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Abstract

Background: Mycobacterium bovis, the causative agent of bovine tuberculosis, is an intracellular pathogen that can
persist inside host macrophages during infection via a diverse range of mechanisms that subvert the host immune
response. In the current study, we have analysed and compared the transcriptomes of M. bovis-infected monocyte-
derived macrophages (MDM) purified from six Holstein-Friesian females with the transcriptomes of non-infected
control MDM from the same animals over a 24 h period using strand-specific RNA sequencing (RNA-seq). In
addition, we compare gene expression profiles generated using RNA-seq with those previously generated by us
using the high-density AffymetrixW GeneChipW Bovine Genome Array platform from the same MDM-extracted RNA.

Results: A mean of 7.2 million reads from each MDM sample mapped uniquely and unambiguously to single Bos
taurus reference genome locations. Analysis of these mapped reads showed 2,584 genes (1,392 upregulated; 1,192
downregulated) and 757 putative natural antisense transcripts (558 upregulated; 119 downregulated) that were
differentially expressed based on sense and antisense strand data, respectively (adjusted P-value ≤ 0.05). Of the
differentially expressed genes, 694 were common to both the sense and antisense data sets, with the direction of
expression (i.e. up- or downregulation) positively correlated for 693 genes and negatively correlated for the
remaining gene. Gene ontology analysis of the differentially expressed genes revealed an enrichment of immune,
apoptotic and cell signalling genes. Notably, the number of differentially expressed genes identified from RNA-seq
sense strand analysis was greater than the number of differentially expressed genes detected from microarray
analysis (2,584 genes versus 2,015 genes). Furthermore, our data reveal a greater dynamic range in the detection
and quantification of gene transcripts for RNA-seq compared to microarray technology.

Conclusions: This study highlights the value of RNA-seq in identifying novel immunomodulatory mechanisms that
underlie host-mycobacterial pathogen interactions during infection, including possible complex post-transcriptional
regulation of host gene expression involving antisense RNA.
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Background
Bovine tuberculosis (BTB) is caused by infection with
Mycobacterium bovis―an intracellular pathogen belong-
ing to the Mycobacterium tuberculosis complex [1-4].
BTB has major economic, animal welfare and public
health consequences, and has remained recalcitrant to
eradication despite the implementation of improved man-
agement strategies in recent decades [5,6]. BTB transmis-
sion is primarily caused by inhalation of infectious bacilli
contained within aerosolised respiratory secretions. Fol-
lowing exposure, the pathogen is phagocytosed by host al-
veolar macrophages, which serve as key effector cells in
activating the innate and adaptive immune responses re-
quired to determine the outcome of infection [7].
The immune response to M. bovis is similar to that

elicited by M. tuberculosis infection in humans. Infected
macrophages secrete several NF-κB-inducible inflamma-
tory cytokines that initiate and regulate an adaptive im-
mune response characterised by the release of IFN-γ
from T-cells [8]. IFN-γ activates microbicidal activity in
infected macrophages and also promotes the sequestra-
tion of the pathogen in granulomas―organised com-
plexes of immune cells consisting of lymphocytes, non-
infected macrophages, dendritic cells and neutrophils
that contain mycobacterial-infected macrophages and
prevent the spread of bacilli to other tissues [9-11].
In many cases, however, mycobacterial pathogens can

evade the host immune response and persist within
alveolar macrophages resulting in lengthy subclinical
phases of infection that can lead to immunopathology
and disease dissemination. Pathogen survival in alveolar
macrophages is achieved through a diverse range of
mechanisms including the inhibition of phagosome mat-
uration and the suppression of key immuno-regulatory
pathways that mediate the host immune response to
infection [12,13]. Consequently, analysis of the macro-
phage transcriptome in response to M. bovis infection
can offer a deeper understanding of the cellular pro-
cesses governing pathogen-macrophage interactions and
how modulation of these cellular pathways underlie pro-
gression to active BTB. Furthermore, identification of
transcriptional markers of infection may enable the de-
velopment of novel diagnostics for BTB, providing new
tools for disease management [14,15].
The completion of an annotated Bos taurus reference

genome sequence, together with developments in
high-throughput transcriptomic technologies, such as
immuno-specific and pan-genomic microarrays, have
enabled detailed functional genomic investigation of the
bovine host response to mycobacterial infections [16-21].
However, the recent advent of RNA sequencing (RNA-
seq) technologies offers unprecedented opportunities for
gene expression analysis previously unavailable for micro-
array technology, including unbiased whole-transcriptome
profiling, the analysis of sense and antisense transcription,
the characterisation of new classes of RNA, and the identi-
fication of novel mRNA splice variants [22,23]. Further-
more, the digital nature of RNA-seq data provides a more
precise and sensitive method to map and quantify RNA
transcripts compared to the analog data generated by
microarray technologies [24].
Previously, we used the pan-genomic high-density

AffymetrixW GeneChipW Bovine Genome Array to com-
pare temporal changes in gene expression profiles in
RNA extracted from M. bovis-infected and non-infected
control bovine monocyte-derived macrophages (MDM)
purified from seven age and sex-matched Holstein-
Friesian females at intervals of 2, 6 and 24 h post-
infection [20]. We demonstrated that the number of
differentially expressed genes increased sequentially at
each time point post-infection, with the highest number
of differentially expressed genes observed 24 h post-
infection [20].
To gain a deeper understanding of the transcriptional

changes induced 24 h post-infection with M. bovis, we
have used strand-specific RNA-seq technology for the
present study, to analyse the transcriptomes of the infected
and non-infected control MDM samples generated by us
previously [20]. A list of differentially expressed genes was
generated by comparing the MDM transcriptomes from
the infected and non-infected control samples, and these
genes were further analysed using the IngenuityW Systems
Pathway Analysis Knowledge Base to identify macrophage
cellular pathways underlying M. bovis infection in vitro. Fi-
nally, the list of differentially expressed genes generated
from analysis of the RNA-seq data was compared to results
from a comparable microarray experiment published by
our group [20].

Results
Summary statistics for the RNA-seq data
All 14 RNA-seq libraries were sequenced across seven
lanes of one IlluminaW flow cell with a mean of 25.5 mil-
lion reads (range: 20.7 million to 29.3 million reads) gener-
ated per lane. Deconvolution and filtering of sequence
reads to remove adapter-dimer sequences yielded a mean
of 11.3 million reads (range: 2.7 million to 18.0 million
reads) per individual RNA-seq library. Subsequent align-
ment of the filtered RNA-seq reads to the B. taurus refer-
ence genome (Btau 4.0.63 genome release) yielded a mean
of 7.2 million reads (63.6%) for each RNA-seq library that
mapped to unique locations in the bovine genome; a mean
of 3.3 million reads (29.3%) for each library that mapped
to multiple locations in the genome; and a mean of 0.8
million reads for each library (7.1%) that did not map to
any genome location (Figure 1A). The number of reads
per individual RNA-seq library is provided in Additional
file 1: Table S1.



Figure 1 Apportionment of reads mapping to unique and multiple locations in the B. taurus reference genome. A) Pie chart showing
the mean number and percentage of reads that aligned to unique location and multiple locations in the B. taurus reference genome using the
TopHat splice junction mapper. B) Pie chart showing the mean number and percentage of uniquely mapped reads assigned to ambiguous gene
features (i.e. reads that map to overlapping gene sequences), unidentified gene features (i.e. reads that map to the genome that have no gene
annotation) and identified features (i.e. known gene sequences) based on sense strand and antisense strand data using the HTSeq package.

Nalpas et al. BMC Genomics 2013, 14:230 Page 3 of 19
http://www.biomedcentral.com/1471-2164/14/230
Further analysis of the individual library reads map-
ping to unique locations in the B. taurus reference gen-
ome (7.2 million reads) revealed that a mean of 5.3
million reads (73.6%) aligned to exonic regions. 1.6 mil-
lion (22.2%) and 0.2 million (0.3%) reads were associated
with exon-30 UTR and exon-50 UTR sequences, respect-
ively; 1.4 million reads (19.4%) mapped to intergenic loca-
tions and 0.4 million reads (5.5%) mapped to intronic
regions (Figure 2). The filtered sequence reads for all
deconvoluted libraries were also aligned to the complete
genome sequence of the M. bovis AF2122/97 strain
Figure 2 The distribution of uniquely mapped reads. The mean numb
showing the mean number of reads that map to inter-genic, intronic and e
differentiating the mean number of reads mapping to exonic regions inclu
exonic sequences.
(GenBank accession number NC_002945.3) to assess the
presence of mycobacterial RNA contamination in individ-
ual libraries―a mean of 234 reads (0.004%) mapped to lo-
cations in the M. bovis genome. The reads that mapped to
the M. bovis genome did not map to the B. taurus refer-
ence genome. Following preliminary filtering and quality
checks, only sequence reads that mapped to unique loca-
tions in the B. taurus reference genome were used for
downstream bioinformatics and IPA analyses.
Quantification of the number of reads that exclusively

