCA_001186385.1) [15] and that of Acyrthosiphon pisum
(GCA_000142985.2) (Fig. 3b and c respectively).
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Fig. 3 Quantitative assessment of genome assembly through BUSCO. a BUSCO analysis utilizing D. noxia biotype SAM contigs; b BUSCO analysis
utilizing D. noxia biotype RWA2 scaffolds (GCA_001186385.1) [15]; and ¢ BUSCO analysis utilizing Acyrthosiphon.pisum scaffolds (GCA_000142985.2)
. J

Genome annotation were then assigned putative identity through the use of
Gene prediction was performed using the ab initio gene  the BLASTp and BLASTx applications of the NCBI [29].
caller Augustus [31] using the 36,195 protein coding Protein coding genes were considered shared if they pre-
genes of A. pisum (build v2.1) obtained from ENSEMBL  sented with at least 70% sequence identity over at least
[28] as a training set. Predicted protein coding genes 70% of the total protein length. Blast2GO [32] was used
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Table 3 Genome statistics

Attribute Value % of Total
Genome size (bp) 399,704,836 64.06
DNA coding (bp) 66,633,929 16.67
DNA G+C (bp) 123,520,793 29.5
DNA scaffolds 190,686 64.06
Total genes 31,885 100
Protein coding genes 31,885 100
RNA genes - -
Pseudo genes - -
Genes in internal clusters - -
Genes with function prediction 12,791 40.12
Genes assigned to COGs 13,523 4241
Genes with Pfam domains 13,877 4352
Genes with signal peptides 1399 439
Genes with transmembrane helices 2957 927
CRISPR repeats 3 -
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to obtain the putative Gene Ontology (GO) [33] of the
D. noxia protein coding genes predicted by Augustus.
KOG [34] functional categories were assigned to pre-
dicted protein coding genes through use of the NCBI’s
RPS-BLAST [35] and Conserved Domain KOG database
[34], with an E-value smaller than 10e-3 accepted as sig-
nificant. Protein coding genes were analyzed for their
amino acid content through use of the Geneious (v7.1.5)
platform [27] and CRISPR sites were predicted using the
CRISPR Recognition Tool v1.1 [36].

Reads obtained from the SOLiD system were then
mapped to the predicted protein coding genes of the
SAM assembly to facilitate nucleotide variant calling
using the Geneious (v7.1.5) software package [27]. The
minimal criteria for assigning a single nucleotide poly-
morphism (SNP) required that the area in question had
a mapping coverage of more than x10, the variant was
present in at least 2 sequences, and that the p-value pre-
dicted for the SNP should be smaller than 1 x 107 (cal-
culated by first averaging the base quality of each base
equal to the proposed SNP and averaging the qualities of
each base not equal to the proposed SNP).

Table 4 Number of genes associated with general KOG functional categories

Code Value %age Description
J 1272 3.99 Translation, ribosomal structure and biogenesis
1258 395 RNA processing and modification

K 2193 6.88 Transcription
L 1467 4.60 Replication, recombination and repair
B 729 229 Chromatin structure and dynamics
D 1503 471 Cell cycle control, cell division, chromosome partitioning
v 270 0.85 Defense mechanisms
T 3531 11.07 Signal transduction mechanisms
M 294 0.92 Cell wall/membrane biogenesis
N 55 0.17 Cell motility
U 1772 5.56 Intracellular trafficking and secretion
(0] 2101 6.59 Posttranslational modification, protein turnover, chaperones
C 498 1.56 Energy production and conversion
G 957 3.00 Carbohydrate transport and metabolism
E 872 2.73 Amino acid transport and metabolism
F 350 1.10 Nucleotide transport and metabolism
H 177 0.56 Coenzyme transport and metabolism
| 1232 3.86 Lipid transport and metabolism
p 734 230 Inorganic ion transport and metabolism
Q 377 1.18 Secondary metabolites biosynthesis, transport and catabolism
R 3740 11.73 General function prediction only
S 1528 4.79 Function unknown

18,362 57.59 Not in KOGs

The total is based on the total number of protein coding genes in the genome
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Fig. 4 Amino acid content comparison of Diuraphis noxia proteins and wheat phloem. Bar plots indicate relative abundance of amino acids in
Triticum aestivum subsp. aestivum L (red) and as component of protein coding genes within Diuraphis noxia (brown) along with two-point moving
average lines
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Table 5 Protein amino acid constituency and codon abundancy for Diuraphis noxia proteins

Amino acid Frequency % of total Most frequently Codon % of total
occurring codon
Ala 371416 55 GCT 353
Cys 136,944 20 TGT 674
Asp 385,673 5.7 GAT 65.1
Glu 420519 6.2 GAA 77.8
Phe 258,795 3.8 1T 67.9
Gly 342,001 5.1 GGT 364
His 166,317 2.5 CAT 63.0
lle 430,599 6.4 ATT 455
Lys 479,017 7.1 AAA 753
Leu 601,144 8.9 TTA 338
Met 161,194 24 ATG 100.0
Asn 403,005 6.0 AAT 66.7
Pro 318,625 47 CCA 419
GIn 278,160 4.1 CAA 69.9
Arg 330,282 49 AGA 325
Ser 555,299 8.2 TCA 26.0
Thr 400,065 59 ACA 359
Val 416,649 6.2 GIT 337
Trp 73,151 1.1 TGG 100.0