mapped to genes with bovine Ensembl IDs was performed
er and percentage of uniquely mapped reads are given. A) Pie chart
xonic regions of the B. taurus reference genome. B) Pie chart
ding those that map to 50-UTR- and 30-UTR-associated
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using the HTseq-count software package. This analysis
demonstrated that a mean of 5.0 million reads (43.8%) per
library mapped to Ensembl gene IDs based on sense
strand sequence information, with a mean of 0.4 million
sequence reads for each library (3.5%) mapping to
Ensembl gene IDs based on antisense strand sequence in-
formation; only these two sets of reads were used to separ-
ately derive gene expression values for sense and antisense
strand transcription, respectively. Of the remaining reads
—which were not used to derive gene expression values—
a mean of 1,600 reads (0.01%) for each library were associ-
ated with multiple Ensembl gene IDs, while a mean of 1.8
million reads for each library (16.3%) were not associated
with Ensembl gene IDs (Figure 1B).
Prior to multi-dimensional scaling (MDS) and differen-

tial gene expression analysis, density plots (Additional file
2: Figure S1) displaying the number of sequence reads per
gene were constructed and analysed. Two RNA-seq librar-
ies comprising a control and M. bovis-infected sample
from the same animal (animal number 700; Additional file
1: Table S1) showed skewed distributions compared to all
other libraries; consequently these samples were removed
from all further downstream analyses. All downstream
analyses, including differential gene expression, IPA ana-
lysis based on sense and antisense strand data, and tech-
nical comparisons between RNA-seq and microarray
platforms were performed using data from the remaining
six animals (i.e. 12 RNA-seq libraries).
Figure 3 Multi-dimensional scale plot of all M. bovis-infected and con
dimension 2 separate all 12 RNA-seq libraries based on the expression valu
passed all data filtering criteria prior to differential gene expression analysis
Gene expression and IPA analysis of sense strand
transcription
Analysis of the gene coverage using reads mapping to
unique locations of the B. taurus reference genome
based exclusively on sense strand sequence information,
showed that of the 25,669 annotated B. taurus genes,
15,422 genes (60.1%) had at least one sequence read
count (i.e. one mapped read) in at least one library. The
15,422 detectable genes were further filtered by remov-
ing lowly expressed genes. Consequently, only genes
displaying more than one count per million reads for at
least three libraries were used for subsequent analyses.
This yielded 11,131 genes (43.4% of annotated B. taurus
genes) that were suitable for downstream analyses.
Prior to differential gene expression analysis, the data

from the 11,131 filtered genes were used for MDS ana-
lysis (Figure 3). MDS analysis demonstrated that MDM
samples were differentiated according to treatment sta-
tus (i.e. infected versus non-infected control samples)
along dimension 1, while dimension 2 separated the
MDM samples according to animal ID.
Statistical analysis of all 11,131 genes that passed the fil-

tering process identified a total of 2,584 differentially
expressed genes (adjusted P-value ≤ 0.05), of which 1,392
were upregulated and 1,192 were downregulated in the M.
bovis-infected MDM relative to the non-infected control
MDM. In addition, expression fold-change values were
markedly higher for upregulated genes compared to
trol samples based on RNA-seq sense data. Dimension 1 and
e of the 11,131 genes (based on RNA-seq sense strand data only) that
.
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downregulated genes. A list of the differentially expressed
genes based on sense strand data is presented in Add-
itional file 3: Table S2.
Among the most upregulated genes based on expression

fold-change (Table 1), were the adrenergic, beta-3-, recep-
tor gene [ADRB3] (2nd ranked upregulated gene); the inter-
leukin 17A gene [IL17A] (3rd ranked); the serum amyloid A
3 gene [SAA3] (4th ranked); and the mammary serum amyl-
oid A3.2 gene [M-SAA3.2] (5th ranked). The first ranked
upregulated gene is not described here as it encodes an
uncharacterized protein. The most downregulated genes
were the gamma-aminobutyric acid (GABA) B receptor, 2
gene [GABBR2] (1st ranked downregulated gene); the
cadherin 26 gene [CDH26] (2nd ranked); the solute carrier
family 16, member 12 (monocarboxylic acid transporter 12)
gene [SLC16A12] (3rd ranked); the Fas apoptotic inhibitory
molecule 2 gene [FAIM2] (4th ranked); and the SH3 domain
and tetratricopeptide repeats 2 gene [SH3TC2] (5th ranked).
Functional categorisation of the 2,584 differentially

expressed genes using IPA revealed an enrichment of genes
with roles in immunology, cell development and prolifera-
tion, and apoptosis (Additional file 4: Table S3). IPA was
also used to identify canonical pathways enriched for dif-
ferentially expressed genes, many of which were had im-
mune and apoptotic functions. (Additional file 5: Table
S4). Based on the well-documented role of apoptosis in
the host response to mycobacterial infection [25] the
Death receptor signalling canonical pathway was overlaid
with RNA-seq gene expression results and is presented in
Figure 4.

Gene expression analysis of antisense strand read data
Analysis of the RNA-seq reads that mapped to antisense
strand gene sequences revealed that 13,796 genes of the
25,669 annotated B. taurus genes had at least one
Table 1 List of the top five ranking up- and downregulated g

Rank Direction of
expression

Ensembl Gene ID Gene
symbol

Gene

1 Upregulated ENSBTAG00000023064 Not available Uncha

2 Upregulated ENSBTAG00000017981 ADRB3 adrene

3 Upregulated ENSBTAG00000002150 IL17A interle

4 Upregulated ENSBTAG00000022396 SAA3 serum

5 Upregulated ENSBTAG00000010433 M-SAA3.2 mamm

1 Downregulated ENSBTAG00000013810 GABBR2 gamm
B rece

2 Downregulated ENSBTAG00000020261 CDH26 cadhe

3 Downregulated ENSBTAG00000004662 SLC16A12 solute
(mono

4 Downregulated ENSBTAG00000017504 FAIM2 Fas ap

5 Downregulated ENSBTAG00000017151 SH3TC2 SH3 d

List of the top most upregulated and downregulated genes in M. bovis-infected sam
on RNA-seq sense strand data.
sequence read count (i.e. one mapped read count) for at
least one library. Filtering out of lowly expressed genes
(as detailed for the sense strand data above) led to the
exclusion of 6,954 genes, leaving a total of 6,842 genes
for differential expression analysis based of antisense
strand data. 757 of the genes were differentially expressed
(adjusted P-value ≤ 0.05), of which 558 showed increased
expression and 199 showed decreased expression in the
M. bovis-infected MDM relative to the non-infected con-
trol MDM. As with the sense strand data, the fold-change
in expression for the genes showing increased expression
was markedly higher than that for the genes decreasing in
expression. A list of significant differentially expressed
genes derived from the antisense strand expression data is
presented in Additional file 6: Table S5. Additional file 7:
Figure S2 shows the distribution of sense and antisense
reads that mapped to the spectrin, beta, erythrocytic gene
(SPTB). As these reads do not map to the exact same loca-
tions in the SPTB gene, we are confident that they repre-
sent actual antisense transcripts based on the current
annotation of the B. taurus reference genome and are not
due to technical artefacts introduced during RNA-seq li-
brary preparation.
A systematic comparison was performed between signifi-

cantly differentially expressed genes detected using the
sense strand RNA-seq data (n = 2,584) and those identified
from the antisense strand data (n = 757). This generated a
list of 694 differentially expressed genes that were common
to both the sense strand and the antisense strand data sets.
The common 694 genes were further subdivided according
to the direction of expression (i.e. up- or downregulated) in
the M. bovis-infected MDM relative to the control MDM.
520 genes displayed an increase in expression in both the
sense and antisense strand data sets, while 173 genes
showed decreased expression from both strands. In
enes based on the RNA-seq sense strand data

name Log2 fold
change

Adjusted P-value

racterized protein 8.41 7.62 × 10-21

rgic, beta-3-, receptor 8.01 2.48 × 10-17

ukin 17A 7.71 1.37 × 10-14

amyloid A 3 7.50 7.67 × 10-114

ary serum amyloid A3.2 6.95 5.26 × 10-41

a-aminobutyric acid (GABA)
ptor, 2

−6.67 5.49 × 10-08

rin 26 −5.68 4.25 × 10-18

carrier family 16, member 12
carboxylic acid transporter 12)

−5.52 3.01 × 10-16

optotic inhibitory molecule 2 −4.40 6.53 × 10-12

omain and tetratricopeptide repeats 2 −4.28 4.29 × 10-10

ples relative to the control samples are shown (ranked by fold change) based



Figure 4 Pathway for Death receptor signalling at 24 h post-M. bovis infection. Genes associated with Death receptor signalling canonical
pathway that show differential expression are highlighted in colour. Colour intensity indicates the degree of upregulation (red) or downregulation
(green) relative to the control MDM samples. Grey shading indicates genes that were not significantly differentially expressed; white shading
represents genes in the pathway which did not pass the filtering for differential expression analysis.

Figure 5 Venn diagrams showing comparison of RNA-seq sense
versus antisense strand differential gene expression. Venn
diagram showing the comparison of the direction of differential
expression based on sense and antisense strand data. Upregulated
and downregulated genes are shaded red and green, respectively.
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addition, no gene displayed increased expression from the
sense strand and decrease expression from the antisense
strand. Finally, one gene showed decreased expression from
the sense strand and increased expression from the anti-
sense strand (Figure 5).
Functional categorisation of the 757 differentially ex-

pressed genes based on antisense strand data using IPA re-
vealed an enrichment of genes with roles in immunology,
cell development and proliferation, and response to infec-
tion (Additional file 8: Table S6). Four of the top five rank-
ing GO categories identified from the antisense and sense
strand data were identical (Additional file 4: Table S3 and
Additional file 8: Table S6). Similarly, IPA analysis of the
antisense strand data generated a list of canonical pathways
with immune related function (Additional file 9: Table S7).
Four of the five top-ranking canonical pathways identified
from the antisense and sense strand data were identical
(Additional file 5: Table S4 and Additional file 9: Table S7).

Comparison of differential gene expression profiles
obtained from RNA-seq and microarray platforms
The total RNA samples extracted from M. bovis-infected
and non-infected control MDM samples described here,
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were previously used by us for gene expression profiling
with the AffymetrixW GeneChipW Bovine Genome Array
[20]. This array contains 24,027 probe sets representing
more than 23,000 transcripts and includes approximately
19,000 UniGene clusters [26].
In order to directly compare gene expression profiles

from these previously generated microarray data with
the RNA-seq data generated in the current study, a
number of steps were performed. Firstly, we removed
the same two samples which were excluded from the
RNA-seq data analysis (i.e. the non-infected control and
M. bovis-infected MDM-extracted RNA from animal
number 700), then re-analysed all microarray data using
all 12 RNA samples from the remaining six animals.
Secondly, we mapped AffymetrixW GeneChipW Bovine
Genome Array probes to genes with bovine Ensembl
gene IDs based on data from the B. taurus reference
genome. Of the 24,072 probe sets represented on the
array, 11,790 probe sets passed filtering; with 8,560
unique probe sets mapping to a B. taurus Ensembl gene
ID, representing 6,807 unique genes. Prior to differential
gene expression analysis, the data from the 11,790
filtered probes was used for MDS analysis (Additional
file 10: Figure S3). As with the data from the RNA-seq
, the MDS analysis demonstrated that MDM samples
were differentiated according to treatment status
(i.e. infected versus non-infected control samples) along
dimension 1, while dimension 2 separated the MDM sam-
ples according to animal ID. It is important to note that
joint inspection of Figure 3 and Additional file 10: Figure
S3 shows that the samples are spatially arranged in a very
similar pattern for the two different gene expression
platforms.

Comparison of the RNA-seq and microarray dynamic
ranges
To assess the dynamic range of the RNA-seq and micro-
array data sets, we analysed the log2 microarray inten-
sities and the log2 reads per kilobase per million mapped
reads (RPKM) values for all genes that passed the filter-
ing criteria. From this, we calculated the dynamic range
of the microarray by subtracting the gene with the
highest mean log2 intensity (ENSBTAG00000018784
[CTSZ]; log2 intensity = 15.48) from the gene with the
lowest mean log2 intensity (ENSBTAG00000002021
[BNIP1]; log2 intensity = 2.03), yielding a log2 dynamic
range of 13.45. We then calculated the dynamic range of
RNA-seq by subtracting the gene with the highest mean
log2 RPKM (ENSBTAG00000043561 [COX1]; log2 RPKM
=12.60) from the gene with the lowest mean log2 RPKM
(ENSBTAG00000001325 [UPB1]; log2 RPKM= −6.83),
yielding a log2 dynamic range of 19.43. Our analysis there-
fore shows that the dynamic range for RNA-seq is greater
than the microarray. This method for dynamic range
calculations of gene expression data has been previously
described by Chen and colleagues [27]. Furthermore, it is
important to note that raw RPKM values are proportions;
consequently, values less than 1.0 yield negative values
when log2-transformed.
To ensure that differences in the dynamic ranges were

not due to contrasting normalisation procedures, we
determined the dynamic range of the RNA-seq data
following a quantile normalisation strategy, which is
comparable to the quantile normalisation used for the
microarray. This analysis yielded a log2 dynamic range
for the RNA-seq data of 20.01, which further supports a
greater dynamic range for the RNA-seq platform com-
pared to the microarray.
Comparison of high and low transcript expression from
RNA-seq and microarray data
For this analysis, we compared log2 reads per kilobase
(of transcript sequence) per million reads (RPKM)
with the log2 raw microarray hybridisation intensity
probe signals. Genes with alternative transcripts—for
which, a definitive gene length necessary for RPKM
calculations could not be derived—were omitted from
this analysis. Spearman rank correlation analysis was
first performed for a total of 5,560 common tran-
scripts that passed the RNA-seq and microarray filter-
ing criteria (detailed in Methods). This analysis was
performed separately for the non-infected control and
infected MDM samples. We observed a significant
(P ≤ 0.01) Spearman correlation coefficient of 0.66
and 0.64 for the infected and the control samples,
respectively. These results suggest that there is a posi-
tive relationship between the microarray and RNA-
seq data sets such that: (1) transcripts that yield a
high intensity value on the microarray also yield a
high read count based on the RNA-seq platform; and
(2) transcripts that yield a low intensity value on the
microarray also yield a low read count based on the
RNA-seq platform.
We next binned the transcripts into groups of highly,

moderately and lowly expressed transcripts (based on
the microarray data), with an approximately equal num-
ber of transcripts in each bin. We observed the greatest
correlation between the highly expressed transcripts
(r = 0.551 for infected MDM; r = 0.535 for control
MDM; P ≤ 0.01), followed by the lowly expressed tran-
scripts (r = 0.302 for infected MDM; r = 0.327 for control
MDM; P ≤ 0.01) followed by the moderately expressed
transcripts (r = 0.261 for infected MDM; r = 0.217 for
control MDM; P ≤ 0.01). These results suggest that the
correlation between the two platforms is better for
highly abundant transcripts compared to moderately and
lowly abundant transcripts.



Figure 6 Venn diagram showing comparison of differentially
expressed genes identified from alternative transcriptomic
platforms. Venn diagram showing overlap of the upregulated and
downregulated genes as identified with microarray and RNA-seq
platforms. Sets of upregulated genes are represented in red, sets of
downregulated genes are in green.
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Comparison of expression fold-change and difference in
expression value between treatments for RNA-seq and
microarray data
To investigate if the greatest fold-change in expression
was largely observed in genes with low levels of expres-
sion, we compared: (1) the log2 fold-change with the
log2 differences in counts per million reads (CPM) be-
tween the control and infected MDM groups for the
RNA-seq platform; and (2) the log2 fold-change with the
log2 differences in hybridisation intensity between the
control and infected MDM groups for the microarray
platform. We hypothesised that if transcripts with the
lowest expression gave the highest fold-change values,
then a negative correlation between log2 fold-change and
log2 differences for genes displaying increased expression
post-infection. Reciprocally, a positive correlation would
be expected between log2 fold-change and log2 differences
for genes displaying decreased expression post-infection.
For RNA-seq, this analysis was based on 11,131 genes

that passed the filtering criteria; of which, 5,377 displayed
increased expression and 5,754 genes displayed decreased
expression following MDM infection. We observed Spear-
man correlation coefficients of 0.536 and −0.394 for the
genes displaying increased and decreased expression fol-
lowing infection, respectively (P ≤ 0.001). These correl-
ation coefficients contrast with those expected based on
our hypothesis described above; therefore, we conclude
that there is no obvious relationship between gene expres-
sion level and fold-change.
For the microarray, our analysis was based on 11,665

genes that passed the filtering criteria; of which, 5,020
displayed increased expression and 6,645 genes
displayed decreased expression following MDM infec-
tion. Spearman correlation coefficients of 0.378 and
−0.128 were observed for the genes displaying in-
creased and decreased expression following infection,
respectively (P ≤ 0.001). Again, we conclude that there
is no obvious relationship between gene expression
level and fold-change.