Tyr 220,486 33 TAT 62.3
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Fig. 5 Relative abundance of KOG functional annotations within predicted genes
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An EDTA-mediated exudation protocol [37] was used
to collect phloem from uninfested, susceptible Triticum
aestivum subsp. aestivum L cultivar Gamtoos-S leaves in
triplicate. The exudates were blown to dryness under ni-
trogen at 55 °C and the residues were reconstituted in
200 ul 1 M (pH 8.0) borate buffer containing internal
amino acid standards by the Central Analytical Facilities
(CAF), Stellenbosch University. Ten microlitres of each
reconstituted sample was derivatized using the Waters
AQC derivatization kit. Derivatized amino acids were
then separated and detected using a Waters Acquity

UPLC fitted with an UltraTag C18 column and a photo-
diode array detector. Peaks were detected and integrated
by the MassLynx software (Waters Corporation).

Genome properties

The genome of female D. noxia consists of 5 holocentric
chromosome pairs (4 autosomes and 1 sex or X chromo-
some) giving it an XX/XO sex determination system
[38]. The final assembly totaled 399,704,836 bp which
represents ~64% of the predicted genome size of be-
tween 593 and 623 Mb obtained through using GCE

Table 6 SNPs identified between sample MixIX and Diuraphis noxia biotype SAM

SNP effect? Value %age of total Number of genes %age of genes with KOG classification
Synonymous 18,289 19.85 5677 62.37
Substitution 63,035 6842 9674 83.54
Truncation 6844 743 2672 7493
Frame shift 2375 258 1008 4554
Insertion 579 0.63 163 35.58
Deletion 504 0.55 109 2202
Extension 499 0.54 300 37.00

*Where synonymous SNPs cause no amino acid change, substitution SNPs cause a single amino acid substitution, truncation SNPs introduces of a stop codon,
frame shit SNPs disrupt the reading frame through deletions and/or insertions of 1 or 2 bases; insertion SNPs introduces an additional codon; deletion SNPs is

where a codon is removed and extension SNPs disrupt existing stop codons
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[25], the optimal k-mer size (KMERGENIE [23]) and dis-
tribution graphs (DSK [24]) (Table 3). The assembly GC
content was 29.5% and ab initio gene calling, through
Augustus [31], identified 31,885 protein coding genes
greater than 32 amino acids in length. The total gene
complement represented 66,633,929 bp of the assembly
(16.67%) of which 20,316,122 (5.08%) consisted of cod-
ing domain sequence. Amino acid usage in the protein
coding genes complement of D. noxia (Table 4) indi-
cated that leucine followed by serine are the most fre-
quently used amino acids, while tryptophan was the
least frequently occurring amino acid. Of the 31,885
protein coding genes, 27,386 (~86%) sequences were
putatively identified through BLASTx and BLASTp and
only 12,791 (~47%) of these had a GO term assigned to
them through Blast2GO [32].

Insights from the genome sequence

With an AT content of 70.5%, D. noxia is the most AT-
rich insect genome sequenced to date. This is very similar
to its closest aphid relative, A. pisum, which has an AT
content of 70.4%. A cursory comparison of the genic com-
plement between D. noxia biotypes SAM and SA1 shows
no differences, with SA1 reads mapping to all predicted
protein coding genes, and no indication of genomic rear-
rangements. Genome size estimations, utilizing GCE and
k-mer counting, were also inconclusive with both biotypes
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predicted to have roughly equal genome sizes. The pre-
dicted genome size of roughly 623 Mb containing 31,885
protein coding genes is also comparable to that of A.
pisum which currently has an assembly size of 542 Mb
with 36,195 protein coding genes assigned to it.

In order to assess whether there is a bias for selected
amino acids during transcription in the D. noxia gen-
ome, we analyzed the frequency of specific amino acids
and codon usage (Table 4). From the data it was evident
that leucine followed by serine are the most frequently
used amino acids in the predicted protein coding genes,
while tryptophan was the least frequently occurring
amino acid.

With regards to codon usage, leucine codons were
used in the following order from most used TTA >
TTG>CTT >CTG > CTA > CTC, while in the case of
serine they were as follows TCA > TCT > AGT > TCG >
AGC > TCC. Codons with low usage include tryptophan
(TGG), cysteine (TGT >TGC) and histidine (CAT >
CACQ). The start codon (methionine, ATG) and stop co-
dons (TAA, TGA and TAG) also occurred as expected
at lower frequencies.