Comparison of fold-change in expression from RNA-seq and
microarray data
We compared log2 fold-changes in expression for a
total of 6,183 genes common to both RNA-seq and the
microarray that passed the data filtering criteria. This
analysis encompassed, but was not restricted, to the
differentially expressed genes identified from both data
sets, the description and analysis of which is presented
below. Note the number of genes analysed here was
greater than the total number of transcripts analysed
for transcript expression comparison as RPKM could
not be calculated for genes with alternative transcripts
as stated above (so reducing the number of comparable
genes in the analysis above). The Spearman correlation
coefficient of log2 fold-changes between the RNA-seq
and microarray was 0.858 (P ≤ 0.01), indicating that the
fold-change magnitudes for the platforms were very
similar.

Comparison of the number and fold-change of differentially
expressed genes identified from RNA-seq and microarray
Subsequent analysis of the microarray data showed that
2,015 unique genes were differentially expressed, with 917
genes and 1,098 genes displaying up- and downregulation,
respectively, in the infected MDM relative to the control
MDM (FDR ≤ 0.05; Additional file 11: Table S8). Compari-
son of the differentially expressed genes with Ensembl gene
IDs identified from the microarray and RNA-seq sense
strand data sets revealed 964 differentially expressed genes
displaying the same direction of expression that were
common to both the microarray and RNA-seq data sets;
these comprised 607 upregulated and 357 downregulated
common genes. One gene was found respectively down-
regulated and upregulated in the microarray and RNA-seq
sense strand data sets (Additional file 12: Table S9). Of the
remaining differentially expressed genes detected, 1,050
genes (comprising 310 upregulated genes and 740 down-
regulated genes) were unique to the microarray data set,
while 1,619 genes (comprising 784 upregulated genes and
835 downregulated genes) were unique to the RNA-seq
data set (Figure 6). The differentially expressed genes that
were common to both platforms and displayed the same
direction of expression, represent 47.8% (i.e. 964/2,015
genes) and 37.3% (i.e. 964/2,584 genes) of all differentially
expressed genes detected by microarray and RNA-seq ana-
lysis, respectively.
Spearman rank analysis of the log2 RPKM values

(RNA-seq data) with the log2 hybridisation intensity
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signals (microarray data) for all 964 differentially
expressed genes that were common to both platforms
and had the same direction of expression revealed a cor-
relation coefficient of r = 0.713 for infected MDM and r
= 0.660 for control MDM (P ≤ 0.01), indicating that
there is a positive relationship between raw signal inten-
sities for each platform/treatment group. Finally, com-
parison of the log2 fold-change in gene expression
between the two platforms for these 964 genes yielded a
correlation coefficient of r = 0.929 (P ≤ 0.001).
To investigate the effect of platform dynamic range on

the number differentially expressed genes unique to each
platform we plotted and compared the density of the
log2 of the mean hybridisation intensity and the density
of the log2 of the mean CPM for the differentially
expressed genes unique to each platform and for the dif-
ferentially expressed genes common to both platforms.
This analysis showed that differentially expressed genes
uniquely detected by RNA-seq are largely characterised
by low levels of expression for both the control and
infected MDM groups. This pattern was not observed
for the microarray data (Additional file 13: Figure S4).
This analysis shows that the sensitivity of RNA-seq for
the detection of lowly expressed transcripts is greater
than the microarray.
IPA analysis of differentially expressed genes common to
both microarray and RNA-seq
To validate the IPA analysis performed using differen-
tially expressed genes based on RNA-seq sense strand
data only, we uploaded the 965 differentially expressed
genes common to both RNA-seq and the microarray into
IPA (964 genes plus the one gene that displayed reciprocal
expression for the two platforms). We hypothesised that
the 965 common genes were more likely to reflect true
biological changes induced following infection with M.
bovis, compared to the differentially expressed genes iden-
tified by either platform independently. This approach has
been previously used to validate GO category analysis in a
study where RNA-seq and microarray data were available
for the same samples [28]. Of the 63 GO categories identi-
fied for the common differentially expressed genes, 56
(88.9%) and 60 (95.2%) were observed in the RNA-seq
and microarray IPA data sets, respectively (Additional
file 4: Table S3, Additional file 14: Table S10 and Additional
file 15: Table S11). Similarly, of the 198 canonical path-
ways identified for the common differentially expressed
genes, 160 (80.8%) and 166 (83.8%) were observed in
the RNA-seq and microarray IPA data sets, respectively
(Additional file 5: Table S4, Additional file 16: Table S12
and Additional file 17: Table S13). This analysis suggests
that meaningful biological interpretation of data from
either RNA-seq or microarrays is possible.
Validation of differentially expressed genes using real
time quantitative reverse transcription PCR
For method validation purposes, we quantified a panel
of 16 genes via real time quantitative reverse transcrip-
tion PCR (qRT-PCR) using the same MDM-extracted
RNA samples that were used for the RNA-seq and
microarray platforms as described above. The methods
used for real time qRT-PCR analysis of these genes have
been described by us elsewhere [20]. Using these data,
we estimate the dynamic range of the real time qRT-
PCR platform has a log2 dynamic range of 15—this is
based on Ct value ranges between 20 and 35 for a num-
ber of cytokine genes.
Real time qRT-PCR analysis showed that 12 of these

genes (CCL4, CCL5, CCL20, CD40, CFB, CXCL2, IL15,
IL1B, IL6, IRF1, NFKB2 and TNF) were upregulated, while
two genes (AREGB and FOS) were downregulated in the
infected MDM (P ≤ 0.05). The remaining two genes,
PIK3IP1 and SPRY2 were not differentially expressed based
on analysis of the real time qRT-PCR data.
We compared the real time qRT-PCR expression pro-

files of these 16 genes with their expression profiles from
RNA-seq and the microarray data based on the analyses
performed in the current study. Ten of the 12 upregulated
genes (as determined by real time qRT-PCR analysis) were
also upregulated in the RNA-seq and microarray plat-
forms―only the IL15 and IRF1 genes were not differen-
tially expressed based on microarray and RNA-seq results,
respectively. Two genes (AREGB and FOS) were shown to
be downregulated across all three gene expression tech-
nologies, while the remaining two genes (PIK3IP1 and
SPRY2) were shown to be downregulated based on results
generated from microarray and RNA-seq only. Pairwise
comparisons of the analytical platforms used across all 16
genes yielded concordances of 87.50% for the microarray
and RNA-seq comparison, 81.25% for the real time qRT-
PCR and RNA-seq comparison and 81.25% for the micro-
array and the real time qRT-PCR. This is summarised in
Table 2.

Discussion
Analysis of the host transcriptome in response to myco-
bacterial infection has greatly enhanced our knowledge
of the immunological mechanisms and cellular pathways
that underlie initial infection, disease progression and ul-
timately active disease. These investigations have been
underpinned by continual improvements in the technolo-
gies used for functional genomics and the bioinformatics
methods for data analysis—particularly for microarray
technologies, which have enabled analyses of immune-
specific and pan-genomic gene expression patterns follow-
ing infection [15,17-21,29]. Despite notable progress in
understanding the molecular basis of host-mycobacteria
interactions during infection, microarrays are not without



Table 2 Comparison of fold-changes in gene expression based on RNA-seq, microarray and real time qRT-PCR results

Gene symbol Gene name Gene description RNA-seq fold-
change

Array fold-
change

Real time qRT-PCR
fold-change

CCL4 Chemokine (C-C motif)
ligand 4

A proinflammatory and chemotactic chemokine 40.02 10.53 26.51

CCL5 Chemokine (C-C motif)
ligand 5

A proinflammatory chemokine involved in the
chemotaxis of monocytes and T-helper cells

17.43 14.68 19.12

CCL20 Chemokine (C-C motif)
ligand 20

A chemokine involved in the chemoattraction
of lymphocytes and neutrophils

67.34 82.33 45.94

CD40 CD40 molecule, TNF
receptor superfamily
member 5

A member of the TNF-receptor superfamily.
Mediates the immune and inflammatory
responses

13.43 9.99 12.32

CFB Complement factor B A component of the alternative pathway of
complement activation

3.87 40.63 40.36

CXCL2 Chemokine (C-X-C motif)
ligand 2

An immunoregulatory chemokine produced by
activated monocytes and neutrophils at sites of
inflammation

15.72 4.44 14.12

IL15 Interleukin 15 A cytokine that regulates T and natural killer cell
activation and proliferation

3.07 Not DE 2.23

IL1B Interleukin 1, beta A cytokine that mediates the inflammatory
response including cell proliferation,
differentiation and apoptosis

34.84 92.28 41.21

IL6 Interleukin 6 A cytokine that functions in inflammation and
the maturation of B cells

39.62 88.47 55.08

IRF1 Interferon regulatory
factor 1

A member of the interferon regulatory
transcription factor family. An activator of
interferon alpha and beta transcription

Not DE 10.01 9.74

NFKB2 Nuclear factor of kappa
light polypeptide gene
enhancer in B-cells 2
(p49/p100)

A pleiotropic transcription factor involved in
inflammation, immunity, differentiation, cell
growth and apoptosis

5.35 8.68 5.76

TNF Tumor necrosis factor
(TNF superfamily,
member 2)

A proinflammatory cytokine (secreted by
macrophages) involved in the regulation cell
proliferation, differentiation and apoptosis, and
coagulation.

15.16 80.07 15.00

AREGB Amphiregulin B A growth-modulating glycoprotein −3.84 −9.70 −5.09

FOS FBJ murine osteosarcoma
viral oncogene homolog

A leucine zipper protein member of the AP-1
transcription factor complex.

−3.69 −5.50 −3.61

PIK3IP1 Phosphoinositide-3-kinase
interacting protein 1

Suppresses the activity of phosphatidylinositol-3
-kinase (PI3K), a regulator of cell division

−2.06 −1.68 Not DE

SPRY2 Sprouty homolog 2
(Drosophila)

An inhibitor of receptor tyrosine kinase
signalling proteins

−2.12 −4.64 Not DE

Geometric mean fold-changes of gene expression (M. bovis-infected samples relative to control samples) are given for the RNA-seq sense strand, microarray and
real time qRT-PCR data. Unless specified, results for each gene using the three techniques displayed significant differential expression (P-value ≤ 0.05). ‘Not DE’
indicates that a gene was not differentially expressed.
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their limitations, including: (1) a requirement for prior
DNA sequence knowledge of annotated genes for probe
design; (2) indirect quantification of gene expression by
hybridisation signal intensities; (3) constrained dynamic
ranges that impair quantification of lowly and highly
expressed gene transcripts; and (4) a limited ability to de-
tect splice variants and novel classes of non-coding regula-
tory RNA [30-32].
The RNA-seq approach, which is based on ultra-high

throughput sequencing of total RNA and systematic
counts of all expressed transcripts, has the potential to
overcome many of the limitations associated with micro-
array technology. In particular, RNA-seq: (1) requires no
prior sequence information (however, a reference gen-
ome is normally used, but not required for mapping of
raw sequence reads) [33]; (2) has a larger dynamic range
and is more sensitive than microarray data because the
quantification of each gene transcript is based directly
on the number of reads mapping to a particular gene;
and (3) may provide additional information regarding
the complexity of the transcriptome, including strand-
specific gene expression, identification of novel genes,
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and identification of splicing events and a wide range of
non-coding RNA species [23,34]. Therefore, RNA-seq
can provide a sensitive, unbiased and fully quantitative
and qualitative transcriptomic profile of host cells fol-
lowing mycobacterial infection. Consequently, we have
used strand-specific RNA-seq to examine the transcrip-
tome of bovine MDM following a 24 h in vitro infection
with M. bovis (multiplicity of infection [MOI] 2:1) to
gain novel insights into the transcriptional changes and
cellular pathways induced during the early stages of in-
fection. In addition, as the MDM samples described here
have been previously studied using the AffymetrixW

GeneChipW Bovine Genome Array, we have performed a
comparison of the results generated from both analytical
platforms.

Summary of RNA-seq results
For each individual RNA-seq library analysed here, we
obtained a mean of 7.2 million 69 bp reads that mapped
to single unique locations in the B. taurus reference gen-
ome. This yielded a mean of 496.8 Mb of sequence per
individual library. Examination of the gene coverage
from these uniquely mapping reads demonstrated that
15,422 genes (based only on sense strand data) from a
total of 25,669 annotated bovine genes (60.1%) gave at
least one sequence read count in total. However, studies
have shown that gene expression analysis using RNA-
seq is dependent on sequencing depth and that genes
with low sequencing coverage are more susceptible to
the generation of false-positive differentially expressed
genes. In this regard, we only considered genes displaying
more than one count per million reads in at least three li-
braries for differential gene expression analysis; conse-
quently a total of 11,131 genes (43.4% of the total bovine
gene content) based on sense strand data were used in the
analysis presented here. Although this stringent threshold
lowers the number of genes for which differential expres-
sion can be performed, we believe that this criterion is suf-
ficient for quantification and analysis of highly expressed
genes with a corresponding reduction in the number of
Type I errors due to lowly expressed genes [35-37].

Sense strand gene expression and IPA analyses
Gene expression analysis of the sense strand informa-
tion in the current study detected a total of 2,584
differentially expressed genes (adjusted P-value ≤ 0.05),
of which 1,392 and 1,192 were upregulated and
downregulated, respectively, in the M. bovis-infected
MDM relative to the non-infected control MDM. This
finding contrasts with previous work performed by us
and others showing that mycobacterial infection in vitro
and in vivo results in a higher number of downregulated
genes relative to upregulated genes based on microarray
analysis [17,20,21,29,38]. This discrepancy is most
obviously explained by differences in sensitivity and
technical biases between the two transcriptomic plat-
forms used. This assertion is supported in the current
study by the increased dynamic range of RNA-seq com-
pared to the microarray platform. In agreement with
previous studies, however, the expression fold-change
values were markedly higher for upregulated genes com-
pared to downregulated genes [17,19-21].
Analyses performed at the gene level revealed that all

the top upregulated and downregulated genes have roles
and functions involved in or related to immune response
and infectious disease. One of the most highly upregulated
genes identified was ADRB3; the protein encoded by this
gene has been shown to have functions in carbohydrate
metabolism, energy reserve metabolism, positive regulation
of the MAPK cascade and regulation of apoptosis [39,40].
IL17A was also upregulated and has known role in the
pro-inflammatory response, expansion and recruitment of
innate immune cells, production of defensins and anti-
microbial peptides, and linking innate and adaptive im-
mune responses [41]. Also upregulated was SAA3, which
was the most statistically significant gene in the data set,
and has a major multifunctional role in the acute-phase
response [42].
Among the most highly downregulated genes was

GABBR2, which has multiple roles and functions, includ-
ing involvement in pulmonary disorder and regulation of
the coughing process [43-45]. In addition, CDH26 was
downregulated and cadherins have been shown to have a
role in Ca2+-dependent cell-to-cell adhesion as well as cell
polarisation and cell migration [46]; however, the specific
role of CDH26 has not been characterised. The SLC16A12
gene was also detected, a member of a gene family
containing genes recently shown to be associated with tu-
berculosis susceptibility in cattle [47]. FAIM2 was highly
downregulated, a gene with a role in the inhibition of
apoptosis, a key process associated with mycobacterial in-
fection of macrophages [25,48]. Finally, SH3TC2 was
downregulated, which interacts with members of the
RAB11 protein family, leading to regulation of endocytic
recycling, an important process during mycobacterial
infection [49-51].
IPA was used for identification of significantly over-

represented GO categories and canonical pathways. Not-
ably, these analyses demonstrated that the processes of cell
death, apoptosis and cell survival were over-represented as
GO categories and within canonical pathways levels. These
pathways included: Death receptor signalling; Apoptosis sig-
nalling; TNFR2 signalling; TNFR1 signalling; PTEN signal-
ling; and TWEAK signalling. Inspection of these pathways
revealed that the genes encoding TNF-α and the tumour ne-
crosis factor (ligand) superfamily, member 10 (TNFSF-10)
protein are highly upregulated. These proteins can,
via their respective receptors—tumour necrosis factor
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receptor superfamily member 1A (TNFRSF-1A) and
TNFRSF-10A/TNFRSF-10B—trigger an activation cascade
through Fas (TNFRSF6)-associated via death domain
(FADD) and TNFRSF1A-associated via death domain
(TRADD) [both genes encoding these proteins were
upregulated in the present study]. This cascade concludes
with the activation of several caspases that are associated
with the induction of apoptosis (upregulation of CASP7
and CASP8 was observed here), further supporting the
role of apoptosis in the host response to mycobacterial in-
fection [25].
IPA analysis also demonstrated the importance of gene

products involved with immune cell communication and
chemotaxis of immune cells, including the canonical
pathways Communication between innate and adaptive
immune cells and The role of cytokines in mediating
communication between immune cells. For example, it is
well established that macrophage recognition of bacterial
pathogen-association molecular patterns (PAMPs) via
specific Toll-like receptors (TLRs) [upregulation of
TLR3; TLR5; and TLR10 and downregulation of TLR9
was observed here] leads to increased expression of a
wide range of NF-κB-inducible cytokines and chemokines.
In this regard, CCL4, CCL5, CXCL10 and IL8 were
upregulated in the present study. Indeed, the overall pat-
tern of immune gene expression changes observed here
using RNA-seq data was consistent with previous work
from our group using microarray technology [20].