When comparing the amino acid usage of D. noxia pro-
tein coding genes to that of the free amino acid compos-
ition of wheat phloem (Fig. 4), it was interesting to note
that of the ten most abundant amino acids present in D.
noxia protein coding genes (in order: Leu > Ser > Lys >
Ile > Glu > Val > Asn > Thr > Asp > Ala), seven were also
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most abundant in wheat phloem (i.e., Asp, Glu, Ser, Ile,
Thr, Leu and Ala). Previous studies that either utilized an
EDTA mediated phloem exudation method and/or
stylectomy to investigate wheat phloem reported similar
levels in unchallenged wheat plants (Additional file 1:
Figure S1) [37, 39]. The apparent organization of D. noxia
protein coding genes around the availability of free amino
acids within its diet could illustrate the adaptation of the
aphid towards its limited host range.

Assigning predicted D. noxia protein coding genes into
KOG categories revealed that, out of the 31,885 predicted
genes, 13,523 (42.42%) were successfully assigned of which
the largest comprised of the general function category R
(12.98%) > the signal transduction mechanisms category T
(12.26%) > the transcription category K (7.61%) > posttrans-
lational modification, protein turnover and chaperones cat-
egory O (7.29%) > the intracellular trafficking, secretion,
and vesicular transport category U (6.15%) (Table 5; Fig. 5).
The large grouping of genes associated with protein modifi-
cation and turnover is interesting in that it has been shown
previously that phloem feeding aphids, despite low levels of
heterogeneity, display various levels of virulence towards
single host cultivars [40-43], as is the case for Diuraphis
noxia biotypes SA1 and SAM [11, 44]. The basis for this
observed variance may include the adaptability of the
aphid’s salivary cohort in response to its feeding environ-
ment [45, 46] as this is central to the molecular interaction
between aphids and their hosts. In a study by Lapitan et al.
[47], where fractionated aphid extracts from different D.
noxia biotypes were injected into resistant and susceptible
wheat cultivars, it was found that the D. noxia effector(s)
modulating aphid-host interactions was proteinaceous in
nature and differed between biotypes. Thus D. noxia, as
well as other Hemipterans, would require an adaptive and
responsive salivary enzyme cohort that is able to adjust for
their continually changing feeding environment [48].

Extended insights

The pooling, and subsequent sequencing, of different D.
noxia geographically separated populations was per-
formed to give a clearer indication of the level of va-
riation present overall within the species. The total
number of polymorphic sites identified between the pre-
dicted protein coding genes of the South African D. noxia
biotype SAM assembly and the MixIX sample was 92,125
(Table 6). The majority of these polymorphic sites were ei-
ther synonymous (19.9%) or resulted in an amino acid
substitution (68.4%). Other SNPs resulted in major under-
lying protein effects such as the introduction of aberrant
stop codons leading to truncated transcripts (7.4%),
frame shift alterations (2.6%), in-frame insertions (0.6%)
and deletions (0.5%) and the extension of transcripts
through disrupting stop codons (0.5%). In total, out of
the predicted 31,885 protein coding genes 10,934
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(34.29%) contained SNPs. The KOG general function
category R (1657 genes) was assigned the most genes,
followed by the translation, ribosomal structure and
biogenesis category T (1434 genes); the replication, re-
combination and repair category L (1092); the post-
translational modification, protein turnover, chaperones
category O (1061); the transcription category K (1025);
and the cell cycle control, cell division, chromosome
partitioning category D (938) (Fig. 6). Again, genes allo-
cated to the general category of protein modification
and turnover features prominently within the top genes
containing the most SNPs, especially so when compar-
ing SNPs with an underlying protein effect.

The overall low number of SNPs leading to protein
content variation (i.e., insertion and deletion of in-frame
codons) was the least represented. This may indicate a
conservation of local amino acid identity within proteins.
Although SNPs resulting in an amino acid substitution
were the highest recorded type of all the SNP effect
types, these generally don’t incur significant functional
changes. Substitutions involving amino acids possessing
similar properties would constrain protein folding and
target specificity. Any prediction on the underlying pro-
tein effects of these types of SNPs would also require site
specific information and corroborating molecular evi-
dence. Truncation SNPs, polymorphisms introducing
aberrant stop codons within the coding domain of genes,
was the third most prevalent SNP type observed (after
synonymous and substitution type SNPs). Arguably, the
effect of these types of SNPs can be considered more
significant as they have the potential of producing tran-
scripts of varying lengths, possibly altering the molecular
action and target affinities of proteins and their under-
lying complexes. This could potentially afford the aphid
with a wider array of “molecular machinery” to adapt to
defensive responses from its host.

Conclusions

The genome of the South African Diuraphis noxia biotype
SAM was successfully assembled into contigs spanning
roughly 400 Mb and predicted to contain 31,885 protein
coding genes. A large proportion of predicted genes were
assigned to KOG functional categories relating to protein
modification and turnover that may help explain the dif-
ferential adaptability of different D. noxia biotypes towards
their host. The overall low variation across the genome of
D. noxia is consistent with previous studies that have
found limited variation between biotypes [48, 49]. It is
though interesting that most of the functional nucleotide
variation observed was predominantly present in genes
governing protein modification and turnover which in
turn is supportive of the adaptability of D. noxia when
facing resistance mechanisms from its host.
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Additional file 1: Figure S1. Comparison of amino acid profiles
obtained from protein coding genes in A. pisum (Acyr 2.1) and the levels
of amino acids in pea phloem [58]. (JPEG 59 kb)
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