Antisense strand transcript expression
The present study identified 0.4 million sequence reads
that mapped to the antisense strand and it is important
to note that the phenomenon of natural antisense tran-
scription has been observed previously in mammals
[52,53]. We identified 6,842 putative natural antisense
transcripts (NATs) that were suitable for differential ex-
pression analysis of the M. bovis-infected MDM relative
to the non-infected control MDM. This represents
26.7% of the 25,669 currently annotated B. taurus genes,
which corresponds to results obtained from previous
studies of antisense strand transcription on different
mammals including cattle [54-58]. Of the 6,842 NATs
detected, 757 were significantly differentially expressed;
these comprised 558 that were upregulated and 199 that
were downregulated. NATs have been shown to have
varying regulatory roles in eukaryotic cells, including
transcriptional and post-transcriptional control, splicing
event regulation, allele-specific transcript expression,
RNA editing and RNA translocation [59-64]. Further
analyses identified 694 genes that were differentially
expressed from both the sense and antisense strand.
IPA analysis of these 757 antisense strand transcripts

revealed enrichment of genes involved in several im-
mune processes including the inflammatory response,
pattern recognition receptor signalling, cell death and
apoptosis, immune cell movement and interaction, and
antigen presentation. These findings suggest that NATs
may play a significant role in regulating the host macro-
phage response following infection with pathogenic
agents, including mycobacteria [52,65].

Comparison with microarray and real time qRT-PCR
The MDM samples infected with M. bovis used for the
present study had previously been analysed using the
AffymetrixW GeneChipW Bovine Genome Array. Conse-
quently, it was possible to directly compare gene expres-
sion results from microarray and sense strand RNA-seq
data. The percentage of overlapping genes between the
two platforms was estimated at 47.8% for the microarray
and 37.3% for the RNA-seq data. Similar estimates of
correspondence between RNA-seq and microarrays plat-
forms have been reported in studies of the rat and Can-
dida parapsilosis transcriptomes [28,66]. However, it
should be noted that compared to the study of Su et al.
[28] we observed a greater correlation between the fold-
change in expression for: (1) all common genes that
passed filtering detected by both platforms (6,183 genes;
Spearman correlation coefficient of 0.858; P ≤ 0.001),
and (2) the differentially expressed genes common to
both platforms (965 genes; Spearman correlation coeffi-
cient of 0.935; P ≤ 0.001).
There are a number of possible reasons for the differ-

ences observed between the two gene expression plat-
forms used in the current study. Firstly, there are
differences in the dynamic range of the two platforms:
our results show that RNA-seq has a larger dynamic
range and sensitivity than the microarray; similar results
have recently been obtained by Chen and colleagues
[27]. Secondly, the stringent expression thresholds that
we have applied to the RNA-seq data in order to reduce
the number of false-positive differentially expressed genes,
have also reduced the number of genes common to both
platforms. Thirdly, the probes on the AffymetrixW

GeneChipW Bovine Genome Array are based on se-
quences from the 30 end of genes and are therefore 30

biased [67]; RNA-seq reads are more randomly distributed
across gene transcripts. Fourthly, microarrays are suscep-
tible to cross-hybridisation, particularly among members
for the same gene family that can result in elevated false-
positive rates [30-32]. Fifthly, there are differences in the
statistical models used to detect differentially expressed
genes for the two platforms (for example, analysis of the
microarray data involve moderated t-tests; analysis of the
RNA-seq data using edgeR involved a negative binomial
distribution) [28,68-71]. Sixthly, differences in the bovine
genome resources used to design the AffymetrixW

GeneChipW Bovine Genome Array (May 2005, Gene
Expression Omnibus platform accession number GPL2112)
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and the B. taurus reference genome (Btau 4.0.63 genome re-
lease) used to analyse the RNA-seq data may also impact on
the analysis as recently proposed in a study of the yeast tran-
scriptome [72]. Seventhly, it has been demonstrated that in-
creased sequencing depth also contributes to greater
correspondence between RNA-seq and microarray plat-
forms, such as that recently observed in a study of the Sac-
charomyces cerevisiae transcriptome [36,72].
It is important to note, however, that despite the moder-

ate concordance in the number of differentially expressed
genes common to both transcriptomic platforms, we did
observe a high concordance between the GO categories
and canonical pathways identified by IPA analysis. This in-
dicates that the RNA-seq and microarray platforms both
provide gene expression data that can be used for mean-
ingful biological interpretation.

Conclusions
The results from the present study highlight the ability
of the RNA-seq technologies to reveal novel features of
the bovine macrophage transcriptome in response to in-
fection with M. bovis, including the detection of putative
NAT expression. These transcriptional signatures high-
light the complex interactions between host macro-
phages and the mycobacterial pathogen during infection.
Further analyses involving the comparison of RNA-seq
-generated gene expression profiles in bovine macro-
phages to non-pathogenic mycobacteria, such as M.
bovis-BCG, may enable fine-scaled interrogation of key
cellular pathways that contribute to the development of
pathology.

Methods
MDM preparation, MDM infection and RNA purification
The materials and methods used to isolate, purify and
infect bovine MDM with M. bovis have been previously
described in detail by us [20]. Briefly, MDM were purified
from peripheral blood mononuclear cells prepared from
whole blood extracted from seven age-matched (four-
years old) Holstein-Friesian females (Additional file 1:
Table S1). All seven animals were selected from a herd
without a recent history of bovine tuberculosis infection,
which was confirmed using the single intradermal tuber-
culin test. MDM were cultured over an eight-day period
with routine changing of culture media every two days.
MDM were visually inspected using microscopy, counted
and seeded in 24-well tissue culture plates at a density of
2 × 105 cells per well prior to infection.
For the MDM infections, 4 × 105M. bovis cells (as de-

termined from bacterial cell counts performed using a
Petroff Hausser chamber and confirmed by colony-
forming unit [cfu] counts) were added to each tissue cul-
ture plate well (MOI 2:1). The M. bovis M2137 strain
bearing the SB0142 spoligotype was used for the
infection experiments and non-infected control MDM
received culture media only. Both non-infected control
and infected MDM were prepared in adjacent duplicate
tissue culture plate wells. The culture media in all wells
for both non-infected control and infected MDM was
replaced 2 h post-infection with fresh culture media and
plates were then re-incubated at 37°C, 5% CO2 until the
MDM were harvested. Culturing of M. bovis and the
MDM infections were performed in a Biosafety Contain-
ment Level 3 (CL3) laboratory.
Infected and non-infected control MDM were harvested

using RLT buffer from the RNeasy Mini kit (Qiagen Ltd.,
Crawley, UK) supplemented with 1% β-mercaptoethanol
(Sigma-Aldrich Ireland Ltd., Dublin, Ireland) 24 h post-
infection. For each control and treatment, MDM lysates
from duplicate culture plate wells were pooled and stored
at -80°C until required for RNA extraction. All RNA
extractions were performed in the CL3 laboratory using
an RNeasy kit incorporating an on-column DNase treat-
ment step according to the manufacturer’s instructions
(Qiagen). RNA quantity and quality was ascertained using
a NanoDrop™ 1000 spectrophotometer (Thermo Fisher
Scientific Ltd., Waltham, MA, USA) and an Agilent 2100
Bioanalyzer with the RNA 6000 Nano LabChip kit
(Agilent Technologies Ltd., Cork, Ireland). All samples
displayed a 260/280 ratio greater than 2.0 and RNA integ-
rity numbers ≥ 8.5 [73].

Strand-specific RNA-seq library preparation
In total, 14 strand-specific RNA libraries for high-
throughput sequencing were prepared (seven libraries
for each treatment: M. bovis-infected and control sam-
ples) using 200 ng of total RNA. Total RNA was first
heated at 65°C for 5 min to disrupt any secondary struc-
ture. Purification of poly(A) RNA was performed using a
DynabeadsW mRNA DIRECT™ Micro Kit according to
the manufacturer’s instructions (Invitrogen™/Life Tech-
nologies Ltd., Paisley, UK). Purified poly(A) RNA was
then fragmented using 1× RNA Fragmentation Reagent
(AmbionW/Life Technologies Corporation, Warrington,
UK) for 5 min at 70°C and precipitated using 68 mM so-
dium acetate pH 5.2 (Ambion), 227 ng/μl glycogen
(Ambion) and 30 μl of 100% ethanol (Sigma-Aldrich
Ltd., Dublin, Ireland). Pellets were washed with 80%
ethanol, air-dried for 10 min at room temperature and
re-suspended in 10.5 μl DNase- and RNase-free water.
Synthesis of first strand cDNA was performed by incu-

bating fragmented RNA with 261 mM Random Hexamer
Primers (Invitrogen), 1× first strand buffer (Invitrogen);
10 mM DTT (Invitrogen); 0.5 mM dNTPs; 20 U
RNaseOUT™ Recombinant Ribonuclease Inhibitor; and
200 U SuperScriptW II Reverse Transcriptase (Invitrogen)
at 25°C for 10 min, at 42°C for 50 min, and 70°C for
15 min. First strand synthesis reaction mixtures were
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purified using MicroSpin™ G-50 columns according to the
manufacturer’s instructions (GE Healthcare UK Ltd., Little
Chalfont, Buckinghamshire, UK).
Second strand cDNA synthesis, involving the incorp-

oration of uracil, was performed by adding the first strand
cDNA synthesis reaction to a second strand reaction mix
consisting of 0.065× first strand buffer (Invitrogen); 1×
second strand buffer (Invitrogen); a dNTP mix consisting
of a final concentration of 0.3 mM dATP, dCTP, dGTP
(Sigma-Aldrich) and 0.3 mM dUTP (Bioline Reagents
Ltd., London, UK); 1 mM DTT (Invitrogen); 2 U RNase H
(Invitrogen) and 50 U E. coli DNA Polymerase I
(Invitrogen). Reactions were incubated at 16°C for 2.5 h.
The double stranded cDNA was subsequently purified
using a QIAquick PCR Purification kit (Qiagen) according
to the manufacturer’s instructions and eluted in 30 μl of
the provided elution buffer.
Blunt-end repair of cDNA was performed in a 100 μl

reaction containing 1× T4 DNA ligase buffer with 10 mM
dATP (New England BiolabsW Inc., MA, USA), 0.4 mM of
each dNTP (Invitrogen), 15 U T4 DNA polymerase (New
England Biolabs), 5 U DNA Polymerase I Large [Klenow]
Fragment (New England Biolabs) and 50 U T4 poly-
nucleotide kinase (New England Biolabs). Reactions were
incubated at 20°C for 30 min and the cDNA was then
purified using a QIAquick PCR Purification Kit (Qiagen)
according to the manufacturer’s instructions and eluted in
32 μl of the provided elution buffer.
To facilitate IlluminaW GA adaptor ligation, a single ‘A’

base was added to the 30 ends of the blunt-end repaired
cDNA samples. 32 μl of purified phosphorylated blunt
end-repaired cDNA was included in a final 50 μl reac-
tion mixture containing: 1× Klenow fragment buffer
(New England Biolabs); 0.2 mM dATP (Invitrogen), and
15 U Klenow fragment with 30-to-50 exonuclease activity
(New England Biolabs). Reactions were incubated at
37°C for 30 min, after which cDNA was purified using a
QIAquick MinElute Kit (Qiagen) according to the man-
ufacturer’s instructions and eluted in 21 μl of the pro-
vided elution buffer.
IlluminaW RNA-seq adaptor ligation reactions (50 μl

volumes) involved incubation of 21 μl of phosphorylated
blunt-ended cDNA containing a 30-dATP overhang with
1× Quick DNA ligase buffer (New England Biolabs); 30
nM custom indexed single-read adaptors [Additional file
1: Table S1] and 15 U T4 DNA ligase (Invitrogen). Reac-
tion mixes were incubated at room temperature for
15 min and purified using a QIAquick MinElute Kit
according to the manufacturer’s instructions (Qiagen)
and eluted in 10 μl of the provided elution buffer.
Adaptor-ligated cDNA was gel-purified using 2.5% agarose
gels stained with 1 μg/ml ethidium bromide (Invitrogen).
Gels were electrophoresed at 100 Volts using 1× TAE buf-
fer (Invitrogen) for 75 min at room temperature. Size
fractionated bands corresponding to 200 bp (+50 bp) were
excised from each sample and purified using a QIAquick
Gel Extraction kit (Qiagen) according to the manufac-
turer’s instructions and eluted in 30 μl of elution buffer.
To generate strand-specific RNA-seq libraries, the sec-

ond strand of the gel-purified adapter-ligated cDNA
containing uracil was digested enzymatically in 30 μl re-
action volumes containing 1× Uracil-DNA Glycosylase
buffer and 1 U Uracil-DNA Glycosylase (Bioline). Reac-
tions were incubated at 37°C for 15 min followed by
94°C for 10 min.
PCR enrichment amplifications (50 μl) containing 15 μl

of second strand-digested, adaptor-ligated cDNA; 1×
PhusionW High-Fidelity DNA polymerase buffer (New
England Biolabs); 334 nM each IlluminaW PCR primer
(IlluminaW Inc., San Diego, CA, USA); 0.4 mM each of
dATP, dCTP, DGTP and dTTP (Invitrogen) and 1 U
PhusionW High-Fidelity DNA polymerase (New England
Biolabs). PCR amplification reactions consisted of an ini-
tial denaturation step of 98°C for 30 seconds, 18 cycles of
98°C for 10 seconds, 65°C for 30 seconds and 72°C for 30
seconds, followed by a final extension step of 72°C for
5 min. PCR products were visualised following electro-
phoresis on a 2% agarose gel stained with ethidium bromide
(0.6 μg/ml; Invitrogen) and purified to remove PCR-
generated adaptor-dimers using an Agencourt AMPure
XP kit (Beckman Coulter Genomics, Danvers, MA, USA)
according to the manufacturer’s instructions with final
elution in 30 μl of 1× TE buffer.
All RNA-seq libraries were quantified using a QubitW

Fluorometer and QubitW double stranded DNA High Sen-
sitivity Assay Kit (Invitrogen). RNA-seq library quality was
assessed using an Agilent Bioanalyzer and Agilent High
sensitivity DNA chip (Agilent) and confirmed that library
insert sizes were ~200-250 bp for all individual libraries.
Individual RNA-seq libraries were standardised and
pooled in equimolar quantities (10 μM for each individual
library). The quantity and quality of the final pooled li-
brary was assessed as described above prior to sequencing.
Cluster generation and sequencing of the pooled RNA-

seq library was carried out on an IlluminaW Cluster Sta-
tion and IlluminaW Genome Analyzer IIx sequencer
according to the manufacturer’s instructions (Illumina).
The pooled library was sequenced as single-end read 84-
mers using IlluminaW version 4.0 sequencing kits and the
standard IlluminaW Genome Analyzer IIx pipeline. The
IlluminaW Sequencing Control Software version 2.9 and
Real Time Analysis version 1.9 software packages were
used for real-time tracking of the sequencing run, real-
time image processing, the generation of base intensity
values and base calling. These RNA-seq data have been
deposited in the NCBI Gene Expression Omnibus (GEO)
database with experiment series accession number
GSE45439.
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Statistical analysis of RNA-seq data
Sequence reads obtained from seven lanes of the
Illumina flow cell were deconvoluted into 14 individual
libraries using the unique indexed barcoded adapters. A
Perl script was used to screen adapter artefacts, remov-
ing any reads containing a full-length match to the 33
nucleotide IlluminaW adapter sequence, allowing up to
four mismatches. Read quality was then assessed using
FastQC software [version 0.9] (www.bioinformatics.
bbsrc.ac.uk/projects/fastqc), revealing low Phred scores
at the 30 end of sequence reads. Consequently, nine nu-
cleotides were trimmed from the 30 ends of all sequence
reads using the FASTX Toolkit [version 0.0.13] (http://
hannonlab.cshl.edu/fastx_toolkit) generating usable reads
of 69 nucleotides.
Deconvoluted quality-checked sequence reads were

aligned to the B. taurus reference genome (Btau 4.0.63
genome release) with the TopHat splice junction mapper
[version 1.3.0] [74,75], which aligns reads using the
Bowtie aligner (version 0.12.7). The Bowtie alignment
procedure was configured for strand-specific libraries
and to filter only unique hits to the reference genome
sequence. In addition, all sequence reads were aligned to
the M. bovis AF2122/97 chromosome, complete genome
(accession number NC_002945.3) as detailed above. To
obtain raw counts per transcript, HTSeq package [ver-
sion 0.5.3p1] (http://www-huber.embl.de/users/anders/
HTSeq/doc/overview.html) was used on alignment files
in BAM format. HTSeq-count was used with option
overlap resolution mode set to intersection non-empty.
Counts of uniquely-mapped reads were obtained for all
bovine Ensembl genes and transcripts, with separate
counts obtained for sense and antisense DNA strands.
Once raw counts were obtained from HTseq-count,

analysis of differential expression was performed in the
R statistical programming environment [76] using the
edgeR (version 2.2.5) Bioconductor package [70,77] and
lattice [version 0.19-30] (http://lattice.r-forge.r-project.
org). First, quality checks were performed by plotting
the density of counts per feature (a feature being a gene
or transcript generated respectively from the sense or
antisense strand) for each sample and also by generating
a multidimensional scaling plot of the RNA-seq data.
The edgeR software package was used to determine dif-
ferential expression using the paired-sample statistical
test. Filtering of lowly expressed features was performed
by retaining only features with at least one count per
million in three or more libraries. A normalisation factor
was calculated using the default trimmed mean of M
values (TMM) method [70,77], and the dispersion par-
ameter for each feature was estimated as the Cox-Reid
common dispersion method in the edgeR package. Dif-
ferential expression was evaluated by fitting a negative
binomial generalized linear model for each feature and
then adjusting the P-value for multiple testing using the
Benjamini-Hochberg correction [78] with a false discov-
ery rate (FDR) of 0.05.
For RNA-seq dynamic range analysis we used two dif-

ferent normalisation strategies: (1) RPKM values gener-
ated by the edgeR package; and (2) quantile normalisation
of RNA-seq data performed using the Linear Models for
Microarray Data (LIMMA) package [71]. RPKM and
quantile-normalised counts were not used for differential
expression analysis.

Reanalysis and reannotation of AffymetrixW GeneChipW

Bovine Genome Array data
The RNA samples analysed in the current study were pre-
viously analysed by us using the AffymetrixW GeneChipW

Bovine Genome Array [20]. These microarray data have
been deposited in the NCBI GEO database with experi-
ment series accession number GSE33309. In order to
compare gene expression profiles from these samples
using RNA-seq and microarray technologies, we first
reanalysed the microarray data using a series of
Bioconductor packages.
Firstly, quality control analysis was performed on all

microarrays using the Simpleaffy software package [79].
Then the raw microarray expression values were nor-
malised using the gcRMA package [80]. The raw data
followed an additional normalisation step using the Fac-
tor Analysis for Robust Microarray Summarization
(FARMS) algorithm to remove probe sets with high
noise:signal ratios [81], these normalised data were then
further subjected to filtering for informative probe sets
using informative/non-informative calls (I/NI-calls) pack-
age [82]. The obtained I/NI filtering list was then applied
to the gcRMA normalised data to remove all non-
informative probes. Differentially expressed genes were
identified from the filtered gcRMA normalised data using
the LIMMA package. The Benjamini-Hochberg multiple
testing correction method [78] was applied to all differen-
tially expressed genes to minimise the FDR and adjusted
P-values for differentially expressed genes were calculated.
Probe sets displaying differential expression between con-
trol and infected samples were annotated to Ensembl gene
IDs using biomaRt package [83].
Supplementary statistical analyses were performed

using the SPSS software package (version 20; www-01.
ibm.com/software/analytics/spss).

IPA analyses
IngenuityW Systems Pathway Analysis (IPA, Ingenuity
Systems, Redwood City, CA, USA; release date November
2012) was used to identify canonical pathways and func-
tional processes of biological importance within the list of
differentially expressed genes identified with RNA-seq and
microarray platforms. The IngenuityW Knowledge Base
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contains the largest database of manually-curated and
experimentally-validated physical, transcriptional and en-
zymatic molecular interactions. Furthermore, each inter-
action in the IngenuityW Knowledge Base is supported by
previously published information.
Functional analysis of genes was performed using IPA to

characterise the GO categories of differentially expressed
genes between the control and M. bovis-infected MDM.
For this, IPA performed an over-representation analysis
that categorises differentially expressed genes into func-
tional groups using the IngenuityW Knowledge Base. Each
category in IPA is ranked based on the number of differ-
entially expressed genes in each functional group. The
right-tailed Fisher’s exact test was used to calculate a P-
value for each GO category assigned to differentially
expressed genes.
IngenuityW Systems Pathway Analysis contains a large

library of known canonical pathways that were overlaid
with the differentially expressed genes to identify major
biological pathways associated with M. bovis infection in
MDM. The significance of the association between dif-
ferentially expressed genes and each canonical pathway
was assessed using two methods. Firstly, a ratio was esti-
mated from the number of molecules from the differen-
tially expressed gene data set that map to each pathway,
compared to the total number of molecules that map to
the canonical pathway based on the reference gene list;
and secondly, a Fisher’s exact test that generates a P-value
for the assignment of the differentially expressed genes to
a particular canonical pathway compared to the reference
gene list. Canonical pathways were then overlaid with the
expression values of the differentially expressed genes.

Additional files

Additional file 1: Table S1. RNA-seq libraries information. The indexed
adapter sequence, animal sample ID, sample treatment, pooling strategy,
and sequencing read information (number and percentage) before and
after data filtering are given for each RNA-seq library.

Additional file 2: Figure S1. Density plot of the distribution of reads
per gene. Density plots of the number of sequence reads (in log10 space)
per gene for each RNA-seq library sample.

Additional file 3: Table S2. The list of all significant differentially
expressed genes detected following M. bovis infection based on RNA-seq
sense strand data. For each differentially expressed gene is shown its
gene name, log2 fold-change, P-value, adjusted P-value (Benjamini-
Hochberg correction), description and Ensembl gene ID. The biomaRt
package and the B. taurus reference genome were used to obtain gene
names and gene descriptions. Genes without names or descriptions are
stated here as “not available”.

Additional file 4: Table S3. GO categories identified using IPA based
on RNA-seq sense strand data. The top ranking GO categories identified
by IPA based on RNA-seq sense strand data are ranked according to P-
values.

Additional file 5: Table S4. Significant canonical pathways identified
using IPA based on RNA-seq sense strand data. The canonical pathways
identified by IPA based on RNA-seq sense strand data are ranked
according to P-values. The ratio indicates the number of differentially
expressed genes involved in each canonical pathway divided by the total
number of genes/molecules within each pathway according to the IPA
Knowledge Base.

Additional file 6: Table S5. The list of all significant differentially
expressed genes detected following M. bovis infection based on RNA-seq
antisense strand data. For each differentially expressed gene is shown its
gene name, log2 fold-change, P-value, adjusted P-value (Benjamini-
Hochberg correction), description and Ensembl gene ID. The biomaRt
package and the B. taurus reference genome were used to obtain gene
names and gene descriptions. Genes without names or descriptions are
stated here as “not available”.

Additional file 7: Figure S2. Integrative Genomics Viewer (IGV) screen
capture of reads mapping to SPTB gene. This figure shows the
distribution of sense (represented in red) and antisense (represented in
blue) strand reads that mapped to the 30 end of spectrin, beta,
erythrocytic gene (SPTB).

Additional file 8: Table S6. GO categories identified using IPA based
on RNA-seq antisense strand data. The top ranking GO categories
identified by IPA based on RNA-seq antisense strand data are ranked
according to P-values.

Additional file 9: Table S7. Significant canonical pathways identified
using IPA based on RNA-seq antisense strand data. The canonical
pathways identified by IPA based on RNA-seq antisense strand data are
ranked according to P-values. The ratio indicates the number of
differentially expressed genes involved in each canonical pathway
divided by the total number of genes/molecules within each pathway
according to the IPAW Knowledge Base.

Additional file 10: Figure S3. Multi-dimensional scale plot of all M.
bovis-infected and control samples based on Microarray data. Dimension
1 and dimension 2 separate all 12 samples based on the expression value
of the 11,790 probes (based on microarray data only) that passed all data
filtering criteria prior to differential gene expression analysis.

Additional file 11: Table S8. The list of all significant differentially
expressed genes detected following M. bovis infection based on
microarray data. For each differentially expressed gene is shown its gene
name, log2 fold-change, P-value, adjusted P-value (Benjamini-Hochberg
correction), description and Ensembl gene ID. The biomaRt package and
the B. taurus reference genome were used to obtain gene names and
gene descriptions. Genes without names or descriptions are stated here
as “not available”.

Additional file 12: Table S9. List of all significant differentially
expressed genes detected following M. bovis infection common to both
microarray and RNA-seq sense strand data. For each differentially
expressed gene is shown its Ensembl gene ID, gene name, description,
log2 fold-change, P-value and adjusted P-value (Benjamini-Hochberg
correction) based on microarray and RNA-seq sense strand data. The
biomaRt package and the B. taurus reference genome were used to
obtain gene names and gene descriptions. Genes without names or
descriptions are stated here as “not available”.

Additional file 13: Figure S4. Density plots of log2 mean CPM and
log2 mean hybridisation intensities for differentially expressed genes
unique and common to both platforms. This analysis was performed for
each platform/treatment group. DEG, differentially expressed genes.

Additional file 14: Table S10. GO categories identified using IPA based
on microarray data. The top ranking GO categories identified by IPA
based on microarray data are ranked according to P-values.

Additional file 15: Table S11. GO categories identified using IPA based
on differentially expressed genes common to both microarray and RNA-
seq sense strand data. The top ranking GO categories identified by IPA
based on differentially expressed genes common to both microarray and
RNA-seq sense strand data are ranked according to P-values.

Additional file 16: Table S12. Significant canonical pathways identified
using IPA based on microarray data. The canonical pathways identified
by IPA based on microarray data are ranked according to P-values. The
ratio indicates the number of differentially expressed genes involved in
each canonical pathway divided by the total number of genes/molecules
within each pathway according to the IPAW Knowledge Base.
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Additional file 17: Table S13. Significant canonical pathways identified
using IPA based on differentially expressed genes common to both
microarray and RNA-seq sense strand data. The canonical pathways
identified by IPA based on differentially expressed genes common to
both microarray and RNA-seq sense strand data are ranked according to
P-values. The ratio indicates the number of differentially expressed genes
involved in each canonical pathway divided by the total number of
genes/molecules within each pathway according to the IPAW Knowledge
Base.
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